[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS

  • Articles
  • Geochemistry
  • Published:
Chinese Science Bulletin

Abstract

A protocol was established for simultaneous measurements of zircon U-Pb ages and trace elements by LA-ICP-MS at spot sizes of 16–32 μm. This was accomplished by introducing N2 into ICP to increase the sensitivity. The obtained U-Pb ages for zircon standards GJ-1, TEMORA and SK10-2 are consistent with the preferred values within about 1% uncertainty (2 σ) by simple external calibration against zircon standard 91500. Different data reduction softwares could yield different uncertainties for calculation of U-Pb ages. The commercially available program GLITTER4.4 could apply an improper uncertainty calculation strategy, but it may yield artificial high precisions for single analyses. Our trace element analyses indicate that Si is not an ideal internal standard for zircon when calibrated against the NIST glasses. Calibration against the NIST glasses using Si as an internal standard, a systematic deviation of 10%–30% was found for most trace elements including Zr. However, the trace element compositions of zircon can be accurately measured by calibration against multiple reference materials with natural compositions (e.g., BCR-2G, BHVO-2G and BIR-1G), or calibration against NIST SRM 610 and using Zr as an internal standard. Analyses of two pieces of GJ-1 demonstrate that it is relatively homogenous for most trace elements (except for Ti).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cherniak D J, Hanchar J M, Watson E B. Rare-earth diffusion in zircon. Chem Geol, 1997, 134: 289–301

    Article  Google Scholar 

  2. Lee J K W, Williams I S, Ellis D J. Pb, U and Th diffusion in natural zircon. Nature, 1997, 390: 159–162

    Article  Google Scholar 

  3. Cherniak D J, Watson E B. Pb diffusion in zircon. Chem Geol, 2000, 172: 5–24

    Article  Google Scholar 

  4. Belousova E A, Griffin W L, O’Reilly S, et al. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib Mineral Petrol, 2002, 143: 602–622

    Google Scholar 

  5. Rubatto D. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol, 2002, 184: 123–138

    Article  Google Scholar 

  6. Grimes C B, John B E, Kelemen P B, et al. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology, 2007, 35: 643–646

    Article  Google Scholar 

  7. Martin L A J, Duchêne S, Deloule E, et al. Mobility of trace elements and oxygen in zircon during metamorphism: Consequences for geochemical tracing. Earth Planet Sci Lett, 2008, 267: 161–174

    Article  Google Scholar 

  8. Wu Y B, Zheng Y F, Gao S, et al. Zircon U-Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen. Lithos, 2008, 101: 308–322

    Article  Google Scholar 

  9. Buick I S, Hermann J, Williams I S, et al. A SHRIMP U-Pb and LA-ICP-MS trace element study of the petrogenesis of garnetcordierite-orthoamphibole gneisses from the Central Zone of the Limpopo Belt, South Africa. Lithos, 2006, 88: 150–172

    Article  Google Scholar 

  10. Hermann J, Rubatto D. Relating zircon and monazite domains to garnet growth zones: Age and duration of granulite facies metamorphism in the Val Malenco lower crust. J Metamorph Geol, 2003, 21: 833–852

    Google Scholar 

  11. Zong K, Liu Y, Gao C, et al. In situ U-Pb dating and trace element analysis of zircons in thin sections of eclogite: Refining constraints on the ultra high-pressure metamorphism of the Sulu terrane, China. Chem Geol, 2010, 269: 237–251

    Article  Google Scholar 

  12. Gao C, Liu Y, Zong K, et al. Microgeochemistry of rutile and zircon in eclogites from the CCSD main hole: Implications for the fluid activity and thermo-history of the UHP metamorphism. Lithos, 2010, 115: 51–64

    Article  Google Scholar 

  13. Liu Y, Gao S, Hu Z, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. J Petrol, 2010, 51: 537–571

    Article  Google Scholar 

  14. Utsunomiya S, Valley J W, Cavosie A J, et al. Radiation damage and alteration of zircon from a 3.3 Ga porphyritic granite from the Jack Hills, Western Australia. Chem Geol, 2007, 236: 92–111

    Article  Google Scholar 

  15. Horie K, Hidaka H, Gauthier-Lafaye F. Elemental distribution in zircon: Alteration and radiation-damage effects. Phys Chem Earth, Parts A/B/C, 2006, 31: 587–592

    Article  Google Scholar 

  16. Rubatto D, Hermann J. Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chem Geol, 2007, 241: 38–61

    Article  Google Scholar 

  17. Horn I, Rudnick R L, McDonough W F. Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS: Application to U-Pb geochronology. Chem Geol, 2000, 164: 281–301

    Article  Google Scholar 

  18. Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol, 2004, 211: 47–69

    Article  Google Scholar 

  19. Li X H, Liang X R, Sun M, et al. Precise 206Pb/238U age determination on zircons by laser ablation microprobe-inductively coupled plasmamass spectrometry using continuous linear ablation. Chem Geol, 2001, 175: 209–219

    Article  Google Scholar 

  20. Li X H, Liang X R, Sun M, et al. Geochronology and geochemistry of single-grain zircons: Simultaneous in-situ analysis of U-Pb age and trace elements by LAM-ICP-MS. Eur J Mineral, 2000, 12: 1015–1024

    Google Scholar 

  21. Kosler J, Fonneland H, Sylvester P, et al. U-Pb dating of detrital zircons for sediment provenance studies-A comparison of laser ablation ICPMS and SIMS techniques. Chem Geol, 2002, 182: 605–618

    Article  Google Scholar 

  22. Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasmamass spectrometry. Geostand Geoanal Res, 2004, 28: 353–370

    Article  Google Scholar 

  23. Liu D Y, Jian P, Kröner A, et al. Dating of prograde metamorphic events deciphered from episodic zircon growth in rocks of the Dabie-Sulu UHP complex, China. Earth Planet Sci Lett, 2006, 250: 650–666

    Article  Google Scholar 

  24. Katayama I, Muko A, Iizuka T, et al. Dating of zircon from Ticlinohumite-bearing garnet peridotite: Implication for timing of mantle metasomatism. Geology, 2003, 31: 713–716

    Article  Google Scholar 

  25. Scherstén A, Årebäck H, Cornell D, et al. Dating mafic-ultramafic intrusions by ion-microprobing contact-melt zircon: examples from SW Sweden. Contrib Mineral Petrol, 2000, 139: 115–125

    Article  Google Scholar 

  26. Liu X M, Gao S, Diwu C R, et al. Simultaneous in-situ determination of U-Pb age and trace elements in zircon by LA-ICP-MS in 20 μm spot size. Chinese Sci Bull, 2007, 52: 1257–1264

    Article  Google Scholar 

  27. Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chem Geol, 2008, 247: 100–118

    Article  Google Scholar 

  28. Hoskin P W O. Minor and trace element analysis of natural zircon (ZrSiO4) by SIMS and laser ablation ICPMS: A consideration and comparison of two broadly competitive techniques. J Trace Microprobe Tech, 1998, 16: 301–326

    Google Scholar 

  29. Pearce N J G, Perkins W T, Westgate J A, et al. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Geoanal Res, 1997, 21: 115–144

    Article  Google Scholar 

  30. Rocholl A B E, Simon K, Jochum K P, et al. Chemical characterisation of NIST silicate glass certified reference material SRM 610 by ICP-MS, TIMS, LIMS, SSMS, INAA, AAS and PIXE. Geostand Geoanal Res, 1997, 21: 101–114

    Article  Google Scholar 

  31. Hinton R W. Ion microprobe analysis. In: Potts P J, Bowles J F W, Reed S J B, et al., eds. Microprobe Techniques in the Earth Sciences. London: Chapman and Hall, 1995. 235–289

    Google Scholar 

  32. Jochum K P, Stoll B, Herwig K, et al. Validation of LA-ICP-MS trace element analysis of geological glasses using a new solid-state 193 nm Nd:YAG laser and matrix-matched calibration. J Anal At Spectrom, 2007, 22: 112–121

    Article  Google Scholar 

  33. Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol, 2008, 257: 34–43

    Article  Google Scholar 

  34. Guillong M, Hametner K, Reusser E, et al. Preliminary characterisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry using 193 nm, 213 nm and 266 nm wavelengths. Geostand Geoanal Res, 2005, 29: 315–331

    Article  Google Scholar 

  35. Kosler J, Wiedenbeck M, Wirth R, et al. Chemical and phase composition of particles produced by laser ablation of silicate glass and zircon-implications for elemental fractionation during ICP-MS analysis. J Anal At Spectrom, 2005, 20: 402–409

    Article  Google Scholar 

  36. Eggins S M, Shelley J M G. Compositional heterogeneity in NIST SRM 610-617 glasses. Geostand Geoanal Res, 2002, 26: 269–286

    Article  Google Scholar 

  37. Hinton R W. NIST SRM 610, 611 and SRM 612, 613 multi-element glasses: constraints from element abundance ratios measured by microprobe techniques. Geostand Geoanal Res, 1999, 23: 197–207

    Article  Google Scholar 

  38. Liu Y S, Hu Z C, Yuan H L, et al. Volume-optional and low-memory (VOLM) chamber for laser ablation-ICP-MS: Application to the analyses of fiber. J Anal At Spectrom, 2007, 22: 582–585

    Article  Google Scholar 

  39. Liu Y S, Zong K Q, Kelemen P B, et al. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chem Geol, 2008, 247: 133–153

    Article  Google Scholar 

  40. Eggins S M, Kinsley L P J, Shelley J M G. Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS. Appl Surf Sci, 1998, 127–129: 278–286

    Article  Google Scholar 

  41. Günther D, Heinrich C A. Enhanced sensitivity in laser ablationf-ICP mass spectrometry using helium-argon mixtures as aerosol carrier. J Anal At Spectrom, 1999, 14: 1363–1368

    Article  Google Scholar 

  42. Montaser A, Van Hoven R L. Mixed-gas, molecular-gas, and helium inductively coupled plasmas for analytical atomic spectrometry: A critical review. Crit Rev Anal Chem, 1987, 18: 45–103

    Google Scholar 

  43. Durrant S F. Feasibility of improvement in analytical performance in laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) by addition of nitrogen to the argon plasma. Fresenius J Anal Chem, 1994, 349: 768–771

    Article  Google Scholar 

  44. Hirata T, Nesbitt R W. U-Pb isotope geochronology of zircon: Evaluation of the laser probe-inductively coupled plasma mass spectrometry technique. Geochim Cosmochim Acta, 1995, 59: 2491–2500

    Article  Google Scholar 

  45. Nesbitt R W, Hirata T, Butler I B, et al. UV laser ablation ICP-MS: some applications in the earth sciences. Geostand Geoanal Res, 1997, 21: 231–243

    Article  Google Scholar 

  46. Iizuka T, Hirata T. Improvements of precision and accuracy in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique. Chem Geol, 2005, 220: 121–137

    Article  Google Scholar 

  47. Hu Z C, Gao S, Liu Y S, et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. J Anal At Spectrom, 2008, 23: 1093–1101

    Article  Google Scholar 

  48. Günther D, Hattendorf B. Solid sample analysis using laser ablation inductively coupled plasma mass spectrometry. Trends Anal Chem, 2005, 24: 255–265

    Article  Google Scholar 

  49. Mank A J G, Mason P R D. A critical assessment of laser ablation ICP-MS as an analytical tool for depth analysis in silica-based glass samples. J Anal At Spectrom, 1999, 14: 1143–1153

    Article  Google Scholar 

  50. Sylvester P J, Ghaderi M. Trace element analysis of scheelite by excimer laser ablation-inductively coupled plasma-mass spectrometry (ELA-ICP-MS) using a synthetic silicate glass standard. Chem Geol, 1997, 141: 49–65

    Article  Google Scholar 

  51. Longerich H P, Jackson S E, Günther D. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal At Spectrom, 1996, 11: 899–904

    Article  Google Scholar 

  52. Altman D G, Bland J M. Standard deviations and standard errors. BMJ, 2005, 331: 903

    Article  Google Scholar 

  53. Wiedenbeck M, Alle P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand Geoanal Res, 1995, 19: 1–23

    Article  Google Scholar 

  54. Black L P, Kamo S L, Allen C M, et al. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology. Chem Geol, 2003, 200: 155–170

    Article  Google Scholar 

  55. Yuan H L, Wu F Y, Gao S, et al. Determination of U-Pb age and rare earth element concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS. Chinese Sci Bull, 2003, 48: 2411–2421

    Google Scholar 

  56. Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem Geol, 2002, 192: 59–79

    Article  Google Scholar 

  57. Belousova E A, Griffin W L, Shee S R, et al. Two age populations of zircons from the Timber Creek kimberlites, Northern Territory, as determined by laser-ablation ICP-MS analysis. Aust J Earth Sci, 2001, 48: 757–765

    Google Scholar 

  58. Ludwig K R. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, California, 2003. 1–39

    Google Scholar 

  59. Alagna K E, Petrelli M, Perugini D, et al. Micro-Analytical Zircon and Monazite U-Pb Isotope Dating by Laser Ablation-Inductively Coupled Plasma-Quadrupole Mass Spectrometry. Geostand Geoanal Res, 2008, 32: 103–120

    Article  Google Scholar 

  60. Wiedenbeck M, Hanchar J M, Peck W H, et al. Further characterisation of the 91500 zircon crystal. Geostand Geoanal Res, 2004, 28: 9–39

    Article  Google Scholar 

  61. Blichert-Toft J. The Hf isotopic composition of zircon reference material 91500. Chem Geol, 2008, 253: 252–257

    Article  Google Scholar 

  62. Morel M L A, Nebel O, Nebel-Jacobsen Y J, et al. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chem Geol, 2008, 255: 231–235

    Article  Google Scholar 

  63. Elhlou S, Belousova E, Griffin W L, et al. Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochim Cosmochim Acta, 2006, 70(Suppl 1): A158–A158

    Article  Google Scholar 

  64. Günther D, Heinrich C A. Comparison of the ablation behaviour of 266 nm Nd: YAG and 193 nm ArF excimer lasers for LA-ICP-MS analysis. J Anal At Spectrom, 1999, 14: 1369–1374

    Article  Google Scholar 

  65. Kuhn H R, Günther D. Laser ablation-ICP-MS: Particle size dependent elemental composition studies on filter-collected and online measured aerosols from glass. J Anal At Spectrom, 2004, 19: 1158–1164

    Article  Google Scholar 

  66. Hu Z C, Liu Y S, Gao S, et al. A local aerosol extraction strategy for the determination of the aerosol composition in laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom, 2008, 23: 1192–1203

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongSheng Liu.

About this article

Cite this article

Liu, Y., Hu, Z., Zong, K. et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin. Sci. Bull. 55, 1535–1546 (2010). https://doi.org/10.1007/s11434-010-3052-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-3052-4

Keyword

Navigation