Prediction of Potential Evapotranspiration via Machine Learning and Deep Learning for Sustainable Water Management in the Murat River Basin
<p>Location of Murat River Basin between Turkey Basins.</p> "> Figure 2
<p>The flowchart depicts the methodological steps of this study.</p> "> Figure 3
<p>Sub-basins of the Murat River Basin extracted by Arc-Map version 10.8.</p> "> Figure 4
<p>Thiessen polygon method applied to meteorological stations in the Murat Basin.</p> "> Figure 5
<p>Average monthly PET calculated with Thornthwaite equation (1979–2021).</p> "> Figure 6
<p>Actual and predicted PET calculated via CNN.</p> "> Figure 6 Cont.
<p>Actual and predicted PET calculated via CNN.</p> "> Figure 7
<p>Predicted and actual PET via SVM.</p> "> Figure 7 Cont.
<p>Predicted and actual PET via SVM.</p> "> Figure 7 Cont.
<p>Predicted and actual PET via SVM.</p> "> Figure 8
<p>Actual and predicted PET via RF.</p> "> Figure 8 Cont.
<p>Actual and predicted PET via RF.</p> ">
Abstract
:1. Introduction
2. Materials and Data Description
2.1. Study Area
2.2. Data Collection
3. Methodology
3.1. Geographic Information System (GIS) Spatial Analysis and Modeling Setup
3.2. Interpolation Process Using the Thiessen Polygon Method
3.3. Computing Potential Evapotranspiration (PET)
3.4. Machine Learning and Deep Learning
3.4.1. Convolutional Neural Network (CNN)
3.4.2. Support Vector Machine (SVM)
3.4.3. Random Forest (RF)
3.5. Models’ Performance Validation
4. Results and Discussion
4.1. PET Calculated with the Thornthwaite Equation
4.2. PET Prediction via CNN
4.3. PET Prediction via SVM
4.4. PET Prediction via RF
4.5. Performance of the Models
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wood, E.F.; Su, H.; McCabe, M.; Su, B. Estimating evaporation from satellite remote sensing. In Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2003, Toulouse, France, 21–25 July 2003; Proceedings (IEEE Cat. No. 03CH37477). IEEE: Piscataway, NJ, USA, 2003. [Google Scholar]
- Jing, W.; Yaseen, Z.M.; Shahid, S.; Saggi, M.K.; Tao, H.; Kisi, O.; Salih, S.Q.; Al-Ansari, N.; Chau, K.-W. Implementation of evolutionary computing models for reference evapotranspiration modeling: Short review, assessment, and possible future research directions. Eng. Appl. Comput. Fluid Mech. 2019, 13, 811–823. [Google Scholar] [CrossRef]
- Raman, J.; Kim, J.-S.; Choi, K.R.; Eun, H.; Yang, D.; Ko, Y.-J.; Kim, S.-J. Application of lactic acid bacteria (LAB) in sustainable agriculture: Advantages and limitations. Int. J. Mol. Sci. 2022, 23, 7784. [Google Scholar] [CrossRef]
- Pelosi, A.; Villani, P.; Bolognesi, S.F.; Chirico, G.B.; D’urso, G. Predicting crop evapotranspiration by integrating ground and remote sensors with air temperature forecasts. Sensors 2020, 20, 1740. [Google Scholar] [CrossRef]
- Penman, H.L. Natural evaporation from open water, bare soil, and grass. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar]
- Shuttleworth, W. Evaporation Handbook of Hydrology ed DR Maidment; McGraw-Hill: New York, NY, USA, 1993. [Google Scholar]
- Allen, R.G.; Clemmens, A.J.; Burt, C.M.; Solomon, K.; O’Halloran, T. Prediction accuracy for projectwide evapotranspiration using crop coefficients and reference evapotranspiration. J. Irrig. Drain. Eng. 2005, 131, 24–36. [Google Scholar] [CrossRef]
- Aschonitis, V.; Touloumidis, D.; ten Veldhuis, M.-C.; Coenders-Gerrits, M. Correcting Thornthwaite potential evapotranspiration using a global grid of local coefficients to support temperature-based estimations of reference evapotranspiration and aridity indices. Earth Syst. Sci. Data 2022, 14, 163–177. [Google Scholar] [CrossRef]
- Brutsaert, W. Global land surface evaporation trend during the past half-century: Corroboration by Clausius-Clapeyron scaling. Adv. Water Resour. 2017, 106, 3–5. [Google Scholar] [CrossRef]
- Bouchet, R. Evapotranspiration reelle, evapotranspiration potentielle, et production agricole. Ann. Agron. 1963, 14, 743–824. [Google Scholar]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Ahmadi, F.; Mehdizadeh, S.; Mohammadi, B.; Pham, Q.B.; Doan TN, C.; Vo, N.D. Application of an artificial intelligence technique enhanced with intelligent water drops for monthly reference evapotranspiration estimation. Agric. Water Manag. 2021, 244, 106622. [Google Scholar] [CrossRef]
- Fahimi, F.; Yaseen, Z.M.; El-Shafie, A. Application of soft computing based hybrid models in hydrological variables modeling: A comprehensive review. Theor. Appl. Climatol. 2017, 128, 875–903. [Google Scholar] [CrossRef]
- Mehr, A.D.; Nourani, V.; Kahya, E.; Hrnjica, B.; Sattar, A.M.; Yaseen, Z.M. Genetic programming in water resources engineering: A state-of-the-art review. J. Hydrol. 2018, 566, 643–667. [Google Scholar] [CrossRef]
- Shahbazi, A.N.; Zahraie, B.; Nasseri, M. Seasonal meteorological drought prediction using support vector machine. World Appl. Sci. J. 2012, 13, 1387–1397. [Google Scholar]
- Chen, Z.; Sun, S.; Wang, Y.; Wang, Q.; Zhang, X. Temporal convolution-network-based models for modeling maize evapotranspiration under mulched drip irrigation. Comput. Electron. Agric. 2020, 169, 105206. [Google Scholar] [CrossRef]
- Hassan, M.A.; Khalil, A.; Kaseb, S.; Kassem, M. Exploring the potential of tree-based ensemble methods in solar radiation modeling. Appl. Energy 2017, 203, 897–916. [Google Scholar] [CrossRef]
- Papadopoulos, S.; Azar, E.; Woon, W.-L.; Kontokosta, C.E. Evaluation of tree-based ensemble learning algorithms for building energy performance estimation. J. Build. Perform. Simul. 2018, 11, 322–332. [Google Scholar] [CrossRef]
- Granata, F.; Di Nunno, F. Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks. Agric. Water Manag. 2021, 255, 107040. [Google Scholar] [CrossRef]
- Deng, L.; Yu, D. Deep learning: Methods and applications. Found. Trends® Signal Process. 2014, 7, 197–387. [Google Scholar] [CrossRef]
- Fattah, W.H.; IMi, Y. Hydrological analysis of Murat river basin. Int. J. Appl. 2015, 5, 47–55. [Google Scholar]
- Terakawa, A. Hydrological Data Management: Present State and Trends; Secretariat of the World Meteorological Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Naoum, S.; Tsanis, I. Ranking spatial interpolation techniques using a GIS-based DSS. Glob. Nest 2004, 6, 1–20. [Google Scholar]
- Chai, H.; Cheng, W.; Zhou, C.; Chen, X.; Ma, X.; Zhao, S. Analysis and comparison of spatial interpolation methods for temperature data in Xinjiang Uygur Autonomous Region, China. Nat. Sci. 2011, 3, 999. [Google Scholar] [CrossRef]
- Anggraini, N.; Slamet, B. Thornthwaite Models for Estimating Potential Evapotranspiration in Medan City. IOP Conf. Ser. Earth Environ. Sci. 2021, 912, 012095. [Google Scholar] [CrossRef]
- Azman, R.; Noor, N.; Abdullah, S.; Ideris, M. Analysis of Drought Index in Sub-Urban Area Using Standard Precipitation Evapotranspiration Index (SPEI). Int. J. Integr. Eng. 2022, 14, 157–163. [Google Scholar] [CrossRef]
- Kim, S.-J.; Bae, S.-J.; Jang, M.-W. Linear regression machine learning algorithms for estimating reference evapotranspiration using limited climate data. Sustainability 2022, 14, 11674. [Google Scholar] [CrossRef]
- Pramanik, M.; Chowdhury, K.; Rana, M.J.; Bisht, P.; Pal, R.; Szabo, S.; Pal, I.; Behera, B.; Liang, Q.; Padmadas, S.S.; et al. Climatic influence on the magnitude of COVID-19 outbreak: A stochastic model-based global analysis. Int. J. Environ. Health Res. 2022, 32, 1095–1110. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ma, Y.; Zhao, K.; Tian, Y. A Comprehensive Survey of Loss Functions in Machine Learning. Ann. Data Sci. 2022, 9, 187–212. [Google Scholar] [CrossRef]
- Tian, Y.; Su, D.; Lauria, S.; Liu, X. Recent advances in loss functions in deep learning for computer vision. Neurocomputing 2022, 497, 129–158. [Google Scholar] [CrossRef]
- Paul, S.; Farzana, S.Z.; Das, S.; Das, P.; Kashem, A. Comparative analysis of advanced deep learning models for predicting evapotranspiration based on meteorological data in bangladesh. Environ. Sci. Pollut. Res. 2024, 31, 60041–60064. [Google Scholar] [CrossRef] [PubMed]
- Amani, S.; Shafizadeh-Moghadam, H. A review of machine learning models and influential factors for estimating evapotranspiration using remote sensing and ground-based data. Agric. Water Manag. 2023, 284, 108324. [Google Scholar] [CrossRef]
- Lee, J.K.; Rouault, M.; Wyart, V. Adaptive tuning of human learning and choice variability to unexpected uncertainty. Sci. Adv. 2023, 9, eadd0501. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhou, D.J. Using cross-validation methods to select time series models: Promises and pitfalls. Br. J. Math. Stat. Psychol. 2024, 77, 337–355. [Google Scholar] [CrossRef] [PubMed]
- Siva, G. Matrix variate receiver operating characteristic curve for binary classification. Statistics 2024, 58, 1–8. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Lazar, J.; Feng, J.H.; Hochheiser, H. Research Methods in Human-Computer Interaction; Morgan Kaufmann: Burlington, MA, USA, 2017. [Google Scholar]
- Feng, F.; Tuomi, M.; Jones, H.R.; Barnes, J.; Anglada-Escude, G.; Vogt, S.S.; Butler, R.P. Color difference makes a difference: Four planet candidates around τ ceti. Astron. J. 2017, 154, 135. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; Al-Juboori, A.M.; Beyaztas, U.; Al-Ansari, N.; Chau, K.-W.; Qi, C.; Ali, M.; Salih, S.Q.; Shahid, S. Prediction of evaporation in arid and semi-arid regions: A comparative study using different machine learning models. Eng. Appl. Comput. Fluid Mech. 2020, 14, 70–89. [Google Scholar] [CrossRef]
- Lee, Y.C.; Christensen, J.J.; Parnell, L.D.; Smith, C.E.; Shao, J.; McKeown, N.M.; Ordovás, J.M.; Lai, C.Q. Using Machine Learning to Predict Obesity Based on Genome-Wide and Epigenome-Wide Gene–Gene and Gene–Diet Interactions. Front. Genet. 2022, 12, 783845. [Google Scholar] [CrossRef]
- Wald, N.J.; Bestwick, J.P. Is the area under an ROC curve a valid measure of the performance of a screening or diagnostic test? J. Med. Screen. 2014, 21, 51–56. [Google Scholar] [CrossRef] [PubMed]
SN | Station Name | Latitude | Longitude |
---|---|---|---|
17,099 | Ağrı | 39.7253 | 43.0522 |
17,720 | Doğubeyazit | 39.5396 | 44.018 |
17,203 | Bingöl | 38.8847 | 40.5007 |
17,776 | Solhan | 38.9597 | 41.0503 |
17,808 | Genç | 38.7477 | 40.5528 |
18,176 | Kığı | 39.3086 | 40.3458 |
17,205 | Tatvan | 38.5033 | 42.2808 |
17,208 | Bitlis | 38.475 | 42.1625 |
17,810 | Ahlat | 38.7487 | 42.475 |
17,094 | Erzincan | 39.7523 | 39.4868 |
17,718 | Tezcan | 39.7769 | 40.3906 |
17,096 | Erzurum Havalimanı | 39.9529 | 41.1897 |
17,666 | İspir | 40.4861 | 40.9996 |
17,668 | Oltu | 40.5497 | 41.9951 |
17,688 | Tortum | 40.3013 | 41.5409 |
17,690 | Horasan | 40.0415 | 42.173 |
17,740 | Hınıs | 39.3688 | 41.6957 |
17,100 | Iğdır | 39.9227 | 44.0523 |
17,097 | Kars | 40.6061 | 43.1119 |
17,656 | Arpaçay | 40.8431 | 43.3278 |
17,692 | Sarıkamış | 40.3329 | 42.5983 |
17,204 | Muş | 38.7509 | 41.5023 |
17,734 | Divriği | 39.3618 | 38.1142 |
17,762 | Kangal | 39.2428 | 37.389 |
17,172 | Van Bölge | 38.4693 | 43.346 |
17,784 | Erciş | 39.0198 | 43.3386 |
17,812 | Özalp | 38.6573 | 43.9767 |
17,852 | Gevaş | 38.2963 | 43.1197 |
17,880 | Başkale | 38.0435 | 44.0173 |
Sub-Basins | Area | Eff. Weight | Met. Stations |
---|---|---|---|
Sub-Basin 1 | 2957 | 0.68 | AĞRI |
0.11 | ERCİŞ | ||
0.21 | DOĞUBEYAZİT | ||
Sub-Basin 2 | 1601 | 0.63 | AĞRI |
0.37 | HORASAN | ||
Sub-Basin 3 | 5989 | 0.45 | AĞRI |
0.14 | ERCİŞ | ||
0.11 | HORASAN | ||
0.3 | AHLAT | ||
Sub-Basin 4 | 3176 | 0.88 | HINIS |
0.07 | HORASAN | ||
0.05 | AHLAT | ||
Sub-Basin 5 | 4047 | 0.32 | HINIS |
0.22 | MUŞ | ||
0.23 | AHLAT | ||
0.23 | SOLHAN | ||
Sub-Basin 6 | 2259 | 0.53 | MUŞ |
0.47 | BITLIS | ||
Sub-Basin 7 | 2437 | 0.18 | MUŞ |
0.65 | SOLHAN | ||
0.17 | GENÇ | ||
Sub-Basin 8 | 2320 | 0.36 | SOLHAN |
0.08 | KIĞI | ||
0.56 | BİNGÖL | ||
Sub-Basin 9 | 5836 | 0.1 | SOLHAN |
0.73 | KIĞI | ||
0.17 | BİNGÖL | ||
Sub-Basin 10 | 2839 | 0.1 | GENÇ |
0.64 | BİNGÖL | ||
0.26 | ERZICAN | ||
Sub-Basin 11 | 4039 | 0.84 | ERZICAN |
0.16 | KIĞI | ||
Sub-Basin 12 | 137 | 0.28 | BİNGÖL |
0.47 | ERZICAN | ||
0.25 | KIĞI | ||
Sub-Basin 13 | 3058 | 0.29 | DIVRIĞI |
0.71 | ERZICAN |
Algorithms | Sub-Basin 1 | Sub-Basin 2 | Sub-Basin 3 | Sub-Basin 4 | Sub-Basin 5 | Sub-Basin 6 | Sub-Basin 7 | Sub-Basin 8 | Sub-Basin 9 | Sub-Basin 10 | Sub-Basin 11 | Sub-Basin 12 | Sub-Basin 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | CNN | 0.962 | 0.987 | 0.987 | 0.987 | 0.962 | 0.975 | 0.987 | 0.975 | 0.984 | 0.986 | 0.986 | 0.986 | 0.985 |
SVM | 0.954 | 0.954 | 0.956 | 0.956 | 0.953 | 0.950 | 0.945 | 0.945 | 0.954 | 0.945 | 0.953 | 0.953 | 0.948 | |
RF | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
MSE | CNN | 0.293 | 0.287 | 0.309 | 0.277 | 0.345 | 0.353 | 0.405 | 0.422 | 0.408 | 0.400 | 0.377 | 0.376 | 0.387 |
SVM | 0.375 | 0.348 | 0.287 | 0.267 | 0.484 | 0.661 | 0.981 | 1.028 | 0.548 | 1.013 | 0.527 | 0.610 | 0.680 | |
RF | 0.409 | 0.326 | 0.389 | 0.338 | 0.439 | 0.407 | 0.485 | 0.640 | 0.605 | 0.412 | 0.331 | 0.439 | 0.385 | |
RMSE | CNN | 0.541 | 0.536 | 0.556 | 0.526 | 0.587 | 0.594 | 0.637 | 0.649 | 0.639 | 0.632 | 0.614 | 0.613 | 0.622 |
SVM | 0.612 | 0.590 | 0.536 | 0.517 | 0.696 | 0.813 | 0.990 | 1.014 | 0.740 | 1.006 | 0.726 | 0.781 | 0.825 | |
RF | 0.640 | 0.571 | 0.624 | 0.582 | 0.663 | 0.638 | 0.696 | 0.800 | 0.778 | 0.642 | 0.575 | 0.663 | 0.621 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, I.A.; Yuce, M.I. Prediction of Potential Evapotranspiration via Machine Learning and Deep Learning for Sustainable Water Management in the Murat River Basin. Sustainability 2024, 16, 11077. https://doi.org/10.3390/su162411077
Hasan IA, Yuce MI. Prediction of Potential Evapotranspiration via Machine Learning and Deep Learning for Sustainable Water Management in the Murat River Basin. Sustainability. 2024; 16(24):11077. https://doi.org/10.3390/su162411077
Chicago/Turabian StyleHasan, Ibrahim A., and Mehmet Ishak Yuce. 2024. "Prediction of Potential Evapotranspiration via Machine Learning and Deep Learning for Sustainable Water Management in the Murat River Basin" Sustainability 16, no. 24: 11077. https://doi.org/10.3390/su162411077
APA StyleHasan, I. A., & Yuce, M. I. (2024). Prediction of Potential Evapotranspiration via Machine Learning and Deep Learning for Sustainable Water Management in the Murat River Basin. Sustainability, 16(24), 11077. https://doi.org/10.3390/su162411077