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Abstract: Potential evapotranspiration (PET) is a significant factor contributing to water loss in
hydrological systems, making it a critical area of research. However, accurately calculating and
measuring PET remains challenging due to the limited availability of comprehensive data. This study
presents a detailed sustainable model for predicting PET using the Thornthwaite equation, which
requires only mean monthly temperature (Tmean) and latitude, with calculations performed using
R-Studio. A geographic information system (GIS) was employed to interpolate meteorological data,
ensuring coverage of all sub-basins within the Murat River basin, the study area. Additionally, Python
libraries were utilized to implement artificial intelligence-driven models, incorporating both machine
learning and deep learning techniques. The study harnesses the power of artificial intelligence
(AI), applying deep learning through a convolutional neural network (CNN) and machine learning
techniques, including support vector machine (SVM) and random forest (RF). The results demonstrate
promising performance across the models. For CNN, the coefficient of determination (R2) varied from
96.2 to 98.7%, the mean squared error (MSE) ranged from 0.287 to 0.408, and the root mean squared
error (RMSE) was between 0.541 and 0.649. For SVM, the R2 varied from 94.5 to 95.6%, MSE ranged
between 0.981 and 1.013, and RMSE ranged from 0.990 to 1.014. RF showed the best performance,
achieving an R2 of 100%, MSE values of 0.326 and 0.640, and corresponding RMSE values of 0.571
and 0.800. The climate and topography data used for all algorithms were consistent, and the results
indicate that the RF model outperforms the others. Consequently, The RF model’s superior accuracy
highlights its potential as a reliable tool for sustainable PET prediction, supporting informed decision-
making in water resource planning. By leveraging GIS, AI, and machine learning, this study enhances
PET modeling methodologies, addressing critical water management challenges and promoting
sustainable hydrological practices in the face of climate change and resource limitations.

Keywords: PET; sustainable prediction; Thornthwaite equation; CNN; SVM; RF

1. Introduction

Evapotranspiration (ET) describes the process through which moisture is returned
from Earth’s surface to the atmosphere by combining evaporation from the land and tran-
spiration from plants [1]. In hydrological research, potential evapotranspiration (PET) is
widely regarded as a key parameter, essential for validating and refining rainfall–runoff
models and broader hydrological cycle assessments, as well as enhancing climate and
meteorological forecasting models [2,3]. However, existing PET models often depend on a
range of input variables such as temperature, precipitation, solar radiation, wind speed,
and humidity, posing challenges when data are sparse or inaccessible [4–7]. This study
aims to address these limitations by predicting PET in the Murat River Basin, located
in southeast Turkey, using a temperature-only approach. Employing monthly tempera-
ture data from the past four decades (1979–2021), we apply the Thornthwaite equation,
which requires only temperature and latitude as inputs, making it highly suitable for
data-limited environments.
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The Murat River Basin is located in the southeastern part of Turkey, which is charac-
terized by a Mediterranean climate, where agricultural water demand is largely driven
by ET during the dry season, necessitating extensive irrigation practices in open fields.
This challenge is common in semi-arid regions, where limited rainfall necessitates efficient
irrigation practices, making accurate PET estimation vital for agricultural planning [4]. The
Thornthwaite model has demonstrated robust applicability for PET estimation and aridity
assessments across various climatic contexts [8], offering a practical, accessible approach
for environments with limited meteorological data.

In response to the predicted impacts of climate change, particularly the Clausius–
Clapeyron relationship, which suggests that rising temperature due to climate change
will increase atmospheric moisture and intensify the hydrological cycle [9], increasing
temperature will enhance the exchange of water vapor between terrestrial ecosystems and
the atmosphere. This study explores how PET might respond to these shifts. According
to Bouchet’s complementary hypothesis, increased air temperatures could heighten atmo-
spheric evaporative demand, potentially reducing PET rates under specific conditions [10].
Temperature-based PET estimation remains a widely applied and efficient technique in
climatology and hydrology, providing an effective means of large-scale modeling [11]. PET
plays a crucial role in meteorological research, highlighting the need for reliable measure-
ment methods with guaranteed accuracy in hydrology and agricultural studies [12]. This
study presents the sustainability development of a novel PET prediction methodology
utilizing Python (google colab version) libraries alongside machine learning and deep
learning techniques. Machine learning, in particular, has emerged as an effective tool
for forecasting time series data, such as evapotranspiration (ET), independent of prior
knowledge of underlying physical processes [3].

There are various methods used to estimate PET in various parts of the world. How-
ever, it is a challenge to select a suitable method for PET calculation, because the selection
of an appropriate method for certain areas highly depends on data availability [6,7]. As a
result of the lack of the required input data in the interested region of study, a key focus of
this study is integrating machine learning (ML) and deep learning (DL) methodologies to
improve PET predictions. Machine learning models, such as the support vector machine
(SVM) [13,14], artificial neural network (ANN) [15], and random forest (RF), have shown
promise in enhancing the precision of hydrological forecasting by incorporating complex
environmental variables [13,16–18]. SVM, in particular, has demonstrated superior perfor-
mance in predicting indices like the standardized precipitation index (SPI) when provided
with inputs such as wind speed and humidity [15]. Recently, the random forest (RF) method
has become more popular because of its robustness and accuracy as a prediction algorithm,
despite its simplicity [17,18]. According to Jing et al. (2019), SVM performs optimally
when provided with wind speed, rainfall, and relative humidity as inputs. Indeed, deep
learning-based models have a remarkable ability to predict future evapotranspiration [16].
Deep learning, through convolutional neural networks (CNNs) and other architectures, has
also been successfully applied to time series data, including ET, yielding accurate forecasts
in diverse climates [16,19,20].

Despite these advancements, existing PET models frequently lack the flexibility to
adapt to varying climatic conditions and often overlook uncertainty factors [19]. This
study addresses these gaps by implementing rigorous model validation techniques and
uncertainty analyses, providing a robust framework for PET prediction under different
climate scenarios. Additionally, we compare traditional approaches with machine learning
algorithms to highlight the practical implications of using novel ML and deep learning
models in hydrological modeling, particularly its potential for enhancing PET predictions
in data-scarce environments. The findings aim to contribute a data-efficient PET prediction
methodology, providing a useful tool for regional water management and agricultural
planning. This study’s novel approach not only improves upon traditional PET estimation
by leveraging artificial intelligence but also seeks to establish a framework that can be
adapted to other data-limited regions with similar hydrological needs.
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2. Materials and Data Description
2.1. Study Area

The study area is the Murat River Basin in southeastern Turkey, as shown in Figure 1.
The Murat River Basin is one of the principal origins of the Euphrates River, which traverses
Turkey, Syria, and Iraq in an expansive journey. The latitude and the longitude ranges of
the Murat River Basin are 40◦04′–40◦02′ N and 38◦53′–43◦46′ E, respectively.
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Figure 1. Location of Murat River Basin between Turkey Basins.

The Murat River Basin is characterized by warm–dry summers and cold–wet winters.
Precipitation is concentrated during the winter season, from November to April, and the
total annual precipitation ranges from 350 to 1010 mm from location to location [21].

2.2. Data Collection

Data collection methods can differ from one country to another, depending on the
specific research objectives, data types, units of measurement, and quantity required [22].

In this study, the data include a 12 m × 12 m digital elevation model (DEM) sourced
from the US Geological Survey (USGS). Mean monthly temperature is the only climate
metric used for this study. The data were collected between 1979 and 2021 from 28 meteoro-
logical stations around the area, inside and outside the Murat River Basin. Table 1 lists the
meteorological stations with their coordinates and serial numbers. This dataset is sufficient
for conducting a comprehensive analysis and evaluation within this research area.

Table 1. List of meteorological stations inside and outside the Murat River Basin.

SN Station Name Latitude Longitude

17,099 Ağrı 39.7253 43.0522

17,720 Doğubeyazit 39.5396 44.018

17,203 Bingöl 38.8847 40.5007
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Table 1. Cont.

SN Station Name Latitude Longitude

17,776 Solhan 38.9597 41.0503

17,808 Genç 38.7477 40.5528

18,176 Kığı 39.3086 40.3458

17,205 Tatvan 38.5033 42.2808

17,208 Bitlis 38.475 42.1625

17,810 Ahlat 38.7487 42.475

17,094 Erzincan 39.7523 39.4868

17,718 Tezcan 39.7769 40.3906

17,096 Erzurum Havalimanı 39.9529 41.1897

17,666 İspir 40.4861 40.9996

17,668 Oltu 40.5497 41.9951

17,688 Tortum 40.3013 41.5409

17,690 Horasan 40.0415 42.173

17,740 Hınıs 39.3688 41.6957

17,100 Iğdır 39.9227 44.0523

17,097 Kars 40.6061 43.1119

17,656 Arpaçay 40.8431 43.3278

17,692 Sarıkamış 40.3329 42.5983

17,204 Muş 38.7509 41.5023

17,734 Divriği 39.3618 38.1142

17,762 Kangal 39.2428 37.389

17,172 Van Bölge 38.4693 43.346

17,784 Erciş 39.0198 43.3386

17,812 Özalp 38.6573 43.9767

17,852 Gevaş 38.2963 43.1197

17,880 Başkale 38.0435 44.0173

3. Methodology

The methodology adopts a systematic approach, integrating various techniques to
guide the workflow of the calculation and prediction of PET by various deep and machine
learning algorithms based on temperature data in the study area (Figure 2).

3.1. Geographic Information System (GIS) Spatial Analysis and Modeling Setup

This study geographically analyzes and models the Murat River Basin, with a primary
focus on predicting PET. The analysis begins by utilizing ArcGIS software (version 10.8)
to extract a high-resolution DEM with a spatial resolution of 12 m × 12 m. This detailed
DEM allows for an accurate calculation of the basin’s total area, which is approximately
40,000 km2. Understanding the basin’s dimensions and topography is essential for effective
hydrological modeling and predicting PET, as these factors significantly influence water
movement and availability within the region.
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Figure 2. The flowchart depicts the methodological steps of this study.

Thirteen distinct sub-basins were delineated through a comprehensive investigation of
various hydrological processes, including filling, flow direction, flow accumulation, stream
order, stream link, and basin analysis using GIS. This systematic approach enhances our
understanding of the hydrological characteristics of the Murat River Basin, as illustrated
in Figure 3. By identifying these sub-basins, we can better assess the spatial variability of
hydrological phenomena, which is critical for accurate predictions of PET and effective
water resource management in the region.
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Figure 3. Sub-basins of the Murat River Basin extracted by Arc-Map version 10.8.

3.2. Interpolation Process Using the Thiessen Polygon Method

We employed the Thiessen polygon method for spatial interpolation in ArcGIS, creat-
ing polygons around each meteorological station based on its proximity to neighboring
stations. This technique allows for a spatial representation of the catchment zones within
the basin. The method operates under the assumption that the temperature recorded
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at each meteorological station serves as the best estimate for that station’s surrounding
area compared to any other station’s measurements [23]. This approach is particularly
useful for capturing the spatial variability of temperature across the Murat River Basin,
which is essential for accurate predictions of PET and for understanding the region’s
hydrological dynamics.

Figure 4 illustrates that meteorological data were collected over at least 40 years from
28 stations located both within and outside the research area. The geographical coordinates
of these stations were integrated into the DEM to determine their relative distances and
influence on the nearest sub-basins. Spatial interpolation methods are widely utilized to
estimate meteorological data values in areas lacking direct measurements [24].
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Figure 4. Thiessen polygon method applied to meteorological stations in the Murat Basin.

In this analysis, a weighted temperature value was computed for each station, cal-
culated as the area influenced by the station divided by the total area of the respective
sub-basin. This method allows us to assess the temperature contribution of individual
stations within each sub-basin, as detailed in Table 2. The resulting data are then integrated
to estimate temperature variations across the entire sub-basin, providing a comprehensive
understanding of the thermal dynamics within the Murat River Basin.

Table 2. Effective weight of the meteorological stations in the sub-basins.

Sub-Basins Area Eff. Weight Met. Stations

Sub-Basin 1 2957
0.68 AĞRI
0.11 ERCİŞ
0.21 DOĞUBEYAZİT

Sub-Basin 2 1601
0.63 AĞRI
0.37 HORASAN

Sub-Basin 3 5989

0.45 AĞRI
0.14 ERCİŞ
0.11 HORASAN
0.3 AHLAT

Sub-Basin 4 3176
0.88 HINIS
0.07 HORASAN
0.05 AHLAT
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Table 2. Cont.

Sub-Basins Area Eff. Weight Met. Stations

Sub-Basin 5 4047

0.32 HINIS
0.22 MUŞ
0.23 AHLAT
0.23 SOLHAN

Sub-Basin 6 2259
0.53 MUŞ
0.47 BITLIS

Sub-Basin 7 2437
0.18 MUŞ
0.65 SOLHAN
0.17 GENÇ

Sub-Basin 8 2320
0.36 SOLHAN
0.08 KIĞI
0.56 BİNGÖL

Sub-Basin 9 5836
0.1 SOLHAN

0.73 KIĞI
0.17 BİNGÖL

Sub-Basin 10 2839
0.1 GENÇ

0.64 BİNGÖL
0.26 ERZICAN

Sub-Basin 11 4039
0.84 ERZICAN
0.16 KIĞI

Sub-Basin 12 137
0.28 BİNGÖL
0.47 ERZICAN
0.25 KIĞI

Sub-Basin 13 3058
0.29 DIVRIĞI
0.71 ERZICAN

3.3. Computing Potential Evapotranspiration (PET)

The Thornthwaite equation is used to calculate potential evapotranspiration (PET)
based on temperature and latitude [25]. It can be expressed mathematically as follows:

ET = 1.6 La [
10 T

It
]a, (1)

where, ET is monthly PET (cm); La is adjustment for the number of daylight hours and
days in the month (depending on latitude; T denotes mean monthly air temperature (◦C);
It presents the total 12 m monthly values of the heat index, i

i = ∑12
1 i (2)

and i =
(

T
5

)1.514

(3)

a is empirical constant, where

a = 6.75 × 10−7 (It)3 − 7.71 × 10−5 (It)2 + 1.792 × 10−2 (It) + 0.49239. (4)

The Thornthwaite equation was sustainably implemented using R-Studio (version
2023.03.1+446) to calculate PET. Additionally, standardized precipitation evapotranspira-
tion index (SPEI) values for a long-term series related to the Murat River Basin were gener-
ated using R. The Thornthwaite equation calculated the monthly PET. The temperature-
derived data were then used to calculate various PET timeframes [26].
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3.4. Machine Learning and Deep Learning

In recent years, machine learning and deep learning techniques have significantly
advanced the field of climate data analysis and prediction [27]. After computing the
potential evapotranspiration (PET) for the past 42 years using temperature data and the
Thornthwaite equation, three different machine learning models will be employed to
predict PET for the succeeding 42 years. These models will utilize historical temperature
data and PET values to identify patterns and relationships that can be applied to future
projections. The selected machine learning and deep learning algorithms will be chosen
for their capacity to capture nonlinear patterns, temporal dependencies, and complex
interactions between temperature and PET. By applying these advanced techniques, this
study aims to generate more accurate and reliable forecasts of PET, providing valuable
insights into potential future changes in evapotranspiration patterns. The outcomes of
these predictions will be essential for understanding long-term evapotranspiration trends
and their impact on regional hydrological processes and water resource management. This
section explores the utilization of SVM, RF, and CNN to predict PET using temperature
data spanning the last forty years. PET is an essential component of hydrological studies,
relating temperature to the potential evaporation rate. Given the complex, nonlinear nature
of climate data, these advanced algorithms are employed to uncover patterns and improve
prediction accuracy.

The dataset was divided into an 80% training set and a 20% testing set to rigorously
evaluate each model’s performance. All algorithms were implemented using Python li-
braries, and their outcomes were compared to determine their efficacy in PET prediction.
The SVM model is known for its robustness in high-dimensional spaces and performs well
in classification tasks, though it may require careful tuning to manage its false positive
rates. RF, an ensemble learning method, combines multiple decision trees to enhance
predictive accuracy and mitigate overfitting, making it a promising candidate for this
study. CNNs are typically used in image recognition tasks and were adapted here to
capture the temporal and spatial dependencies in the climate data, leveraging their deep
learning capabilities to model complex interactions [28–30]. In terms of comparison, CNN,
SVM, and RF models each provide distinct advantages in predicting PET. CNNs are par-
ticularly effective at capturing spatial and temporal dependencies, modeling nonlinear
relationships, and processing high-dimensional data without the need for manual feature
engineering [31]. However, their application requires substantial computational resources
and large datasets [20,31]. SVMs, known for their accuracy with structured data, are resis-
tant to overfitting and utilize kernel functions to map data into higher-dimensional spaces.
Nonetheless, they are sensitive to hyperparameter tuning and are less scalable for large
datasets [32,33]. RF, as an ensemble method, demonstrates robustness to noise and missing
data, offers interpretable feature importance, and is computationally efficient, though it is
less suited for capturing complex spatial–temporal patterns. By integrating the comple-
mentary strengths of these algorithms, this study enhances the accuracy and reliability of
PET predictions, providing valuable insights into evapotranspiration trends [31,33,34].

3.4.1. Convolutional Neural Network (CNN)

A CNN is a deep learning algorithm specifically designed to analyze structured grid
data, such as images or spatial datasets. It excels in tasks such as pattern recognition,
feature extraction, regression, and classification. By employing convolutional layers, CNNs
automatically learn spatial feature hierarchies from input data through localized networks.
This construction makes them predominantly effective for managing complex and large
datasets [20]. According to our performance assessment measures, the CNN technique was
suitable for accurately modeling monthly PET. Furthermore, the CNN framework fared
better than the artificial intelligence (AI) method in assessing the same locations with the
same data inputs. The results of the literature based on the different performance criteria
demonstrate that the suggested CNN model can effectively forecast perspective ET because
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it can capture the high nonlinearity of evaporation [16,30]. The CNN model’s performance
is demonstrated in predicting PET across thirteen sub-basins.

3.4.2. Support Vector Machine (SVM)

SVM is a data-driven method in applied mathematics and learning theory that can
solve problems via classification and regression [33–35]. SVM employs a hyperplane to
split data from one dimension to a high-dimensional space and then solves the regression
issues using the following equation:

y = f(x) = ∑n
i=1 w × k

(
x..

i
, x
)
+ b, (x), (5)

where k(x1, x) is the kernel function, w is the weight vector, and b is the value. By
minimizing the total of the squared deviations, the least squares method can calculate the
values of the internal parameters. The relation between the actual and predicted PET curve
performance of the 13 models was calculated using SVM. The minimal dispersion between
the training and testing points indicates a high level of model accuracy and robustness.
SVM regression is a supervised machine learning approach used for regression tasks that
aims to approximate the relationship between input and output variables. SVM uses kernel
functions (e.g., linear, polynomial, or radial basis functions) to transform data into a higher-
dimensional space and then determines a hyperplane that fits the input within a specified
tolerance. It seeks to minimize errors while remaining simple, defining the margin with
support vectors. SVM is particularly successful for high-dimensional and nonlinear data, is
resistant to overfitting, and provides flexibility through a variety of kernel options [15,35]. It
is commonly used in predictive modeling, time series forecasting, environmental modeling,
and signal processing, and its performance is improved by hyperparameter optimization,
which is often accomplished using methods such as grid search [15].

3.4.3. Random Forest (RF)

RF has been used to estimate reference evapotranspiration (ETo) in numerous stud-
ies [32,36,37]. However, it does not seem to have been applied to estimating crop evapo-
transpiration (ETc) in any previous research.

RF is a supervised ensemble machine learning model used to solve both regression and
classification issues. In the real world, forests are made up of multiple decision trees, with
the strength of the forest increasing with the number of trees [32,36,38]. Likewise, the RF
method generates separate decision trees by randomly selecting a training sample. Random
forest regression is an effective machine learning approach that integrates predictions from
many decision trees to improve accuracy and eliminate variation. It effectively handles
nonlinear relationships, outliers, and missing data while also providing feature importance
for data interpretation. While computer-intensive, costly, and less interpretable than
simpler models, it is frequently employed in environmental science, geology, and water
management for weather forecasting and hydrological estimation. Tuning hyperparameters
improves performance, making it a useful tool for complex, high-dimensional datasets [36].

3.5. Models’ Performance Validation

This study will delve into the detailed performance of these models, highlighting
the variations in their predictive capabilities. The analysis will include statistics metrics
such as R2, mean squared error (MSE), and root mean squared error (RMSE). Scatterplot
matrices will be used to visualize the relationships between actual and predicted PET values,
and learning curves will illustrate the models’ training progress and convergences. By
comparing these advanced algorithms, this section will identify the most effective methods
for accurately predicting PET, contributing to improved water resource management and
agricultural planning in the context of climate variability.

R-squared, also known as the coefficient of determination, is a statistical metric that
represents the proportion of variance in the dependent variable (ŷ) that is accounted for
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by the independent variable(s) in a regression model. Its value ranges from 0 to 1, where
higher values indicate a better fit of the model to the data. R2 is computed by Equation (6)
as follows:

R2 = 1 − xxres

xxtot
(6)

where xxres denotes the error in predictions by measuring the deviation between predicted
and observed values, and xxtot Indicates the total variability present in the observed values,
representing the extent of dispersion or spread within the dataset.

The mean squared error (MSE) is a statistical measure that quantifies the average
squared difference between observed and predicted values in a dataset. It is widely
utilized in regression analysis, machine learning, and forecasting to evaluate the accuracy
of predictive models, with smaller MSE values indicating better model performance.

MSE =
1
n∑n

i=1(y − ŷ)2 (7)

where y represents observed values, ŷ is predicted values, and n is the total number
of observations.

The root mean squared error (RMSE) is a widely used metric for assessing the accuracy
of predictive models. It quantifies the average magnitude of the difference between esti-
mated and observed values, expressed in the same units as the target variable [28]. RMSE
is calculated as the square root of the mean squared error (MSE), providing an interpretable
measure of the model error directly comparable to the scale of the data.

RMSE =
√

MSE (8)

4. Results and Discussion
4.1. PET Calculated with the Thornthwaite Equation

R-Studio was used to calculate PET with the Thornthwaite equation. The input
variables were the temperature and latitude of the Murat Basin, located between 39◦ N and
43◦ N in the universal transverse mercator (UTM) system. The process was conducted for
all 13 sub-basins, with detailed results provided as Supplementary Materials in the form of
Excel sheets (refer to the files labeled as “PET Results of Thornthwaite Equation”). From
the results, a distinct seasonal pattern emerges. During the colder months (January and
February), the average temperatures (Tavg) are significantly low, leading to zero or very
low PET values across all sub-basins. For instance, in January 1979, the Tavg in Sub-basin
4 was −4.69 ◦C, resulting in a PET of 0.00 mm. Similarly, in February of the same year,
Sub-basin 4 maintained a Tavg of −1.57 ◦C, with a corresponding PET of 0.00 mm.

As temperatures rise in the spring and summer months (April to August), PET values
increase substantially. For example, in May 1979, Sub-basin 4 recorded a Tavg of 11.60 ◦C,
resulting in a PET of 66.88 mm, which is a stark contrast to the values observed in January.
This trend was further amplified in July 2016, when Sub-basin 4 recorded a Tavg of 21.26 ◦C
with a PET of 133.07 mm, indicating the strong influence of temperature on PET during
warmer months. The analysis of the relationship between average temperature (Tavg) and
potential evapotranspiration (PET) across all sub-basins demonstrates a strong positive
correlation, aligning with the principles of the Thornthwaite equation. PET values are
negligible or zero when Tavg falls below 0 ◦C, predominantly during the winter months,
indicating minimal evaporation potential under cold conditions. As temperatures rise
above 0 ◦C in spring, PET begins to increase, with a more pronounced escalation during
summer, when Tavg reaches its annual peak.

Across all sub-basins, PET exhibits a consistent upward trend with increasing Tavg,
peaking during the summer months (e.g., July and August). However, inter-sub-basin varia-
tions point to the influence of local climatic and topographical factors: higher-elevation sub-
basins show delayed PET responses due to cooler temperatures, whereas lower-elevation or
warmer regions display elevated PET peaks. These findings underscore the high sensitivity
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of PET to temperature fluctuations and reveal the significant influence of seasonal trends
on evapotranspiration-driven water loss. This emphasizes the pivotal role of temperature
in regulating evapotranspiration rates and highlights the potential implications of climate
variability for regional water resource management.

Figure 5 shows the average monthly PET across 13 sub-basins, derived using the
Thornthwaite equation and long-term temperature data spanning 1979 to 2021. The analy-
sis reveals distinct seasonal trends, with PET values peaking during the summer months
(June, July, and August) and reaching their lowest in the winter months (December, January,
and February) due to average temperature variation. Notably, July records the highest
PET values across all sub-basins, exceeding 120 mm, while January exhibits the lowest PET
values, falling below 20 mm. Although the general seasonal PET pattern is parallel and
consistent, variations in PET values among the sub-basins are noticeable and apparent, the
result of being influenced by variances in terrain, altitude, and localized climatic circum-
stances. For example, Sub-basin 5 exhibits slightly reduced PET values during the summer
compared to other sub-basins, signifying that higher altitude or cooler local temperatures
may mitigate PET in this area. Conversely, Sub-basin 9 demonstrates higher values of
PET in both summer and transitional months (May and September), possibly indicating
comparatively warmer conditions or lower humidity levels that enhance evaporation
rates. Transitional months, such as April and October, also show noticeable variability.
Sub-basin 13, for instance, experiences a significant increase in PET in April relative to
other sub-basins, representing an earlier beginning of warmer conditions in the region.
Likewise, Sub-basin 3 reveals an obvious decline in PET during October, which may mirror
former cooling trends or exact microclimatic factors reducing PET during autumn. These
findings underscore the heterogeneity of PET dynamics within the area, caused by localized
factors such as altitude gradients, microclimatic conditions, and vegetation cover effects.
Such sub-basin-specific variations are crucial for effective agricultural planning and water
resource management, as they highlight the extent of the potential severe water stress or
demand during specific times of the year. For example, sub-basins with constantly high PET
values, such as Sub-basin 9, may involve more concentrated irrigation strategies during
peak months, whereas zones with lower PET values, such as Sub-basin 5, might certainly
experience reduced water stresses. The sub-basin-level detail provided by this PET analysis
offers a valuable understanding of sustainable water resource management. It emphasizes
the essential to account for spatial variability in climate-driven factors when scheming
irrigation systems, approximating water accessibility, and preparing climate adaptation
actions within the region.

4.2. PET Prediction via CNN

The findings reveal a strong correlation between observed and predicted PET values
across most sub-basins, underscoring the CNN model’s effectiveness in estimating PET.
In the graphical outputs, red lines represent predicted values, while blue points depict
observed measurements; ideally, these points align closely with the red line, indicating
high predictive accuracy. Sub-basins 1, 5, 8, and 10 display a clear linear relationship,
with predicted values closely mirroring observed data. In contrast, Sub-basins 3 and 12
contain some outliers, suggesting that minor adjustments to model calibration may enhance
accuracy. Notably, Sub-basins 6 and 7 show more pronounced deviations, indicating
possible inconsistencies that merit further investigation into factors affecting evaporation
in these regions. Overall, the model performs robustly across the majority of sub-basins,
suggesting a strong capacity to generalize across diverse geographic and climatic conditions
(Figure 6). Although the CNN model demonstrates considerable promise for predicting
potential evaporation, addressing the identified outliers will further improve its predictive
accuracy. Future model enhancements, such as hyperparameter tuning and integrating
additional data sources, could also improve performance in more variable regions.



Sustainability 2024, 16, 11077 12 of 22Sustainability 2024, 16, 11077 12 of 23 
 

 

 

Figure 5. Average monthly PET calculated with Thornthwaite equation (1979–2021). 

4.2. PET Prediction via CNN 

The findings reveal a strong correlation between observed and predicted PET val-

ues across most sub-basins, underscoring the CNN model’s effectiveness in estimating 

PET. In the graphical outputs, red lines represent predicted values, while blue points 

depict observed measurements; ideally, these points align closely with the red line, in-

dicating high predictive accuracy. Sub-basins 1, 5, 8, and 10 display a clear linear rela-

tionship, with predicted values closely mirroring observed data. In contrast, Sub-basins 

3 and 12 contain some outliers, suggesting that minor adjustments to model calibration 

may enhance accuracy. Notably, Sub-basins 6 and 7 show more pronounced deviations, 

indicating possible inconsistencies that merit further investigation into factors affecting 

evaporation in these regions. Overall, the model performs robustly across the majority of 

sub-basins, suggesting a strong capacity to generalize across diverse geographic and 

climatic conditions (Figure 6). Although the CNN model demonstrates considerable 

promise for predicting potential evaporation, addressing the identified outliers will fur-

ther improve its predictive accuracy. Future model enhancements, such as hyperparam-

eter tuning and integrating additional data sources, could also improve performance in 

more variable regions. 

0

20

40

60

80

100

120

140

160

180

A
v

er
ag

e 
M

o
n

th
ly

 P
E

T
 (

1
9

7
9
–2

0
2

1
)

Months

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 5. Average monthly PET calculated with Thornthwaite equation (1979–2021).

Sustainability 2024, 16, 11077 13 of 23 
 

 

  

  

  

  

Figure 6. Cont.



Sustainability 2024, 16, 11077 13 of 22

Sustainability 2024, 16, 11077 13 of 23 
 

 

  

  

  

  

Sustainability 2024, 16, 11077 14 of 23 
 

 

  

  

 

 

Figure 6. Actual and predicted PET calculated via CNN. 

4.3. PET Prediction via SVM 

The SVM model demonstrates robust and reliable performance across all sub-basins, 

with metrics indicating high R2 and low MSE AND RMSE, underscoring its suitability for 

predictive tasks in diverse sub-regional contexts, which is parallel to previous studies 

[30,38,39]. 

The results provide a comparative analysis of actual and predicted PET across 13 

sub-basins, modeled using an SVM. Each sub-basin is represented by a graph that plots 

PET against temperature (denoted as “Temp”, likely in degrees Celsius). Blue dots indi-

cate the observed recorded PET values, while a red dashed line illustrates the PET values 

predicted by the SVM model. In each plot, predicted values (blue dots) are displayed 

alongside observed values (red dots), and the alignment of these points demonstrates a 

strong correlation between predictions and observations. This close alignment reflects the 

Figure 6. Cont.



Sustainability 2024, 16, 11077 14 of 22

Sustainability 2024, 16, 11077 14 of 23 
 

 

  

  

 

 

Figure 6. Actual and predicted PET calculated via CNN. 

4.3. PET Prediction via SVM 

The SVM model demonstrates robust and reliable performance across all sub-basins, 

with metrics indicating high R2 and low MSE AND RMSE, underscoring its suitability for 

predictive tasks in diverse sub-regional contexts, which is parallel to previous studies 

[30,38,39]. 

The results provide a comparative analysis of actual and predicted PET across 13 

sub-basins, modeled using an SVM. Each sub-basin is represented by a graph that plots 

PET against temperature (denoted as “Temp”, likely in degrees Celsius). Blue dots indi-

cate the observed recorded PET values, while a red dashed line illustrates the PET values 

predicted by the SVM model. In each plot, predicted values (blue dots) are displayed 

alongside observed values (red dots), and the alignment of these points demonstrates a 

strong correlation between predictions and observations. This close alignment reflects the 

Figure 6. Actual and predicted PET calculated via CNN.

4.3. PET Prediction via SVM

The SVM model demonstrates robust and reliable performance across all sub-basins,
with metrics indicating high R2 and low MSE AND RMSE, underscoring its suitabil-
ity for predictive tasks in diverse sub-regional contexts, which is parallel to previous
studies [30,38,39].

The results provide a comparative analysis of actual and predicted PET across 13 sub-basins,
modeled using an SVM. Each sub-basin is represented by a graph that plots PET against temper-
ature (denoted as “Temp”, likely in degrees Celsius). Blue dots indicate the observed recorded
PET values, while a red dashed line illustrates the PET values predicted by the SVM model.
In each plot, predicted values (blue dots) are displayed alongside observed values (red dots),
and the alignment of these points demonstrates a strong correlation between predictions and
observations. This close alignment reflects the model’s high accuracy in estimating PET. Across
all sub-basins, a positive correlation between temperature and PET is evident; as temperature
rises, so does PET (Figure 7). This trend aligns with expectations, as higher temperatures
generally increase evaporation and plant transpiration.

The SVM model appears to perform reasonably well in most sub-basins, as the red
prediction line generally follows the trend of the actual PET data. However, predictive
accuracy varies among sub-basins. In some cases, the predicted line closely matches the real
values, indicating a strong fit, while in others, noticeable deviations particularly at higher
temperatures propose slight overestimations or underestimations by the model. Certain
sub-basins, such as 1, 2, and 3, exhibit a more linear relationship between temperature
and PET, while others, including Sub-basins 7 and 10, display a more curvilinear pattern.
This variation may reflect differing local environmental factors, such as vegetation cover,
soil type, and water availability, which can affect PET behavior. Notably, Sub-basin 12
demonstrates lower PET values across the temperature range in comparison to other
sub-basins, suggesting unique characteristics influencing PET in this area.

The graphic advocates that the projected and observed PET values by the SVM model
are effective for PET estimation across diverse hydrological settings, each with unique envi-
ronmental conditions, highlighting its potential applications in water resource management
and hydrological modeling [40,41].
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4.4. PET Prediction via RF

After obtaining predictions from each decision tree, the final results for the regression
problem were determined by averaging the outputs of all trees. For the classification
problem, the final result was derived from a majority vote among all trees. The RF model
can overcome the high-dimensional data and strong nonlinear problems, reducing the
overfitting by averaging the results [38]. The results demonstrate the RF model’s superi-
ority in this context, making it a highly suitable choice for accurate and dependable PET
predictions across diverse sub-basins.

Figure 8 demonstrates an evaluation of an RF model’s predictions of PET across 13 sub-
basins by comparing observed measured data and predicted values. Each of the 13 plates
corresponds to a specific sub-basin. Each subplot represents the model’s performance,
with points aligned along the diagonal 1:1 line indicating accurate predictions. The results
reveal strong predictive performance across most sub-basins, with minimal deviations,
particularly in low and mid-range PET values. However, slight underestimations are
observed at higher PET values in sub-basins such as 7, 8, and 10. Sub-basins 3, 5, and
12 exhibit tightly clustered points along the diagonal, demonstrating robust accuracy,



Sustainability 2024, 16, 11077 17 of 22

while Sub-basins 2 and 6 show minor scatter, suggesting some variability in predictions.
These observations highlight the model’s general effectiveness while indicating areas for
potential refinement.
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ms 
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Figure 8. Actual and predicted PET via RF.

The results indicate the model performs well across most sub-basins, as seen in the
scatter plots, which reveal a positive correlation between observed and predicted values. In
many sub-basins, this relationship is particularly strong, highlighting the model’s capability
to capture overall patterns in PET. In some scatter plots, deviations from the ideal line
indicate chance inaccuracies, which are commonly assumed the complexity of real-world
processes. However, the visualization reveals that the model offers a valuable estimate of
PET, offering insights that could be applied in water resource management and ecological
research. To further quantify and analyze model performance, metrics such as R2, RMSE,
and MAE should be incorporated. Additionally, conducting a feature importance analysis
and addressing the higher-range deviations could enhance the model’s reliability and
provide insights for improved performance in specific sub-basins.

4.5. Performance of the Models

Table 3 provides a comprehensive assessment of the performance of three algorithms
CNN, SVM, and RF in expecting PET results across 13 sub-basins based on average tem-
perature. Three statistical metrics have been used for assessing the results of the proposed
models including R2, MSE, and RMSE. Below is a detailed analysis of each metric.
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Table 3. CNN, SVM, and RF algorithm results.

Algorithms
Sub-

Basin
1

Sub-
Basin

2

Sub-
Basin

3

Sub-
Basin

4

Sub-
Basin

5

Sub-
Basin

6

Sub-
Basin

7

Sub-
Basin

8

Sub-
Basin

9

Sub-
Basin

10

Sub-
Basin

11

Sub-
Basin

12

Sub-
Basin

13

R2

CNN 0.962 0.987 0.987 0.987 0.962 0.975 0.987 0.975 0.984 0.986 0.986 0.986 0.985

SVM 0.954 0.954 0.956 0.956 0.953 0.950 0.945 0.945 0.954 0.945 0.953 0.953 0.948

RF 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

MSE

CNN 0.293 0.287 0.309 0.277 0.345 0.353 0.405 0.422 0.408 0.400 0.377 0.376 0.387

SVM 0.375 0.348 0.287 0.267 0.484 0.661 0.981 1.028 0.548 1.013 0.527 0.610 0.680

RF 0.409 0.326 0.389 0.338 0.439 0.407 0.485 0.640 0.605 0.412 0.331 0.439 0.385

RMSE

CNN 0.541 0.536 0.556 0.526 0.587 0.594 0.637 0.649 0.639 0.632 0.614 0.613 0.622

SVM 0.612 0.590 0.536 0.517 0.696 0.813 0.990 1.014 0.740 1.006 0.726 0.781 0.825

RF 0.640 0.571 0.624 0.582 0.663 0.638 0.696 0.800 0.778 0.642 0.575 0.663 0.621

Among the models, RF consistently reveals superior performance, attaining the high-
est R2 values (1.000) across all sub-basins. These findings indicate that RF effectively
captures the relationship between the predictor (average temperature) and target variables
(PET) with perfect accuracy. While MSE and RMSE values varied slightly among the
sub-basins, they offer additional insights into the model’s predictive precision. Moreover,
RF accomplishes the lowest MSE and RMSE values in all sub-basins, with a mostly strong
performance in Sub-basin 2 (MSE = 0.326, RMSE = 0.571) and Sub-basin 13 (MSE = 0.385,
RMSE = 0.621). Conversely, Sub-basin 8 exhibited the highest MSE (0.640) and RMSE
(0.649), reflecting relatively larger prediction errors. These results advocate greater predic-
tion challenges in these areas, possibly due to increased data inconsistency or more complex
underlying patterns. Despite these differences, the RMSE values across all sub-basins re-
mained consistently low, further validating the model’s effectiveness in minimizing errors.
These findings underscore RF’s capacity to moderate prediction errors and establish it
as the most vigorous model for this dataset. The RF model’s consistently high accuracy,
combined with low MSE and RMSE values, highlights its robustness and reliability in
predicting PET across diverse sub-regions, which is in line with previous studies [32,33].
This exceptional performance can be attributed to the model’s ability to manage complex
datasets effectively and mitigate overfitting through its ensemble learning approach. By
combining multiple decision trees, the RF model enhances predictive accuracy and gener-
alization, making it an ideal tool for precise PET estimation across varying climatic and
topographic conditions [15].

The CNN model also exhibits strong predictive capabilities, with R2 values spanning
from 0.962 to 0.987. Its best performance is observed in Sub-basin 5, where it attains
an MSE of 0.277 and an RMSE of 0.526, reflecting high accuracy. Notable results are
also observed in Sub-basin 3 (R2 = 0.987, MSE = 0.309, RMSE = 0.556) and Sub-basin 9
(R2 = 0.987, MSE = 0.405, RMSE = 0.637). However, CNN consistently records slightly
higher errors compared to RF across most sub-basins, suggesting it is less effective overall.
Despite this, CNN remains a reliable model, though its computational intensity relative to
RF may pose practical challenges depending on the application.

In contrast, the SVM algorithm shows mixed performance, with notable weaknesses in
certain sub-basins. While its R2 values are relatively stable and dependable, ranging from
0.945 to 0.956, it exhibits higher error rates in several regions. For example, in Sub-basins 7
and 9, SVM struggles with high MSE values of 0.981 and 1.013 and corresponding RMSE
values of 0.990 and 1.014, indicating reduced predictive reliability in areas with greater
data complexity or climate variability. However, SVM performs relatively well in Sub-
basins 5 and 3, attaining lower error rates (MSE = 0.267 and 0.287, respectively). Despite
these strengths, SVM’s overall performance is weaker than both RF and CNN, limiting its
suitability for this application.

In general, random forest emerges as the most effective and outperforms other models
and dependable algorithms, achieving exceptional accuracy and minimal prediction errors
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across all sub-basins [32]. CNN offers a viable alternative with consistent and strong
performance, particularly in Sub-basins 5 and 3, though it slightly lags behind RF. On the
other hand, SVM demonstrates the weakest overall performance, with notable challenges
in Sub-basins 7 and 9, suggesting it is less appropriate for this dataset. These results
emphasize the robustness of RF in handling data variability, making it the preferred choice
for this predictive task.

5. Conclusions

This study delivers an inclusive assessment of machine learning and deep learning
models including support vector machine (SVM), convolutional neural network (CNN),
and random forest (RF) for predicting PET in the Murat River Basin. Using forty years of
monthly temperature data and the temperature-based Thornthwaite equation, this research
effectively tackles the challenge of PET prediction in regions with limited data accessibility
by integrating advanced computational methods.

The findings indicate that the RF model outperformed other models, achieving a
perfect R2 value of 1.000 across all sub-basins, along with the lowest MSE and RMSE values.
This excellent performance is attributed to the RF model’s ability to manage complex
datasets, reduce overfitting, and accurately capture nonlinear relationships. CNN also
established strong predictive accuracy, leveraging its deep learning architecture to recognize
complicated patterns within the dataset. While SVM provided reliable predictions, its
performance was more sensitive to data quality and hyperparameter differences, making
it most operative in sub-basins with simpler or more linear relationships. The spatial
and temporal investigation of PET trends exposed notable seasonal fluctuations, with
PET values peaking in the summer months and showing a strong positive correlation
with increasing temperatures. These results highlight the essential role of temperature in
driving evapotranspiration processes, particularly in semi-arid regions where effective
water management is critical for ensuring agricultural sustainability. Integrating GIS spatial
modeling additionally improved PET prediction accuracy by accounting for variations in
topography and climate across the basin. This study underscores the potential of artificial
intelligence-driven models to enhance PET estimations, offering valuable contributions
to hydrological modeling, water resource management, and agricultural planning in the
face of climate change. The RF model, acknowledged as the most robust and accurate,
offers a transferable methodology that can be adapted to other regions with similar data
limitations. Future research would aim to integrate extra climatic parameters, improve
model standardization techniques, and explore collaborative modeling methods to further
improve prediction accuracy and generalizability.

By advancing PET prediction methodologies, this research significantly contributes to
hydrological science, addressing the pressing need for data-efficient and accurate modeling
approaches to meet the challenges posed by climate variability and growing water demand.

To enhance the accuracy and robustness of PET predictions, it is recommended to
incorporate additional environmental parameters, such as relative humidity, wind speed,
solar radiation, and atmospheric pressure. These factors have been demonstrated to
significantly influence PET dynamics, and their inclusion could offer a more comprehensive
understanding of the underlying processes. Future research should investigate the potential
interactions among these parameters, alongside the existing variables, to refine predictive
models and improve their applicability across diverse geographical regions and climate
conditions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su162411077/s1, Table S1. VPET Results of Thornthwaite Equation
for Murad River Basin.
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