Linear Regression Machine Learning Algorithms for Estimating Reference Evapotranspiration Using Limited Climate Data
<p>Procedure of ET<sub>0</sub> calculation using MLR and PR algorithms.</p> "> Figure 2
<p>Distribution of sixty-two meteorological stations in South Korea.</p> "> Figure 3
<p>Spatiotemporal distribution of annual ETo.</p> "> Figure 4
<p>Scatter plots of the daily ET<sub>0</sub> calculated by FAO56 P–M and predicted by MLR and PR algorithms.</p> "> Figure 5
<p>Comparison of monthly accumulated ET<sub>0</sub> using different models.</p> "> Figure 6
<p>Comparison of annual accumulated ET<sub>0</sub> using different models.</p> "> Figure 7
<p>Scatter plots of monthly ET<sub>0</sub> calculated by FAO56 P–M and predicted by MLR and PR algorithms.</p> "> Figure 8
<p>Daily ET<sub>0</sub> by Hargreaves compared with FAO56 P–M and PR3_RR.</p> "> Figure 9
<p>Monthly ET<sub>0</sub> by empirical equations compared with FAO56 P–M and PR3_MR.</p> "> Figure 10
<p>Annual ET<sub>0</sub> by empirical equations compared with FAO56 P–M and PR3_MR.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Linear Regression Machine Learning Models
2.2. Data Collection and Processing
2.3. Learning Model and Training Dataset
3. Results and Discussion
3.1. Performance of Models in Daily ET0
3.2. Performance of Models in Monthly ET0
3.3. Performance of Models in Annual ET0
3.4. Comparison with Temperature-Based Empirical Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, S.J.; Kim, M.I.; Lim, C.H.; Lee, W.K.; Kim, B.J. Applicability analysis of FAO56 Penman-Monteith methodology for estimating potential evapotranspiration in Andong dam watershed using limited meteorological data. J. Clim. Change Res. 2017, 8, 125–143. [Google Scholar] [CrossRef]
- Dimitriadou, S.; Nikolakopoulos, K.G. Artificial Neural Networks for the Prediction of the Reference Evapotranspiration of the Peloponnese Peninsula, Greece. Water 2022, 14, 2027. [Google Scholar] [CrossRef]
- Qu, W.; Jin, Z.; Zhang, Q.; Gao, Y.; Zhang, P.; Chen, P. Estimation of evapotranspiration in the yellow river basin from 2002 to 2020 based on GRACE and GRACE follow-on observations. Remote Sens. 2022, 14, 730. [Google Scholar] [CrossRef]
- Dimitriadou, S.; Nikolakopoulos, K.G. Evapotranspiration trends and interactions in light of the anthropogenic footprint and the climate crisis: A review. Hydrology 2021, 8, 163. [Google Scholar] [CrossRef]
- Ajjur, S.B.; Al-Ghamdi, S.G. Evapotranspiration and water availability response to climate change in the middle east and north Africa. Clim. Change 2021, 166, 28. [Google Scholar] [CrossRef]
- Rodrigues, G.C.; Braga, R.P. Estimation of reference evapotranspiration during the irrigation season using nine temperature-based methods in a hot-summer Mediterranean climate. Agriculture 2021, 11, 124. [Google Scholar] [CrossRef]
- Wanniarachchi, S.; Sarukkalige, R. A review on evapotranspiration estimation in agricultural water management: Past, present, and future. Hydrology 2022, 9, 123. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Feng, K.; Tian, J. Forecasting reference evapotranspiration using data mining and limited climatic data. Eur. J. Remote Sens. 2021, 54, 363–371. [Google Scholar] [CrossRef]
- Berti, A.; Tardivo, G.; Chiaudani, A.; Rech, F.; Borin, M. Assessing reference evapotranspiration by the Hargreaves method in north-eastern Italy. Agric. Water Manag. 2014, 140, 20–25. [Google Scholar] [CrossRef]
- Seo, H.; Kim, J.; Park, H.; Kim, Y. Estimating evapotranspiration with the complementary relationship at Fluxnet sites over Asia. KSCE J. Civil. Environ. Eng. Res. 2017, 37, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Eccel, E. Estimating air humidity from temperature and precipitation measures for modelling applications. Meteorol. Appl. 2012, 19, 118–128. [Google Scholar] [CrossRef]
- Bellido-Jiménez, J.A.; Estévez, J.; García-Marín, A.P. New machine learning approaches to improve reference evapotranspiration estimates using intra-daily temperature-based variables in a semi-arid region of Spain. Agric. Water Manag. 2021, 245, 106558. [Google Scholar] [CrossRef]
- Mehdizadeh, S.; Mohammadi, B.; Pham, Q.B.; Duan, Z. Development of boosted machine learning models for estimating daily reference evapotranspiration and comparison with empirical approaches. Water 2021, 13, 3489. [Google Scholar] [CrossRef]
- Dlouhá, D.; Dubovský, V.; Pospíšil, L. Optimal calibration of evaporation models against Penman–Monteith equation. Water 2021, 13, 1484. [Google Scholar] [CrossRef]
- Lang, D.; Zheng, J.; Shi, J.; Liao, F.; Ma, X.; Wang, W.; Chen, W.; Zhang, M. A comparative study of potential evapotranspiration estimation by eight methods with FAO Penman–Monteith method in southwestern China. Water 2017, 9, 734. [Google Scholar] [CrossRef]
- Elferchichi, A.; Giorgio, G.A.; Lamaddalena, N.; Ragosta, M.; Telesca, V. Variability of temperature and Its impact on reference evapotranspiration: The test case of the Apulia region (southern Italy). Sustainability 2017, 9, 2337. [Google Scholar] [CrossRef]
- Gentilucci, M.; Bufalini, M.; Materazzi, M.; Barbieri, M.; Aringoli, D.; Farabollini, P.; Pambianchi, G. Calculation of potential evapotranspiration and calibration of the Hargreaves equation using geostatistical methods over the last 10 years in central Italy. Geosciences 2021, 11, 348. [Google Scholar] [CrossRef]
- Aschale, T.M.; Sciuto, G.; Peres, D.J.; Gullotta, A.; Cancelliere, A. Evaluation of reference evapotranspiration estimation methods for the assessment of hydrological impacts of photovoltaic power plants in Mediterranean climates. Water 2022, 14, 2268. [Google Scholar] [CrossRef]
- Lee, S.; Kim, K.; Kim, Y.; Kim, J.; Park, S.; Yun, Y.; Kim, N.; Lee, Y. Deep learning-based estimation and mapping of evapotranspiration in cropland using local weather prediction model and satellite data. J. Kor. Cartograph. Assoc. 2018, 18, 105–116. [Google Scholar] [CrossRef]
- Dimitriadou, S.; Nikolakopoulos, K.G. Multiple linear regression models with limited data for the prediction of reference evapotranspiration of the Peloponnese, Greece. Hydrology 2022, 9, 124. [Google Scholar] [CrossRef]
- Reis, M.M.; da Silva, A.J.; Junior, J.Z.; Santos, L.D.T.; Azevedo, A.M.; Lopes, É.M.G. Empirical and learning machine approaches to estimating reference evapotranspiration based on temperature data. Comput. Electron. Agric. 2019, 165, 104937. [Google Scholar] [CrossRef]
- Dou, X.; Yang, Y. Evapotranspiration estimation using four different machine learning approaches in different terrestrial ecosystems. Comput. Electron. Agric. 2018, 148, 95–106. [Google Scholar] [CrossRef]
- Granata, F. Evapotranspiration evaluation models based on machine learning algorithms—A comparative study. Agric. Water Manag. 2019, 217, 303–315. [Google Scholar] [CrossRef]
- Raza, A.; Shoaib, M.; Faiz, M.A.; Baig, F.; Khan, M.M.; Ullah, M.K.; Zubair, M. Comparative assessment of reference evapotranspiration estimation using conventional method and machine learning algorithms in four climatic regions. Pure Appl. Geophys. 2020, 177, 4479–4508. [Google Scholar] [CrossRef]
- Ferreira, L.B.; da Cunha, F.F.; Filho, E.I.F. Exploring machine learning and multi-task learning to estimate meteorological data and reference evapotranspiration across Brazil. Agric. Water Manag. 2022, 259, 107281. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, M.; O’Shaughnessy, S.; Jeon, J.; Kim, Y.; Song, W.J. Comparison of artificial neural network and empirical models to determine daily reference evapotranspiration. J. Kor. Soc. Agric. Eng. 2018, 60, 43–54. [Google Scholar] [CrossRef]
- Ahmadi, F.; Mehdizadeh, S.; Mohammadi, B.; Pham, Q.B.; Doan, T.N.C.; Vo, N.D. Application of an artificial intelligence technique enhanced with intelligent water drops for monthly reference evapotranspiration estimation. Agric. Water Manag. 2021, 244, 106622. [Google Scholar] [CrossRef]
- Brouwer, C.; Heibloem, M. Irrigation Water Management: Irrigation Water Needs; Training Manual; FAO: Rome, Italy, 1986; Volume 3. [Google Scholar]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Li, Y.; Ren, X.; Zhao, F.; Yang, S. A Zeroth-order adaptive learning rate method to reduce cost of hyperparameter tuning for deep learning. Appl. Sci. 2021, 11, 10184. [Google Scholar] [CrossRef]
- Tang, M.; Huang, Z.; Yuan, Y.; Wang, C.; Peng, Y. A bounded scheduling method for adaptive gradient methods. Appl. Sci. 2019, 9, 3569. [Google Scholar] [CrossRef] [Green Version]
- Yi, D.; Ji, S.; Park, J. An adaptive optimization method based on learning rate schedule for neural networks. Appl. Sci. 2021, 11, 850. [Google Scholar] [CrossRef]
- Mallikarjuna, P.; Jyothy, S.A.; Sekhar Reddy, K.C. Daily reference evapotranspiration estimation using linear regression and ANN models. J. Inst. Eng. India Ser. A 2013, 93, 215–221. [Google Scholar] [CrossRef]
- Yirga, S.A. Modelling reference evapotranspiration for Megecha catchment by multiple linear regression. Modeling Earth Syst. Environ. 2019, 5, 471–477. [Google Scholar] [CrossRef]
- Mosre, J.; Suárez, F. Actual evapotranspiration estimates in arid cold regions using machine learning algorithms with in situ and Remote Sensing Data. Water 2021, 13, 870. [Google Scholar] [CrossRef]
- Scikit-Learn User Guide 1.1.2. Available online: https://scikit-learn.org/stable/user_guide.html (accessed on 1 April 2022).
- Zhou, J.; Wei, W.; Zhang, R.; Zheng, Z. Damped newton stochastic gradient descent method for neural networks training. Mathematics 2021, 9, 1533. [Google Scholar] [CrossRef]
- Kang, M.J. Comparison of gradient descent for deep learning. J. Korea Acad.-Ind. Coop. Soc. 2020, 21, 189–194. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef]
- Jansen, S. Machine Learning for Algorithmic Trading: Predictive Models to Extract Signals from Market and Alternative Data for Systematic Trading Strategies with Python, 2nd ed.; Packt Publishing: Birmingham, UK, 2020; ISBN 978-1839217715. [Google Scholar]
- Farmer, W.; Strzepek, K.; Schlosser, C.A.; Droogers, P.; Gao, X. A Method for Calculating Reference Evapotranspiration on Daily Time Scales; MIT Joint Program on the Science and Policy of Global Change; Massachusetts Institute of Technology: Cambridge, MA, USA, 2011. [Google Scholar]
- Lee, K.H.; Park, J.H. Calibration of the Hargreaves equation for the reference evapotranspiration estimation on a nation-wide scale. KSCE J. Civil. Environ. Eng. Res. 2008, 28, 675–681. [Google Scholar]
- Kim, C.G.; Lee, J.; Lee, J.E.; Kim, H. Evaluation of improvement effect on the spatial-temporal correction of several reference evapotranspiration methods. J. Korea Water Res. Assoc. 2020, 53, 701–715. [Google Scholar] [CrossRef]
Statistics | Daily Climate Data | ET0 by FAO56 P–M (mm/Year) | |||||
---|---|---|---|---|---|---|---|
DXT (°C/Day) | DNT (°C/Day) | DRH (%/Day) | DWS (m/s) | DSR (MJ/m2/Day) | DSD (h/Day) | ||
Maximum | 41.0 | 30.9 | 100.0 | 17.9 | 15.7 | 14.3 | 969.0 |
Minimum | –1.5 | –12.4 | 12.1 | 0.0 | 1.5 | 0.0 | 423.7 |
Average | 24.8 | 14.5 | 72.3 | 1.9 | 7.7 | 6.4 | 707.9 |
Standard deviation | 5.4 | 6.6 | 13.4 | 1.2 | 2.0 | 4.1 | 59.6 |
Models | Algorithms | Label | Features |
---|---|---|---|
MLR_M | Multiple linear regression (MLR) | Daily ET0 by FAO56 P–M | DXT, DNT |
MLR_MR | DXT, DNT, DER | ||
MLR_R | DMT, DTR | ||
MLR_RR | DMT, DTR, DER | ||
PR2_M | Quadratic polynomial regression (PR) | Daily ET0 by FAO56 P–M | DXT, DNT |
PR2_MR | DXT, DNT, DER | ||
PR2_R | DMT, DTR | ||
PR2_RR | DMT, DTR, DER | ||
PR3_M | Cubic polynomial regression (PR) | Daily ET0 by FAO56 P–M | DXT, DNT |
PR3_MR | DXT, DNT, DER | ||
PR3_R | DMT, DTR | ||
PR3_RR | DMT, DTR, DER |
Models | Training | Test | ||||
---|---|---|---|---|---|---|
MSE | 5-Fold MSE | MSE | RMSE | MAE | R2 | |
MLR_M | 0.802 | 0.809 | 0.876 | 0.936 | 0.775 | 0.485 |
MLR_MR | 0.586 | 0.595 | 0.642 | 0.801 | 0.643 | 0.623 |
MLR_R | 0.801 | 0.809 | 0.874 | 0.935 | 0.773 | 0.486 |
MLR_RR | 0.586 | 0.595 | 0.641 | 0.800 | 0.642 | 0.623 |
PR2_M | 0.738 | 0.746 | 0.796 | 0.892 | 0.728 | 0.532 |
PR2_MR | 0.495 | 0.504 | 0.547 | 0.740 | 0.579 | 0.678 |
PR2_R | 0.733 | 0.741 | 0.793 | 0.891 | 0.728 | 0.534 |
PR2_RR | 0.477 | 0.485 | 0.528 | 0.727 | 0.561 | 0.690 |
PR3_M | 0.732 | 0.740 | 0.789 | 0.888 | 0.724 | 0.536 |
PR3_MR | 0.480 | 0.488 | 0.529 | 0.727 | 0.564 | 0.689 |
PR3_R | 0.730 | 0.738 | 0.788 | 0.888 | 0.724 | 0.537 |
PR3_RR | 0.473 | 0.482 | 0.521 | 0.722 | 0.557 | 0.694 |
Models | Training | Test | ||||
---|---|---|---|---|---|---|
MSE | 5-Fold MSE | MSE | RMSE | MAE | R2 | |
MLR_M | 333.21 | 337.51 | 401.31 | 20.03 | 17.12 | 0.40 |
MLR_MR | 127.40 | 131.67 | 154.07 | 12.41 | 9.60 | 0.77 |
MLR_R | 333.20 | 337.59 | 400.58 | 20.01 | 17.10 | 0.40 |
MLR_RR | 127.40 | 131.77 | 153.77 | 12.40 | 9.59 | 0.77 |
PR2_M | 321.98 | 326.43 | 384.69 | 19.61 | 16.70 | 0.43 |
PR2_MR | 109.06 | 113.47 | 135.84 | 11.66 | 9.03 | 0.80 |
PR2_R | 320.28 | 325.01 | 379.76 | 19.49 | 16.64 | 0.43 |
PR2_RR | 109.04 | 113.76 | 136.26 | 11.67 | 9.05 | 0.80 |
PR3_M | 320.76 | 325.21 | 381.89 | 19.54 | 16.65 | 0.43 |
PR3_MR | 100.77 | 104.94 | 127.69 | 11.30 | 8.75 | 0.81 |
PR3_R | 317.44 | 321.85 | 371.75 | 19.28 | 16.47 | 0.45 |
PR3_RR | 101.84 | 106.45 | 128.84 | 11.35 | 8.81 | 0.81 |
Models | Training | Test | ||||
---|---|---|---|---|---|---|
MSE | 5-Fold MSE | MSE | RMSE | MAE | R2 | |
MLR_M | 1837.7 | 1907.5 | 1921.0 | 43.83 | 34.49 | 0.40 |
MLR_MR | 1836.4 | 1918.9 | 1924.0 | 43.86 | 34.51 | 0.40 |
MLR_R | 1838.0 | 1907.1 | 1926.1 | 43.89 | 34.53 | 0.40 |
MLR_RR | 1836.7 | 1918.6 | 1931.1 | 43.94 | 34.57 | 0.39 |
PR2_M | 1792.4 | 1866.0 | 1787.5 | 42.28 | 33.65 | 0.44 |
PR2_MR | 1776.0 | 1888.0 | 1720.5 | 41.48 | 33.07 | 0.46 |
PR2_R | 1786.7 | 1866.2 | 1758.3 | 41.93 | 33.31 | 0.45 |
PR2_RR | 1769.1 | 1887.7 | 1697.0 | 41.20 | 32.73 | 0.47 |
PR3_M | 1780.3 | 1853.4 | 1707.4 | 41.32 | 32.94 | 0.46 |
PR3_MR | 1761.1 | 1887.2 | 1639.7 | 40.49 | 32.26 | 0.49 |
PR3_R | 1781.6 | 1860.9 | 1727.4 | 41.56 | 33.16 | 0.46 |
PR3_RR | 1761.8 | 1892.6 | 1663.9 | 40.79 | 32.45 | 0.48 |
Models | Statistics | Errors | |||||
---|---|---|---|---|---|---|---|
Max. | Min. | Avg. | Std. dev | RMSE | MAE | R2 | |
By daily parameters | |||||||
FAO56 P–M | 9.80 | 0.76 | 3.38 | 1.30 | - | - | - |
Hargreaves | 7.87 | 0.66 | 3.93 | 1.25 | 0.95 | 0.79 | 0.47 |
PR3_R | 7.62 | 1.35 | 3.37 | 0.89 | 0.89 | 0.72 | 0.54 |
PR3_RR | 6.73 | 1.05 | 3.37 | 1.03 | 0.72 | 0.56 | 0.69 |
By monthly parameters | |||||||
FAO56 P–M | 171.55 | 42.25 | 103.28 | 25.89 | - | - | - |
Hargreaves | 190.34 | 55.96 | 120.27 | 28.49 | 22.39 | 19.73 | 0.25 |
Blaney–Criddle | 211.70 | 87.67 | 157.03 | 30.04 | 57.52 | 53.77 | −3.94 |
Thornthwaite | 192.93 | 22.42 | 105.76 | 42.89 | 32.32 | 26.93 | −0.56 |
PR3_R | 158.61 | 68.45 | 103.03 | 15.84 | 19.28 | 16.47 | 0.45 |
PR3_MR | 149.31 | 50.74 | 102.96 | 21.43 | 11.30 | 8.75 | 0.81 |
By annual parameters | |||||||
FAO56 P–M | 859.98 | 573.33 | 722.94 | 56.46 | |||
Hargreaves | 1016.38 | 643.33 | 841.91 | 71.67 | 149.00 | 134.99 | −5.96 |
Blaney–Criddle | 1162.08 | 932.43 | 1099.24 | 36.88 | 378.75 | 376.30 | −44.0 |
Thornthwaite | 831.50 | 570.26 | 740.34 | 43.02 | 44.44 | 37.20 | 0.38 |
PR3_M | 792.02 | 614.77 | 723.55 | 32.54 | 41.32 | 32.94 | 0.46 |
PR3_MR | 791.01 | 611.96 | 723.89 | 32.74 | 40.49 | 32.26 | 0.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-J.; Bae, S.-J.; Jang, M.-W. Linear Regression Machine Learning Algorithms for Estimating Reference Evapotranspiration Using Limited Climate Data. Sustainability 2022, 14, 11674. https://doi.org/10.3390/su141811674
Kim S-J, Bae S-J, Jang M-W. Linear Regression Machine Learning Algorithms for Estimating Reference Evapotranspiration Using Limited Climate Data. Sustainability. 2022; 14(18):11674. https://doi.org/10.3390/su141811674
Chicago/Turabian StyleKim, Soo-Jin, Seung-Jong Bae, and Min-Won Jang. 2022. "Linear Regression Machine Learning Algorithms for Estimating Reference Evapotranspiration Using Limited Climate Data" Sustainability 14, no. 18: 11674. https://doi.org/10.3390/su141811674
APA StyleKim, S. -J., Bae, S. -J., & Jang, M. -W. (2022). Linear Regression Machine Learning Algorithms for Estimating Reference Evapotranspiration Using Limited Climate Data. Sustainability, 14(18), 11674. https://doi.org/10.3390/su141811674