Understanding the Sustainable Usage Intention of Mobile Payment Technology in Korea: Cross-Countries Comparison of Chinese and Korean Users
<p>Research model.</p> "> Figure 2
<p>Path analysis of the research model (Chinese experience consumers). <span class="html-italic">R</span><sup>2</sup> is the coefficient of determination.</p> "> Figure 3
<p>Path analysis of the research model (Korean experience consumers).</p> ">
Abstract
:1. Introduction
2. Background and Literature Review
2.1. Mobile Payment
2.2. UTAUT
2.3. DeLone and McLean’s ISS
2.4. TTF
2.5. Integrating UTAUT and D&M ISS
2.6. Integrating UTAUT and TTF
3. Research Model
4. Data Collection and Results
4.1. Reliability and Validity
4.2. Measurement Model Evaluation
4.3. Hypothesis Verification
4.4. Analysis of the Differences in Path Coefficients Between Chinese and Korean Groups
5. Conclusions
5.1. Research Findings
5.2. Contribution
5.2.1. Theoretical Contribution
5.2.2. Managerial Contribution
5.3. Limitations and Future Work
Author Contributions
Funding
Conflicts of Interest
Appendix A. Operational Definition
Theory and Construct | Operation Definition | Source | |
---|---|---|---|
ISS | System quality | Quality of a mobile payment system and technical aspects. | [50] |
Information quality | Quality of mobile payment’s system information and contents provided by a mobile payment system. | [50] | |
Service quality | Measures of a new mobile operating system service in terms of reliability, responsiveness, assurance, and personalization. | [50] | |
User Satisfaction | Satisfaction degree with the mobile payment system. | [14] | |
TTF | Task characteristics | Some critical aspects of user task requirements, including ubiquitous account management, money transfer and remittance, and real-time account information inquiry. | [8] |
Technology characteristics | Some critical aspects of mobile banking technology, including ubiquity, immediacy, and security. | [8] | |
Task–technology fit | The rational perspective of what new technology can do to optimize a job. It is affected by the nature of the task and the practicality of the technology to complete the task. | [42] | |
UTAUT | Performance expectancy | The degree of improving travel efficiency by using a mobile payment system thought of by users. | [20,21,56] |
Effort expectancy | The use degree of the mobile payment system experienced by users. | [20,21,56] | |
Social influence | The impact degree to which a consumer notices that important others believe he should use mobile payment system. | [20,56] | |
Facilitating conditions | Whether any convenient conditions and various technical supports are needed by a mobile payment system, which are perceived by users. | [20,56] | |
Usage Intention | The reasons for using mobile payment. | [21] |
References
- Business Insider. Available online: https://www.businessinsider.com/chart-korean-exports-2013-3 (accessed on 13 March 2019).
- Export.gov. Available online: https://www.export.gov/apex/article2?id=Korea-eCommerce (accessed on 29 August 2019).
- Yonhap. Available online: https://en.yna.co.kr/view/AEN20190304011253320?section=search (accessed on 5 March 2019).
- Statista. E-Commerce Report. 2019. Available online: https://www.statista.com/study/42335/ecommerce-report/ (accessed on 15 April 2019).
- Kakaocorp. Available online: https://www.kakaocorp.com/service/Kakaopay?lang=en (accessed on 21 February 2017).
- Yonhap. Available online: https://en.yna.co.kr/view/AEN20190521005651320?section=search (accessed on 21 May 2019).
- Kim, C.; Galliers, R.D.; Shin, N.; Ryoo, J.H.; Kim, J. Factors influencing Internet shopping value and customer repurchase intention. Electron. Commer. Res. Appl. 2012, 11, 374–387. [Google Scholar] [CrossRef]
- Zhou, T.; Lu, Y.; Wang, B. Integrating TTF and UTAUT to explain mobile banking user adoption. Comput. Hum. Behav. 2010, 26, 760–767. [Google Scholar] [CrossRef]
- Tam, C.; Oliveira, T. Understanding the impact of m-banking on individual performance: DeLone McLean and TTF perspective. Comput. Hum. Behav. 2016, 61, 233–244. [Google Scholar] [CrossRef]
- Wu, R.Z.; Lee, J.Z. The Use Intention of Mobile Travel Apps by Korea- Visiting Chinese Tourists. J. Distrib. Sci. 2017, 15, 53–64. [Google Scholar]
- Srivastava, S.C.; Chandra, S.; Theng, Y.L. Evaluating the role of trust in consumer adoption of mobile payment systems: An empirical analysis. Commun. Assoc. Inform. Syst. 2010, 27, 561–588. [Google Scholar]
- Dahlberg, T.; Mallat, N.; Ondrus, J.; Zmijewska, A. Past, present and future of mobile payments research: A literature review. Electron. Commer. Res. Appl. 2008, 7, 165–181. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.H. Understanding user acceptance of DMBin South Korea using the modified technology acceptance model. Inter. J. Hum. Comput. Int. 2009, 25, 173–198. [Google Scholar] [CrossRef]
- GSMA. The Mobile Economy. 2019. Available online: https://www.gsma.com/r/mobileeconomy/ (accessed on 30 August 2019).
- Wang, Y.; Lee, S. The effect of cross-border e-commerce on China’s international trade: An empirical study based on transaction cost analysis. Sustainability 2017, 9, 2028. [Google Scholar] [CrossRef]
- Gao, L.L.; Waechter, K.A. Examining the role of initial trust in user adoption of mobile payment services: An empirical investigation. Informat. Syst. Front. 2017, 19, 525–548. [Google Scholar] [CrossRef]
- Chun, S.H. E-Commerce Liability and Security Breaches in Mobile Payment for e-Business Sustainability. Sustainability 2019, 11, 715. [Google Scholar] [CrossRef]
- Son, I.; Kim, S. Mobile Payment Service and the Firm Value: Focusing on both Up- and Down-Stream Alliance. Sustainability 2018, 10, 2583. [Google Scholar] [CrossRef]
- Liébana-Cabanillas, F. Determinants of mobile payment acceptance: A hybrid SEM-neural network approach. Technol. Forecast. Soc. Chang. 2018, 129, 117–130. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Alshare, K.; Mousa, A. The moderating effect of espoused cultural dimensions on consumer’s intention to use mobile payment devices. In Proceedings of the 25th International Conference on Information Systems (ICIS 2014), Auckland, New Zealand, 14 December 2014. [Google Scholar]
- Chou, Y.H.D.; Li, T.Y.D.; Ho, C.T.B. Factors influencing the adoption of mobile commerce in Taiwan. Int. J. Mob. Commun. 2018, 16, 117–134. [Google Scholar] [CrossRef]
- Lu, J.; Yu, C.S.; Liu, C.; Wei, J. Comparison of mobile shopping continuance intention between China and USA from an espoused cultural perspective. Comput. Hum. Behav. 2017, 75, 130–146. [Google Scholar] [CrossRef]
- Yang, K.; Forney, J.C. The moderating role of consumer technology anxiety in mobile shopping adoption: Differential effects of facilitating conditions and social influences. J. Electron. Commer. Res. 2013, 14, 334–347. [Google Scholar]
- Malaquias, R.F.; Hwang, Y. Mobile banking use: A comparative study with Brazilian and US participants. Int. J. Inf. Manag. 2019, 44, 132–140. [Google Scholar] [CrossRef]
- Shaikh, A.A.; Karjaluoto, H. Mobile banking adoption: A literature review. Telemat. Inform. 2015, 32, 129–142. [Google Scholar] [CrossRef] [Green Version]
- Palau-Saumell, R.; Forgas-Coll, S.; Sánchez-García, J.; Robres, E. User acceptance of mobile apps for restaurants: An expanded and extended UTAUT-2. Sustainability 2019, 11, 1210. [Google Scholar] [CrossRef]
- Lin, K.Y.; Wang, Y.T.; Hsu, H.Y.S. Why do people switch mobile platforms? The moderating role of habit. Internet Res. 2017, 27, 1170–1189. [Google Scholar] [CrossRef]
- Qasim, H.; Abu-Shanab, E. Drivers of mobile payment acceptance: The impact of network externalities. Inf. Sys. Front. 2016, 18, 1021–1034. [Google Scholar] [CrossRef]
- DeLone, W.H.; McLean, E.R. Information systems success: The quest for the dependent variable. Inf. Sys. Res. 1992, 3, 60–95. [Google Scholar] [CrossRef]
- Mohammadi, H. Investigating users’ perspectives on e-learning: An integration of TAM and IS success model. Comput. Hum. Behav. 2015, 45, 359–374. [Google Scholar] [CrossRef]
- Sharma, S.K.; Sharma, M. Examining the role of trust and quality dimensions in the actual usage of mobile banking services: An empirical investigation. Int. J. Inf. Manag. 2019, 44, 65–75. [Google Scholar] [CrossRef]
- Goodhue, D.L.; Thompson, R.L. Task-technology fit and individual performance. MIS Q. 1995, 19, 213–236. [Google Scholar] [CrossRef]
- Lee, C.C.; Cheng, H.K.; Cheng, H.H. An empirical study of mobile commerce in insurance industry: Task–technology fit and individual differences. Decis. Support Syst. 2007, 43, 95–110. [Google Scholar] [CrossRef]
- Tam, C.; Oliveira, T. Understanding mobile banking individual performance: The DeLone McLean model and the moderating effects of individual culture. Internet Res. 2017, 27, 538–562. [Google Scholar] [CrossRef]
- Gan, C.; Li, H.; Liu, Y. Understanding mobile learning adoption in higher education: An empirical investigation in the context of the mobile library. Electron. Libr. 2017, 35, 846–860. [Google Scholar] [CrossRef]
- Oliveira, T.; Faria, M.; Thomas, M.A.; Popovič, A. Extending the understanding of mobile banking adoption: When UTAUT meets TTF and ITM. Int. J. Inf. Manag. 2014, 34, 689–703. [Google Scholar] [CrossRef]
- Shih, Y.Y.; Chen, C.Y. The study of behavioral intention for mobile commerce: Via an integrated model of TAM and TTF. Qual. Quant. 2013, 47, 1009–1020. [Google Scholar] [CrossRef]
- Cohen, G.A. Mobile-health tool use and community health worker performance in the Kenyan context a quasi-experimental post-test perspective. J. Health Inform. Afr. 2014, 2, 44–54. [Google Scholar]
- Igbaria, M.; Tan, M. The consequences of information technology acceptance on subsequent individual performance. Inform. Manag. 1997, 32, 113–121. [Google Scholar] [CrossRef]
- Oliveira, T.; Thomas, M.; Baptista, G.; Campos, F. Mobile payment: Understanding the determinants of customer adoption and intention to recommend the technology. Comput. Hum. Behav. 2016, 61, 404–414. [Google Scholar] [CrossRef]
- Yen, D.C.; Wu, C.S.; Cheng, F.F.; Huang, Y.W. Determinants of users’ intention to adopt wireless technology: An empirical study by integrating TTF with TAM. Comput. Hum. Behav. 2010, 26, 906–915. [Google Scholar] [CrossRef]
- Sharma, S.K.; Gaur, A.; Saddikuti, V.; Rastogi, A. Structural equation model (SEM)-neural network (NN) model for predicting quality determinants of e-learning management systems. Behav. Inf. Technol. 2017, 36, 1053–1066. [Google Scholar] [CrossRef]
- Zhou, T. An empirical examination of continuance intention of mobile payment services. Decis. Support Syst. 2013, 54, 1085–1091. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Kapoor, K.K.; Williams, M.D.; Williams, J. RFID systems in libraries: An empirical examination of factors affecting system use and user satisfaction. Int. J. Inf. Manag. 2013, 33, 367–377. [Google Scholar] [CrossRef]
- Chatterjee, S.; Kar, A.K.; Gupta, M.P. Success of IoT in smart cities of India: An empirical analysis. Gov. Inf. Q. 2018, 35, 349–361. [Google Scholar] [CrossRef]
- Veeramootoo, N.; Nunkoo, R.; Dwivedi, Y.K. What determines the success of an e-government service? Validation of an integrative model of e-filing continuance usage. Gov. Inf. Q. 2018, 35, 161–174. [Google Scholar] [CrossRef]
- Petter, S.; DeLone, W.; McLean, E. Measuring information systems success: Models, dimensions, measures, and interrelationships. Eur. J. Inf. Sys. 2008, 17, 236–263. [Google Scholar] [CrossRef]
- Delone, W.H.; McLean, E.R. The DeLone and McLean model of information systems success: A ten-year update. J. Manag. Inf. Sys. 2003, 19, 9–30. [Google Scholar]
- Au, N.; Ngai, E.W.; Cheng, T.E. Extending the understanding of end-user information systems satisfaction formation: An equitable needs fulfilment model approach. MIS Q. 2008, 32, 43–66. [Google Scholar] [CrossRef]
- Verkijika, S.F. Factors influencing the adoption of mobile commerce applications in Cameroon. Telemat. Inf. 2018, 35, 1665–1674. [Google Scholar] [CrossRef]
- Lin, T.C.; Huang, C.C. Understanding knowledge management system usage antecedents: An integration of social cognitive theory and task technology fit. Inf. Manag. 2008, 45, 410–417. [Google Scholar] [CrossRef]
- Lu, H.P.; Yang, Y.W. Toward an understanding of the behavioural intention to use a social networking site: An extension of task-technology fit to social-technology fit. Comput. Hum. Behav. 2014, 34, 323–332. [Google Scholar] [CrossRef]
- Dishaw, M.T.; Strong, D.M. Extending the technology acceptance model with task–technology fit constructs. Inf. Manag. 1999, 36, 9–21. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef]
- Jaradat, M.I.R.M.; Al Rababaa, M.S. Assessing key factor that influences on the acceptance of mobile commerce based on modified UTAUT. Int. J. Bus. Manag. 2013, 8, 102–112. [Google Scholar] [CrossRef]
- Lee, J.; Kim, K.; Shin, H.; Hwang, J. Acceptance Factors of Appropriate Technology: Case of Water Purification Systems in Binh Dinh, Vietnam. Sustainability 2018, 10, 2255. [Google Scholar] [CrossRef]
- Morosan, C.; DeFranco, A. It’s about time: Revisiting UTAUT2 to examine consumers’ intentions to use NFC mobile payments in hotels. Int. J. Hosp. Manag. 2016, 53, 17–29. [Google Scholar] [CrossRef]
- Alalwan, A.A.; Dwivedi, Y.K.; Rana, N.P. Factors influencing the adoption of mobile banking by Jordanian bank customers: Extending UTAUT2 with trust. Int. J. Inf. Manag. 2017, 37, 99–110. [Google Scholar] [CrossRef]
- Chuang, L.M.; Chen, P.C.; Chen, Y.Y. The determinant factors of travellers’ choices for the pro-environment behavioral intention-integration theory of planned behavior, unified theory of acceptance, and use of technology two and sustainability values. Sustainability 2018, 10, 1869. [Google Scholar] [CrossRef]
- Vongjaturapat, S.; Chaveesuk, S.; Chotikakamthorn, N.; Tongkhambanchong, S. Analysis of factor influencing the tablet acceptance for library information services: A combination of UTAUT and TTF Model. J. Inf. Knowl. Manag. 2015, 14, 1550023. [Google Scholar] [CrossRef]
- Fianu, E.; Blewett, C.; Ampong, G.; Ofori, K. Factors Affecting MOOC Usage by Students in Selected Ghanaian Universities. Educ. Sci. 2018, 8, 70. [Google Scholar] [CrossRef]
- Im, I.; Hong, S.T.; Kang, M.S. An international comparison of technology adoption Testing the UTAUT model. Inf. Manag. 2010, 48, 1–8. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Zhu, J.; Liu, Q. A meta-analysis of mobile commerce adoption and the moderating effect of culture. Comput. Hum. Behav. 2012, 28, 1902–1911. [Google Scholar] [CrossRef]
- O’Neil, B. Electronic surveys: How to maximize success. Nurse Res. 2014, 21, 24–26. [Google Scholar]
- Bryman, A. Social Research Methods, 4th ed.; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Duffett, M.; Burns, K.E.; Adhikari, N.K.; Arnold, D.M.; Lauzier, F.; Kho, M.E.; Lamontagne, F. Quality of reporting surveys in critical care journals: A methodologic review. Crit. Care Med. 2012, 40, 441–449. [Google Scholar] [CrossRef]
- Armstrong, J.S.; Overton, T.S. Estimating Nonresponse Bias in Mail Surveys. J. Mark. Res. 1977, 14, 396–402. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis: A Global Perspective, 7th ed.; Pearson Education International: Swannanoa, NC, USA, 2010. [Google Scholar]
- Nunnally, J.C. Psychometric Theory; McGraw Hill: New York, NY, USA, 1978. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–47. [Google Scholar] [CrossRef]
- Bagozzi, R.P.; Yi, Y.; Phillips, L.W. Assessing construct validity in organizational research. Adm. Sci. Q. 1991, 36, 421–430. [Google Scholar] [CrossRef]
- Anderson, J.C.; Gerbing, D.W. Structural equation modelling in practice. A review and recommended two-step approach. Psychol. Bull. 1988, 103, 411–423. [Google Scholar] [CrossRef]
- Hooper, D.; Coughlan, J.; Mullen, M.R. Structural equation modeling: Guidelines for determining model fit. Electron. J. Bus. Res. Methods 2008, 6, 53–60. [Google Scholar]
- Kuan, H.H.; Bock, G.W.; Vathanophas, V. Comparing the effects of website quality on customer initial purchase and continued purchase at e-commerce websites. Behav. Inf. Technol. 2008, 27, 3–16. [Google Scholar] [CrossRef]
- Hahn, H.Y.K.; Kim, J. The effect of offline brand trust and perceived internet confidence on online shopping intention in the integrated multi-channel context. Int. J. Retail Distrib. Manag. 2009, 37, 126–141. [Google Scholar] [CrossRef]
- Lu, H.P.; Yu-Jen Su, P. Factors affecting purchase intention on mobile shopping web sites. Internet Res. 2009, 19, 442–458. [Google Scholar] [CrossRef]
- Carlsson, C.; Carlsson, J.; Hyvonen, K.; Puhakainen, J.; Walden, P. Adoption of mobile devices/services-searching for answers with the UTAUT. In Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS’06), Kauia, HI, USA, 4–7 January 2006; pp. 132–142. [Google Scholar]
- Park, J.; Yang, S.; Lehto, X. Adoption of mobile technologies for Chinese consumers. J. Electron. Commer. Res. 2007, 8, 196–206. [Google Scholar]
- Crabbe, M.; Standing, C.; Standing, S.; Karjaluoto, H. An adoption model for mobile banking in Ghana. Int. J. Mob. Commun. 2009, 7, 515–543. [Google Scholar] [CrossRef]
- Junglas, I.; Abraham, C.; Watson, R.T. Task-technology fit for mobile locatable information systems. Decis. Support Sys. 2008, 45, 1046–1057. [Google Scholar] [CrossRef]
- Sheng, H.; Nah, F.F.H.; Siau, K. An experimental study on ubiquitous commerce adoption: Impact of personalization and privacy concerns. J. Assoc. Inf. Sys. 2008, 9, 344–376. [Google Scholar] [CrossRef]
- Wiedemann, D.G.; Haunstetter, T.; Pousttchi, K. Analyzing the basic elements of mobile viral marketing-an empirical study. In Proceedings of the 7th International Conference on Mobile Business, Barcelona, Spain, 7–8 July 2008; pp. 75–85. [Google Scholar]
- Zhou, T. Understanding the determinants of mobile payment continuance usage. Ind. Manag. Data Sys. 2014, 114, 936–948. [Google Scholar] [CrossRef]
Variable | Chinese | Korean | |||
---|---|---|---|---|---|
Number | Percentage | Number | Percentage | ||
Sex | Male | 161 | 34.5% | 157 | 35.6% |
Female | 306 | 65.5% | 284 | 64.4% | |
Age (years) | Below 20 | 52 | 11.1% | 38 | 8.6% |
20–30 | 34 | 7.3% | 27 | 6.1% | |
30–40 | 186 | 39.8% | 171 | 38.8% | |
40–50 | 165 | 35.3% | 185 | 42.0% | |
Over 50 | 30 | 6.4% | 20 | 4.5% | |
Education | High school student/resident | 47 | 10.1% | 42 | 9.5% |
College student/student | 200 | 42.8% | 197 | 44.7% | |
Graduate school or higher | 220 | 47.1% | 202 | 45.8% | |
Occupation | Professional | 44 | 9.4% | 40 | 9.1% |
Self-employed | 156 | 33.4% | 172 | 39.0% | |
Office worker | 160 | 34.3% | 129 | 29.3% | |
Student | 87 | 18.6% | 89 | 20.2% | |
Other | 20 | 4.3% | 11 | 2.5% | |
Experience | Yes | 467 | 100.0% | 441 | 100.0% |
Construct | Indicators | Standardized Loading (t-Value) | Cronbach’s α | Composite Reliability | AVE |
---|---|---|---|---|---|
System quality (SYQ) | SYQ1 | 0.849 | 0.827 | 0.834 | 0.559 |
SYQ2 | 0.754 | -- | -- | -- | |
SYQ3 | 0.685 | -- | -- | -- | |
SYQ4 | 0.690 | -- | -- | -- | |
Information quality (IQ) | IQ1 | 0.834 | 0.912 | 0.913 | 0.726 |
IQ2 | 0.915 | -- | -- | -- | |
IQ3 | 0.836 | -- | -- | -- | |
IQ4 | 0.819 | -- | -- | -- | |
Service quality (SQ) | SQ1 | 0.764 | 0.860 | 0.860 | 0.607 |
SQ2 | 0.768 | -- | -- | -- | |
SQ3 | 0.799 | -- | -- | -- | |
SQ4 | 0.784 | -- | -- | -- | |
User satisfaction (US) | US1 | 0.761 | 0.870 | 0.874 | 0.635 |
US2 | 0.859 | -- | -- | -- | |
US3 | 0.779 | -- | -- | -- | |
US4 | 0.778 | -- | -- | -- | |
Performance expectancy (PE) | PE1 | 0.762 | 0.860 | 0.873 | 0.632 |
PE2 | 0.765 | -- | -- | -- | |
PE3 | 0.860 | -- | -- | -- | |
PE4 | 0.742 | -- | -- | -- | |
Effort expectancy (EE) | EE1 | 0.786 | 0.828 | 0.833 | 0.559 |
EE2 | 0.609 | -- | -- | -- | |
EE3 | 0.820 | -- | -- | -- | |
EE4 | 0.757 | -- | -- | -- | |
Social influence (SI) | SI1 | 0.647 | 0.833 | 0.841 | 0.571 |
SI2 | 0.873 | -- | -- | -- | |
SI3 | 0.724 | -- | -- | -- | |
SI4 | 0.762 | -- | -- | -- | |
Facilitating conditions (FC) | FC1 | 0.838 | 0.815 | 0.820 | 0.535 |
FC2 | 0.637 | -- | -- | -- | |
FC3 | 0.767 | -- | -- | -- | |
FC4 | 0.667 | -- | -- | -- | |
Task characteristics (TAC) | TAC1 | 0.872 | 0.843 | 0.846 | 0.582 |
TAC2 | 0.753 | -- | -- | -- | |
TAC3 | 0.656 | -- | -- | -- | |
TAC4 | 0.754 | -- | -- | -- | |
Technology characteristics (TEC) | TEC1 | 0.794 | 0.854 | 0.855 | 0.596 |
TEC2 | 0.795 | -- | -- | -- | |
TEC3 | 0.757 | -- | -- | -- | |
TEC4 | 0.740 | -- | -- | -- | |
Task-technology Fit (TTF) | TTF1 | 0.815 | 0.887 | 0.898 | 0.687 |
TTF2 | 0.799 | -- | -- | -- | |
TTF3 | 0.836 | -- | -- | -- | |
TTF4 | 0.865 | -- | -- | -- | |
Usage intention (UI) | UI1 | 0.765 | 0.894 | 0.896 | 0.684 |
UI2 | 0.802 | -- | -- | -- | |
UI3 | 0.847 | -- | -- | -- | |
UI4 | 0.890 | -- | -- | -- |
SYQ | IQ | SQ | US | PE | EE | SI | FC | TAC | TEC | TTF | UI | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SYQ | 0.748 | |||||||||||
IQ | 0.324 | 0.852 | ||||||||||
SQ | 0.363 | 0.298 | 0.779 | |||||||||
US | 0.588 | 0.563 | 0.295 | 0.797 | ||||||||
PE | 0.581 | 0.502 | 0.339 | 0.664 | 0.795 | |||||||
EE | 0.018 | 0.086 | 0.057 | 0.016 | -0.011 | 0.748 | ||||||
SI | 0.294 | 0.195 | 0.267 | 0.230 | 0.192 | -0.005 | 0.756 | |||||
FC | 0.323 | 0.302 | 0.272 | 0.234 | 0.290 | 0.042 | 0.270 | 0.731 | ||||
TAC | 0.335 | 0.225 | 0.244 | 0.274 | 0.340 | 0.070 | 0.263 | 0.310 | 0.763 | |||
TEC | 0.325 | 0.262 | 0.314 | 0.231 | 0.359 | 0.071 | 0.293 | 0.235 | 0.229 | 0.772 | ||
TTF | 0.283 | 0.211 | 0.252 | 0.263 | 0.555 | 0.026 | 0.233 | 0.234 | 0.557 | 0.614 | 0.829 | |
UI | 0.352 | 0.367 | 0.276 | 0.516 | 0.569 | 0.064 | 0.554 | 0.455 | 0.377 | 0.370 | 0.514 | 0.827 |
Fit Index | Standard of Fit Index | Measurement Model | Structural Model | Result |
---|---|---|---|---|
χ2/d.f. | ≤3.00 | 1.248 | 1.302 | Yes |
GFI | >0.90 | 0.946 | 0.943 | Yes |
AGFI | >0.90 | 0.937 | 0.935 | Yes |
NFI | >0.90 | 0.949 | 0.945 | Yes |
CFI | >0.90 | 0.989 | 0.987 | Yes |
IFI | >0.90 | 0.989 | 0.987 | Yes |
RFI | >0.90 | 0.943 | 0.941 | Yes |
PGFI | >0.50 | 0.816 | 0.831 | Yes |
PCFI | >0.50 | 0.889 | 0.906 | Yes |
PNFI | >0.50 | 0.853 | 0.868 | Yes |
RMR | <0.08 | 0.033 | 0.038 | Yes |
RMSEA | <0.08 | 0.017 | 0.018 | Yes |
Hypothesis | Path | Path Coefficients | p-Value | T-Value |
---|---|---|---|---|
H1a | System quality → User satisfaction | 0.293 | *** | 7.462 |
H1b | System quality → Performance expectancy | 0.363 | *** | 10.21 |
H2a | Information quality → User satisfaction | 0.300 | *** | 8.71 |
H2b | Information quality → Performance expectancy | 0.296 | *** | 9.314 |
H3a | Service quality → User satisfaction | −0.022 | 0.492 | −0.687 |
H3b | Service quality → Performance expectancy | 0.018 | 0.574 | 0.562 |
H4a | Performance expectancy → User satisfaction | 0.347 | *** | 8.159 |
H4b | User satisfaction → Usage Intention | 0.199 | *** | 5.081 |
H5a | Task characteristics → Task-Technology Fit | 0.433 | *** | 13.388 |
H5b | Tech characteristics → Task-Technology Fit | 0.504 | *** | 14.564 |
H6a | Task-Technology Fit → Performance expectancy | 0.370 | *** | 11.378 |
H6b | Task-Technology Fit → Usage Intention | 0.225 | *** | 6.687 |
H7 | Performance expectancy → Usage Intention | 0.173 | *** | 3.812 |
H8 | Effort expectancy → Usage Intention | 0.047 | 0.077 | 1.77 |
H9 | Social influence → Usage Intention | 0.358 | *** | 10.874 |
H10 | Facilitating conditions → Usage Intention | 0.196 | *** | 6.526 |
Hypothesis | Path | Path Coefficients | p-Value | T-Value |
---|---|---|---|---|
H1a | System quality → User satisfaction | 0.271 | *** | 4.963 |
H1b | System quality → Performance expectancy | 0.351 | *** | 7.038 |
H2a | Information quality → User satisfaction | 0.271 | *** | 5.781 |
H2b | Information quality → Performance expectancy | 0.289 | *** | 6.648 |
H3a | Service quality → User satisfaction | 0.031 | 0.491 | 0.688 |
H3b | Service quality → Performance expectancy | 0.042 | 0.355 | 0.925 |
H4a | Performance expectancy → User satisfaction | 0.363 | *** | 6.208 |
H4b | User satisfaction → Usage Intention | 0.332 | *** | 7.142 |
H5a | Task characteristics → Task-Technology Fit | 0.431 | *** | 9.456 |
H5b | Tech characteristics → Task-Technology Fit | 0.497 | *** | 10.395 |
H6a | Task-Technology Fit → Performance expectancy | 0.361 | *** | 8.077 |
H6b | Task-Technology Fit → Usage Intention | 0.032 | 0.378 | 0.881 |
H7 | Performance expectancy → Usage Intention | 0.277 | *** | 5.304 |
H8 | Effort expectancy → Usage Intention | 0.009 | 0.767 | 0.296 |
H9 | Social influence → Usage Intention | 0.301 | *** | 8.098 |
H10 | Facilitating conditions → Usage Intention | 0.347 | *** | 9.069 |
Hypothesis | Path | Path Coefficients | p | T-Value |
---|---|---|---|---|
H1a | System quality → User satisfaction | 0.303 | *** | 5.404 |
H1b | System quality → Performance expectancy | 0.370 | *** | 7.252 |
H2a | Information quality → User satisfaction | 0.332 | *** | 6.539 |
H2b | Information quality → Performance expectancy | 0.307 | *** | 6.479 |
H3a | Service quality → User satisfaction | −0.071 | 0.114 | −1.581 |
H3b | Service quality → Performance expectancy | −0.009 | 0.851 | −0.188 |
H4a | Performance expectancy → User satisfaction | 0.334 | *** | 5.407 |
H4b | User satisfaction → Usage Intention | 0.056 | 0.327 | 0.98 |
H5a | Task characteristics → Task-Technology Fit | 0.434 | *** | 9.479 |
H5b | Tech characteristics → Task-Technology Fit | 0.507 | *** | 10.126 |
H6a | Task-Technology Fit → Performance expectancy | 0.377 | *** | 7.902 |
H6b | Task-Technology Fit → Usage Intention | 0.480 | *** | 8.524 |
H7 | Performance expectancy → Usage Intention | 0.037 | 0.587 | 0.543 |
H8 | Effort expectancy → Usage Intention | 0.043 | 0.265 | 1.114 |
H9 | Social influence → Usage Intention | 0.449 | *** | 8.449 |
H10 | Facilitating conditions → Usage Intention | 0.023 | 0.587 | 0.544 |
Route | Chinese | Korean | Pairwise Parameter Comparisons | |||
---|---|---|---|---|---|---|
β | p | β | p | T Value | p-Value | |
FC→UI | 0.347 | *** | 0.023 | 0.587 | 6.441 | 0.000 |
SI → UI | 0.301 | *** | 0.449 | *** | 1.882 | 0.060 |
EE → UI | 0.0009 | 0.767 | 0.043 | 0.265 | 0.645 | 0.519 |
PE → UI | 0.277 | *** | 0.037 | 0.587 | 2.971 | 0.003 |
US → UI | 0.332 | *** | 0.056 | 0.327 | 4.217 | 0.000 |
TTF → UI | 0.032 | 0. 378 | 0.480 | *** | 6.242 | 0.000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, X.; Wu, R.; Lim, Y.-T.; Han, J.; Chen, S.-C. Understanding the Sustainable Usage Intention of Mobile Payment Technology in Korea: Cross-Countries Comparison of Chinese and Korean Users. Sustainability 2019, 11, 5532. https://doi.org/10.3390/su11195532
Lin X, Wu R, Lim Y-T, Han J, Chen S-C. Understanding the Sustainable Usage Intention of Mobile Payment Technology in Korea: Cross-Countries Comparison of Chinese and Korean Users. Sustainability. 2019; 11(19):5532. https://doi.org/10.3390/su11195532
Chicago/Turabian StyleLin, Xin, RunZe Wu, Yong-Taek Lim, Jieping Han, and Shih-Chih Chen. 2019. "Understanding the Sustainable Usage Intention of Mobile Payment Technology in Korea: Cross-Countries Comparison of Chinese and Korean Users" Sustainability 11, no. 19: 5532. https://doi.org/10.3390/su11195532
APA StyleLin, X., Wu, R., Lim, Y.-T., Han, J., & Chen, S.-C. (2019). Understanding the Sustainable Usage Intention of Mobile Payment Technology in Korea: Cross-Countries Comparison of Chinese and Korean Users. Sustainability, 11(19), 5532. https://doi.org/10.3390/su11195532