Petrogenetic Implications of the Lithium-Rich Tongtianmiao Granite Pluton, South China: Evidence from Geochemistry and Geochronology
<p>Geological sketch map of the South China Block (modified from Chen et al., 1989 [<a href="#B28-minerals-14-00637" class="html-bibr">28</a>], Zhou et al., 2012 [<a href="#B21-minerals-14-00637" class="html-bibr">21</a>]), showing the distribution of Yanshanian granitic plutons. The map is presented in the WGS84 coordinate system.</p> "> Figure 2
<p>(<b>a</b>) Geological sketch showing the strata and intrusion distribution in the Xianghualing ore field (modified from Yuan et al., 2008 [<a href="#B14-minerals-14-00637" class="html-bibr">14</a>]); (<b>b</b>) geological sketch showing the horizontal distribution of sampling boreholes ZK6404, ZK7412 and ZK8203, CRS: WGS84.</p> "> Figure 3
<p>Photographs and micrographs of representative rocks: (<b>a</b>) lithium-rich mica quartz vein; (<b>b</b>) zinnwaldite specimen; (<b>c</b>) fine-grained zinnwaldite granite veins intersecting medium-grained zinnwaldite granite; (<b>d</b>) grain size variation and greisen vein in zinnwaldite granite; (<b>e</b>) greisen; (<b>f</b>) albitized zinnwaldite granite; (<b>g</b>) zinnwaldite granite; (<b>h</b>) biotite monzonitic granite; (<b>i</b>) sericitized granite thin section; (<b>j</b>) zinnwaldite granite thin section; (<b>k</b>) greisen thin section; (<b>l</b>) altered quartz-enriched granite thin section. Pl—plagioclase, Kfs—potassium feldspar, Qz—quartz, Znw—zinnwaldite, Ms—muscovite, Bt—biotite, Ser—sericite.</p> "> Figure 4
<p>Geologic cross sections of drill holes ZK6404, ZK7412 and ZK8203 showing the spatial relationships among different rocks and sampling locations.</p> "> Figure 5
<p>Plots of SiO<sub>2</sub> vs. (<b>a</b>) Al<sub>2</sub>O<sub>3</sub>; (<b>b</b>) Fe<sub>2</sub>O<sub>3</sub><sup>T</sup>; (<b>c</b>) MnO; (<b>d</b>) MgO; (<b>e</b>) CaO; (<b>f</b>) Na<sub>2</sub>O; (<b>g</b>) Rb; (<b>h</b>) Sr; and (<b>i</b>) Ba for the Tongtianmiao granitic rocks and other intrusions in the Xianghualing ore field (data obtained from previous research [<a href="#B7-minerals-14-00637" class="html-bibr">7</a>,<a href="#B8-minerals-14-00637" class="html-bibr">8</a>,<a href="#B11-minerals-14-00637" class="html-bibr">11</a>,<a href="#B18-minerals-14-00637" class="html-bibr">18</a>]).</p> "> Figure 6
<p>Chemical classification of Tongtianmiao plutonic rocks using the total alkali versus silica (TAS) diagram, modified from Middlemost (1994) [<a href="#B38-minerals-14-00637" class="html-bibr">38</a>].</p> "> Figure 7
<p>(<b>a</b>) SiO<sub>2</sub> vs. K<sub>2</sub>O diagram, modified from Peccerillo and Taylor (1976) [<a href="#B39-minerals-14-00637" class="html-bibr">39</a>]; (<b>b</b>) A/CNK versus A/NK plots of granites from the Tongtianmiao pluton, based on the diagram of Maniar and Piccoli (1989) [<a href="#B40-minerals-14-00637" class="html-bibr">40</a>].</p> "> Figure 8
<p>(<b>a</b>) The primitive mantle normalized diagram of trace elements and (<b>b</b>) the chondrite-normalized REE patterns, with normalization values from Sun and McDonough (1989) [<a href="#B41-minerals-14-00637" class="html-bibr">41</a>].</p> "> Figure 9
<p>Zircon CL images of samples ZK7412-1 and ZK7412-5.</p> "> Figure 10
<p>Monazite CL images of samples ZK7412-5 and ZK7412-6.</p> "> Figure 11
<p>Monazite U–Pb ages of sample ZK7412-5.</p> "> Figure 12
<p>Monazite U–Pb ages of sample ZK7412-6.</p> "> Figure 13
<p>Granite discrimination diagram of granite genetic type (modified from [<a href="#B55-minerals-14-00637" class="html-bibr">55</a>]): (<b>a</b>) 10,000 Ga/Al vs. Zr; (<b>b</b>) Zr + Nb + Ce + Y vs. FeO<sup>T</sup>/MgO; (<b>c</b>) 10,000 Ga/Al vs. Ce; (<b>d</b>) Zr + Nb + Ce + Y vs. (Na<sub>2</sub>O + K<sub>2</sub>O)/CaO. FG—fractionated felsic granite; OTG—other I-, S- and M-type granite.</p> "> Figure 14
<p>Granite discrimination diagram of the tectonic setting (modified from [<a href="#B62-minerals-14-00637" class="html-bibr">62</a>]): (<b>a</b>) Y vs. Nb; (<b>b</b>) Yb vs. Ta. Syn-COLG—syn-collisional granite; VAG—volcanic arc granite; ORG—ocean ridge granite; WPG—within plate granite; MORG—mantle-derived ocean ridge granite.</p> ">
Abstract
:1. Introduction
2. Geological Background
- (1)
- Mica mineral compositions are graded from biotite, through protolithionite, zinnwaldite, lepidolite, muscovite, and finally sericite, reflecting a progressive evolutionary trend;
- (2)
- The albite content initially increases (in the zinnwaldite granite zone) and subsequently decreases, with the upper portions undergoing progressive alteration kaolinite, sericite, and illite (in the greisen zone);
- (3)
- The content of accessory minerals gradually increases, among which tantalite and niobite are mostly enriched in the albitized zinnwaldite granite zone, while the greisen zone is characterized by the enrichment of tungsten, cassiterite, and arsenopyrite.
3. Samples and Analytical Techniques
3.1. Whole-Rock Major and Trace Element Analysis
3.2. Zircon U–Pb Dating
3.3. Monazite U–Pb Dating
4. Results
4.1. Whole-Rock Major and Trace Elements
4.2. Zircon U–Pb Geochronology
4.3. Monazite U–Pb Geochronology
5. Discussion
5.1. Classification and Tectonic Setting of Tongtianmiao Granites
5.2. Petrogenesis of Tongtianmiao Granites
6. Conclusions
- (1)
- The Tongtianmiao granites are identified as A-type granites characterized by high SiO2 (69.18–78.20 wt.%, average = 74.08 wt.%) and peraluminous (A/CNK > 1.2) contents.
- (2)
- U–Pb dating of monazite from the Tongtianmiao granites indicates geological event ages ranging from 172.1 to 167.8 Ma, which corresponds to the Middle Jurassic period and is consistent with regional tectonic extensional activity.
- (3)
- The granites exhibit a high degree of magmatic differentiation with volatile component F ranging from 0.70 to 2.90 wt.%, with an average of 1.24 wt.%. A continuous heat supply from underlying mantle-derived magma likely facilitates the ascent of residual melts. This heat is crucial for sustaining in situ differentiation within the magma chamber over time, a key process in the formation of lithium-rich granites.
- (4)
- The timing and geodynamic setting of the Tongtianmiao granite emplacement are linked to the retreat of the Pacific subduction plate, with NE-trending extensional faults providing favorable conditions for lithium enrichment.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bartels, A.; Behrens, H.; Holtz, F.; Schmidt, B.C. The effect of lithium on the viscosity of pegmatite forming liquids. Chem. Geol. 2015, 410, 1–11. [Google Scholar] [CrossRef]
- Sirbescu, M.L.C.; Nabelek, P.I. Crystallization conditions and evolution of magmatic fluids in the Harney Peak Granite and associated pegmatites, Black Hills, South Dakota—Evidence from fluid inclusions. Geochim. Cosmochim. Acta 2003, 67, 2443–2465. [Google Scholar] [CrossRef]
- Che, X.D.; Linnen, R.L.; Wang, R.C.; Aseri, A.; Thibault, Y. Tungsten solubility in evolved granitic melts: An evaluation of magmatic wolframite. Geochim. Cosmochim. Acta 2013, 106, 84–98. [Google Scholar] [CrossRef]
- Toplis, M.; Dingwell, D. The variable influence of P2O5 on the viscosity of melts of differing alkali/aluminium ratio: Implications for the structural role of phosphorus in silicate melts. Geochim. Cosmochim. Acta 1996, 60, 4107–4121. [Google Scholar] [CrossRef]
- Tang, Y.; Qin, S.X.; Zhao, J.Y.; Lü, Z.H.; Liu, X.Q.; Wang, H.; Chen, J.Z.; Zhang, H. Solubility of rare metals as a constraint on mineralization of granitic pegmatite. Earth Sci. Front. 2022, 29, 81–92. [Google Scholar] [CrossRef]
- Guo, C.L.; Zhang, B.W.; Zheng, Y.; Xu, J.Q.; Zhao, Q.Q.; Yan, J.Y.; Zhou, R.; Fu, W.; Huang, K. Granite-type lithium deposits in China: Important characteristics, metallogenic conditions, and genetic mechanism. Acta Pet. Sin. 2024, 40, 347–403. [Google Scholar] [CrossRef]
- Yang, L.Z.; Wu, X.B.; Cao, J.Y.; Hu, B.; Zhang, X.W.; Gong, Y.S.; Liu, W.D. Geochronology, Petrology, and Genesis of Two Granitic Plutons of the Xianghualing Ore Field in South Hunan Province: Constraints from Zircon U-Pb Dating, Geochemistry, and Lu-Hf Isotopic Compositions. Minerals 2018, 8, 213. [Google Scholar] [CrossRef]
- Cheng, Y.S.; Mao, C.W.; Zhang, Z.W.; Xu, Z.B.; Wan, F.L.; Huang, J.Z.; Chen, J.F.; Cao, C.H.; Wen, C.H.; Zhou, Y.; et al. Petrogenesis and diagenetic dynamic background of granitic magmas in Jianfengling, Southern Hunan and its significance for rare metals mineralization. J. Cent. South Univ. (Sci. Technol.) 2023, 54, 3518–3534. [Google Scholar] [CrossRef]
- Qiu, R.Z.; Deng, J.F.; Cai, Z.Y.; Zhou, S.; Chang, H.L.; Du, S.H. Nd isotopic characteristics and genesis of Xianghualing 430 granitic body, Hunan Province. Acta Petrol. Mineral. 2003, 22, 41–46. [Google Scholar] [CrossRef]
- Yu, F.; Shu, Q.H.; Niu, X.D.; Xing, K.; Li, L.L.; Lentz, D.R.; Zeng, Q.W.; Yang, W.J. Composition of Garnet from the Xianghualing Skarn Sn Deposit, South China: Its Petrogenetic Significance and Exploration Potential. Minerals 2020, 10, 456. [Google Scholar] [CrossRef]
- Yuan, L.L.; Wang, Y.F.; Liu, J.P.; Shao, Y.J.; Liu, Z.F.; Li, B.; Zheng, X.; Ding, T.; Zhang, T.D. Petro-geochemistry of Late Jurassic highly fractionated granites in the Xianghualing area of Hunan Province: Constraints on petrogenesis and rare -metal mineralization. Acta Pet. Sin. 2022, 38, 2113–2138. [Google Scholar] [CrossRef]
- Li, H.; Wu, J.H.; Evans, N.J.; Jiang, W.C.; Zhou, Z.K. Zircon geochronology and geochemistry of the Xianghualing A-type granitic rocks: Insights into multi-stage Sn-polymetallic mineralization in South China. Lithos 2018, 312, 1–20. [Google Scholar] [CrossRef]
- Wang, K.X.; Zhai, D.G.; Williams-Jones, A.E.; Li, D.F.; Liu, J.J. Discrete late Jurassic Sn mineralizing events in the Xianghualing Ore District, South China: Constraints from cassiterite and garnet U-Pb geochronology. Am. Miner. 2023, 108, 1384–1398. [Google Scholar] [CrossRef]
- Yuan, S.D.; Peng, J.T.; Hu, R.Z.; Li, H.M.; Shen, N.P.; Zhang, D.L. A precise U-Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China). Min. Depos. 2008, 43, 375–382. [Google Scholar] [CrossRef]
- Yuan, S.D.; Peng, J.T.; Shen, N.P.; Hu, R.Z.; Dai, T.M. 40Ar-39Ar isotopic dating of the Xianghualing Sn-polymetallic orefield in southern Hunan, China and its geological implications. Acta Geol. Sin. Engl. 2007, 81, 278–286. [Google Scholar] [CrossRef]
- He, H.H. Mineralization Characteristics of Yanshanian Granitic Small Intrusions and Batholiths in South Hunan-Taking Qitianling and Xianghualing as Examples. Master’s Thesis, Chinese Academy of Geological Sciences, Beijing, China, 2022. [Google Scholar]
- Song, Z.F.; Yang, Q.Z.; Zhu, Z.Z.; Cao, N.W. Prospecting potential of medium-fine-grained rock-type lithium resources in the Xianghualing orefield, Hunan Province, China. Geophys. Geochem. Explor. 2024, 48, 366–374. [Google Scholar] [CrossRef]
- Luo, Z.Y.; Li, H.; Wu, J.H.; Sun, W.B.; Zhou, J.Q.; Maulana, A. Geochronology and Geochemistry of the Xianghualing Granitic Rocks: Insights into Multi-Stage Sn-Polymetallic Mineralization in South China. Minerals 2022, 12, 1091. [Google Scholar] [CrossRef]
- Cawood, P.A.; Zhao, G.C.; Yao, J.L.; Wang, W.; Xu, Y.J.; Wang, Y.J. Reconstructing South China in Phanerozoic and Precambrian supercontinents. Earth-Sci. Rev. 2018, 186, 173–194. [Google Scholar] [CrossRef]
- Shu, L.S.; Yao, J.L.; Wang, B.; Faure, M.; Charvet, J.; Chen, Y. Neoproterozoic plate tectonic process and Phanerozoic geodynamic evolution of the South China Block. Earth-Sci. Rev. 2021, 216, 103596. [Google Scholar] [CrossRef]
- Zhou, Y.Z.; Zeng, C.Y.; Li, H.Z.; An, Y.F.; Liang, J.; Lü, W.C.; Yang, Z.J.; He, J.G.; Shen, W.J. Geological evolution and ore-prospecting targets in southern segment of Qinzhou Bay-Hangzhou Bay juncture orogenic belt, southern China. Geol. Bull. China 2012, 31, 486–491. [Google Scholar] [CrossRef]
- Mao, J.W.; Cheng, Y.B.; Chen, M.H.; Pirajno, F. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Min. Depos. 2013, 48, 267–294. [Google Scholar] [CrossRef]
- Zhou, Y.Z.; Li, X.Y.; Zheng, Y.; Shen, W.J.; He, J.G.; Yu, P.P.; Niu, J.; Zeng, C.Y. Geological settings and metallogenesis of Qinzhou Bay-Hangzhou Bay orogenic juncture belt, South China. Acta Pet. Sin 2017, 33, 667–681. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Chen, Y.C.; Wang, D.H.; Li, J.K.; Liu, S.B.; Chen, Z.Y.; Guo, C.L.; Wang, P.A. Transformation of Mesozoic dynamic systems and superposition of metallogenic series of W-Sn-Li-Be-Nb-Ta-REE mineral deposits in South China. Acta Pet. Sin. 2022, 38, 301–322. [Google Scholar] [CrossRef]
- Hu, R.Z.; Zhou, M.F. Multiple Mesozoic mineralization events in South China-an introduction to the thematic issue. Min. Depos. 2012, 47, 579–588. [Google Scholar] [CrossRef]
- Ni, P.; Wang, G.G.; Li, W.S.; Chi, Z.; Li, S.N.; Gao, Y. A review of the Yanshanian ore-related felsic magmatism and tectonic settings in the Nanling W-Sn and Wuyi Au-Cu metallogenic belts, Cathaysia Block, South China. Ore Geol. Rev. 2021, 133, 104088. [Google Scholar] [CrossRef]
- Zhou, M.F.; Gao, J.F.; Zhao, Z.; Zhao, W.W. Introduction to the special issue of Mesozoic W-Sn deposits in South China. Ore Geol. Rev. 2018, 101, 432–436. [Google Scholar] [CrossRef]
- Chen, Y.C.; Pei, R.F.; Zhang, H.L.; Lin, X.D.; Bai, G.; Li, C.Y.; Hu, Y.J.; Liu, G.Q.; Xian, B.Q. The Geology of Non-Ferrous and Rare Metal Deposits Related to Mesozoic Granitoids in Nanling Region; Geological Publishoing House: Beijing, China, 1989; pp. 1–506. [Google Scholar]
- Jiang, S.Y.; Su, H.M.; Xiong, Y.Q.; Liu, T.; Zhu, K.Y.; Zhang, L. Spatial-Temporal Distribution, Geological Characteristics and Ore-Formation Controlling Factors of Major Types of Rare Metal Mineral Deposits in China. Acta Geol. Sin. Engl. 2020, 94, 1757–1773. [Google Scholar] [CrossRef]
- Wu, F.Y.; Guo, C.L.; Hu, F.Y.; Liu, X.C.; Zhao, J.X.; Li, X.F.; Qin, K.Z. Petrogenesis of the highly fractionated granites and their mineralizations in Nanling Range, South China. Acta Pet. Sin. 2023, 39, 1–36. [Google Scholar] [CrossRef]
- Yuan, S.D.; Williams-Jones, A.E.; Romer, R.L.; Zhao, P.L.; Mao, J.W. Protolith-related thermal controls on the decoupling of Sn and W in Sn-W Metallogenic Provinces: Insights from the Nanling region, China. Econ. Geol. 2019, 114, 1005–1012. [Google Scholar] [CrossRef]
- Zhu, J.C.; Wang, R.C.; Lu, J.J.; Zhang, H.; Zhang, W.L.; Xie, L.; Zhang, R.q. Fractionation, Evolution, Petrogenesis and Mineralization of Laiziling Granite Pluton, Southern Hunan Province. Geol. J. China Univ. 2011, 17, 381–392. [Google Scholar] [CrossRef]
- Qin, L.X.; Rao, C.; Lin, X.Q.; Wu, R.Q.; Wang, Q. Constraints of Lithium on the Petrogenesis and Mineralization of Granite in Xianghualing Area, Hunan Province. Geol. J. China Univ. 2021, 27, 149–162. [Google Scholar] [CrossRef]
- Xuan, Y.S.; Yuan, S.D.; Yuan, Y.B.; Mi, J.R. Zircon U-Pb age, geochemistry and petrogenesis of Jianfengling pluton in southern Hunan Province. Miner. Depos. 2014, 33, 1379–1390. [Google Scholar] [CrossRef]
- Qiu, R.Z.; Zhou, S.; Chang, H.L.; Du, S.H.; Peng, S.B. The evolution of Li-bearing micas from Xianghualing granites and their ore-prospecting significance in Hunan. J. Guilin Univ. Technol. 1998, 18, 49–50+53–57. [Google Scholar]
- Wu, S.T.; Yang, M.; Yang, Y.H.; Xie, L.W.; Huang, C.; Wang, H.; Yang, J.H. Improved zircon U-Pb dating at high spatial resolution (5–16 μm) by laser ablation-single collector-sector field-ICP-MS using Jet sample and X skimmer cones. Int. J. Mass Spectrom. 2020, 456, 116394. [Google Scholar] [CrossRef]
- Sláma, J.; Kosler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.A.; Morris, G.A.; Nasdala, L.; Norberg, N.; et al. Plesovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth-Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, S. Rare earth elements in East Carpathian volcanic rocks. Earth Planet. Sci. Lett. 1976, 32, 121–126. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Harrison, T.M.; Catlos, E.J.; Montel, J.M. U-Th-Pb dating of phosphate minerals. Rev. Miner. Geochem. 2002, 48, 523–558. [Google Scholar] [CrossRef]
- Li, Q.L. “High-U Effect”during SIMS zircon U-Pb dating. Bull. Mineral. Petrol. Geochem. 2016, 35, 405–412. [Google Scholar] [CrossRef]
- Seydoux-Guillaume, A.M.; Paquette, J.L.; Wiedenbeck, M.; Montel, J.M.; Heinrich, W. Experimental resetting of the U-Th-Pb systems in monazite. Chem. Geol. 2002, 191, 165–181. [Google Scholar] [CrossRef]
- Li, Q.L.; Li, X.H.; Lan, Z.W.; Guo, C.L.; Yang, Y.N.; Liu, Y.; Tang, G.Q. Monazite and xenotime U-Th-Pb geochronology by ion microprobe: Dating highly fractionated granites at Xihuashan tungsten mine, SE China. Contrib. Mineral. Petrol. 2013, 166, 65–80. [Google Scholar] [CrossRef]
- Chappell, B.W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 1999, 46, 535–551. [Google Scholar] [CrossRef]
- Chappell, B.W.; Bryant, C.J.; Wyborn, D. Peraluminous I-type granites. Lithos 2012, 153, 142–153. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. Two contrasting granite types. Pac. Geol. 1974, 8, 173–174. [Google Scholar]
- Chappell, B.W.; White, A.J.R. Two contrasting granite types: 25 years later. Aust. J. Earth Sci. 2001, 48, 489–499. [Google Scholar] [CrossRef]
- Collins, W.J.; Beams, S.D.; White, A.J.R.; Chappell, B.W. Nature and origin of A-type granites with particular reference to Southeastern Australia. Contrib. Mineral. Petrol. 1982, 80, 189–200. [Google Scholar] [CrossRef]
- Gao, P.; Zheng, Y.F.; Zhao, Z.F. Distinction between S-type and peraluminous I-type granites: Zircon versus whole-rock geochemistry. Lithos 2016, 258, 77–91. [Google Scholar] [CrossRef]
- King, P.L.; Chappell, B.W.; Allen, C.M.; White, A.J.R. Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite. Aust. J. Earth Sci. 2001, 48, 501–514. [Google Scholar] [CrossRef]
- King, P.L.; White, A.J.R.; Chappell, B.W.; Allen, C.M. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia. J. Petrol. 1997, 38, 371–391. [Google Scholar] [CrossRef]
- Loiselle, M.C. Characteristics and origin of anorogenic granites. Geol. Soc. Am. Bull. 1979, 11, 468. [Google Scholar]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Wu, Q.H.; Cao, J.Y.; Kong, H.; Shao, Y.J.; Li, H.; Xi, X.S.; Deng, X.T. Petrogenesis and tectonic setting of the early Mesozoic Xitian granitic pluton in the middle Qin-Hang Belt, South China: Constraints from zircon U-Pb ages and bulk-rock trace element and Sr-Nd-Pb isotopic compositions. J. Asian Earth Sci. 2016, 128, 130–148. [Google Scholar] [CrossRef]
- Zhou, Y.; Liang, X.Q.; Wu, S.C.; Cai, Y.F.; Liang, X.R.; Shao, T.B.; Wang, C.; Fu, J.G.; Jiang, Y. Isotopic geochemistry, zircon U-Pb ages and Hf isotopes of A-type granites from the Xitian W-Sn deposit, SE China: Constraints on petrogenesis and tectonic significance. J. Asian Earth Sci. 2015, 105, 122–139. [Google Scholar] [CrossRef]
- Zhao, K.D.; Jiang, S.Y.; Yang, S.Y.; Dai, B.Z.; Lu, J.J. Mineral chemistry, trace elements and Sr-Nd-Hf isotope geochemistry and petrogenesis of Cailing and Furong granites and mafic enclaves from the Qitianling batholith in the Shi-Hang zone, South China. Gondwana Res. 2012, 22, 310–324. [Google Scholar] [CrossRef]
- Bonin, B. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos 2007, 97, 1–29. [Google Scholar] [CrossRef]
- Mao, J.W.; Xie, G.Q.; Li, X.F.; Zhang, C.Q.; Mei, Y.X. Mesozoic large-scale mineralization and multiple lithospheric extensions in South China. Earth Sci. Front. 2004, 11, 45–55. [Google Scholar] [CrossRef]
- Grebennikov, A.V. A-type granites and related rocks: Petrogenesis and classification. Russ. Geol. Geophys. 2014, 55, 1354–1366. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Zhao, Z.H. Trace element geochemistry. Adv. Earth Sci. 1992, 7, 65–66. [Google Scholar]
- Yuan, Z.X.; Zhang, Z.Q. Sm-Nd isotopic characteristics of granitoids in the Nanling region and their petrogenetic analysis. Geol. Rev. 1992, 38, 483–490. [Google Scholar] [CrossRef]
- Henderson, P. General geochemical properties and abundances of the rare earth elements. In Developments in Geochemistry; Elsevier: Amsterdam, The Netherlands, 1984; Volume 2, pp. 1–32. [Google Scholar]
- Bai, D.Y.; Chen, J.C.; Ma, T.Q.; Wang, X.F. Geochemical characteristics and tectonic setting of Qitianling A-type granitic pluton in southeast Hunan. Acta Petrol. Mineral. 2005, 24, 255–272. [Google Scholar] [CrossRef]
- Liu, Y. Crust-mantle interaction of Yanshanian granitic magma in Qitianling and Daoxian area southern Hunan. Ph.D. Thesis, Chinese Academy of Geological Sciences, Beijing, China, 2011. [Google Scholar]
- Wu, G.Y. The Yanshanian Granitoids and Their Cosmical Mineralization Interaction in Poly Metallogenic Deposit-Concentrated, Area in Southeastern Hunan. Ph.D. Thesis, China University of Geosciences (Beijing), Beijing, China, 2005. [Google Scholar]
- Coleman, D.S.; Gray, W.; Glazner, A.F. Rethinking the emplacement and evolution of zoned plutons: Geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology 2004, 32, 433–436. [Google Scholar] [CrossRef]
- Wu, F.Y.; Li, X.H.; Yang, J.H.; Zheng, F.Y. Discussions on the petrogenesis of granites. Acta Pet. Sin. 2007, 23, 1217–1238. [Google Scholar] [CrossRef]
- Wu, F.Y.; Liu, X.C.; Ji, W.Q.; Wang, J.M.; Yang, L. Highly fractionated granites: Recognition and research. Sci. Sin. 2017, 47, 745–765. [Google Scholar] [CrossRef]
- Holtz, F.; Dingwell, D.B.; Behrens, H. Effects of F, B2O3 and P2O5 on the solubility of water in haplogranite melts compared to natural silicate melts. Contrib. Mineral. Petrol. 1993, 113, 492–501. [Google Scholar] [CrossRef]
- Giordano, D.; Romano, C.; Dingwell, D.B.; Poe, B.; Behrens, H. The combined effects of water and fluorine on the viscosity of silicic magmas. Geochim. Cosmochim. Acta 2004, 68, 5159–5168. [Google Scholar] [CrossRef]
- Barboni, M.; Bussy, F. Petrogenesis of magmatic albite granites associated to cogenetic A-type granites: Na-rich residual melt extraction from a partially crystallized A-type granite mush. Lithos 2013, 177, 328–351. [Google Scholar] [CrossRef]
- Bons, P.D.; Arnold, J.; Elburg, M.A.; Kalda, J.; Soesoo, A.; van Milligen, B.P. Melt extraction and accumulation from partially molten rocks. Lithos 2004, 78, 25–42. [Google Scholar] [CrossRef]
- Tartèse, R.; Boulvais, P. Differentiation of peraluminous leucogranites “en route” to the surface. Lithos 2010, 114, 353–368. [Google Scholar] [CrossRef]
- Mao, J.W.; Xie, G.Q.; Guo, C.L.; Chen, Y.C. Large-scale tungsten-tin mineralization in the Nanling region, South China: Metallogenic agesand corresponding geodynamic processes. Acta Pet. Sin. 2007, 23, 2329–2338. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Zhou, Y.; Cao, W.; Wang, H.; Zhang, C.; Zhong, L.; Wei, W.; Wang, Z.; Yao, J.; Chen, Z.; et al. Petrogenetic Implications of the Lithium-Rich Tongtianmiao Granite Pluton, South China: Evidence from Geochemistry and Geochronology. Minerals 2024, 14, 637. https://doi.org/10.3390/min14070637
Yu X, Zhou Y, Cao W, Wang H, Zhang C, Zhong L, Wei W, Wang Z, Yao J, Chen Z, et al. Petrogenetic Implications of the Lithium-Rich Tongtianmiao Granite Pluton, South China: Evidence from Geochemistry and Geochronology. Minerals. 2024; 14(7):637. https://doi.org/10.3390/min14070637
Chicago/Turabian StyleYu, Xinhui, Yongzhang Zhou, Wei Cao, Hanyu Wang, Can Zhang, Lifeng Zhong, Wu Wei, Zhiqiang Wang, Jianying Yao, Zhiqiang Chen, and et al. 2024. "Petrogenetic Implications of the Lithium-Rich Tongtianmiao Granite Pluton, South China: Evidence from Geochemistry and Geochronology" Minerals 14, no. 7: 637. https://doi.org/10.3390/min14070637
APA StyleYu, X., Zhou, Y., Cao, W., Wang, H., Zhang, C., Zhong, L., Wei, W., Wang, Z., Yao, J., Chen, Z., & Xu, Q. (2024). Petrogenetic Implications of the Lithium-Rich Tongtianmiao Granite Pluton, South China: Evidence from Geochemistry and Geochronology. Minerals, 14(7), 637. https://doi.org/10.3390/min14070637