Rapid Detection and Antibiotic Susceptibility of Uropathogenic Escherichia coli by Flow Cytometry
<p>Fluorescence distributions for two <span class="html-italic">E</span><span class="html-italic">scherichia coli</span> isolates grown in artificially contaminated urine treated with antibiotics (nitrofurantoin 150 μg/mL, ciprofloxacin 4 μg/mL, ceftriaxone 4 μg/mL, and trimethoprim–sulfamethoxazole 100 μg/mL). The grey area of the histograms indicates the green fluorescence of untreated bacteria, and the white area with blue contour shows the green fluorescence of bacterial population treated with antibiotics. The fraction of bacterial population with increased green fluorescence in urine sample is expressed in percentages (M1). The SI was defined as the ratio of the median fluorescence of cells treated with antibiotics versus the median fluorescence of untreated cells. The upper histograms correspond to an <span class="html-italic">E. coli</span> isolate susceptible to nitrofurantoin (minimum inhibitory concentration (MIC) ≤ 18 μg/mL) and resistant to ceftriaxone (MIC ≥ 4 μg/mL), trimethoprim–sulfamethoxazole (cotrimoxazole) (MIC ≥ 100 μg/mL), and ciprofloxacin (MIC ≥ 4 μg/mL), while the below ones to an <span class="html-italic">E. coli</span> isolate susceptible to nitrofurantoin (MIC ≤ 18 μg/mL) and trimethoprim–sulfamethoxazole (MIC ≤ 25 μg/mL) and resistant to ceftriaxone (MIC ≥ 4 μg/mL) and ciprofloxacin (MIC ≥ 4 μg/mL). All these results were in agreement with the standard cultivation method.</p> "> Figure 2
<p>Fluorescence distribution for <span class="html-italic">E. coli</span> 127, <span class="html-italic">E. coli</span> 428, and <span class="html-italic">E. coli</span> 547 isolates. These strains were classified as susceptible to ceftriaxone, ciprofloxacin, and trimethoprim–sulfamethoxazole, respectively, and resistant by standard cultivation method. These results were considered as false-negative.</p> "> Figure 3
<p>Fluorescence distribution for <span class="html-italic">E. coli</span> 2432 and <span class="html-italic">E. coli</span> 491 isolates. These strains were classified as resistant to trimethoprim–sulfamethoxazole and, respectively, to ceftriaxone by flow cytometry (FC) and susceptible by cultivation method. These results were considered as false-positive.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Antibiotics and Standard Methods for Antibiotic Susceptibility Testing
2.3. FC Based Antibiotic Susceptibility (FC AST) Testing Protocol
2.4. FC AST Data Acquisition and Analysis
2.5. Data Analysis
2.6. Analysis of Clinical Urine Samples Using the FC AST Protocol
3. Results
3.1. Antibiotic Susceptibility Profiles of Uropathogenic E. Coli Isolates Cultivated in Sterile Urine Established by Using the Reference Methods versus the FC AST Protocol
3.2. Evaluation of Clinical Urine Samples by Using the Optimized FC AST in Comparison with Standard Microbiological Techniques
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Davenport, M.; Mach, K.E.; Shortliffe, L.M.D.; Banaei, N.; Wang, T.-H.; Liao, J. New and developing diagnostic technologies for urinary tract infections. Nat. Rev. Urol. 2017, 14, 296–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faria-Ramos, I.; Espinar, M.; Rocha, R.; Santos-Antunes, J.; Rodrigues, A.G.; Canton, R.; Pina-Vaz, C. A novel flow cytometric assay for rapid detection of extended-spectrum beta-lactamases. Clin. Microbiol. Infect. 2013, 19, E8–E15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, A.P.; Faria-Ramos, I.; Ricardo, E.; Miranda, I.M.; Espinar, M.J.; Costa-De-Oliveira, S.; Canton, R.; Rodrigues, A.G.; Pina-Vaz, C. Rapid Flow Cytometry Test for Identification of Different Carbapenemases in Enterobacteriaceae. Antimicrob. Agents Chemother. 2016, 60, 3824–3826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa-De-Oliveira, S.; Teixeira-Santos, R.; Silva, A.P.; Pinho, E.; Mergulhão, P.; Silva-Dias, A.; Marques, N.; Martins-Oliveira, I.; Rodrigues, A.G.; Paiva, J.A.; et al. Potential Impact of Flow Cytometry Antimicrobial Susceptibility Testing on the Clinical Management of Gram-Negative Bacteremia Using the FASTinov® Kit. Front. Microbiol. 2017, 8, 2455. [Google Scholar] [CrossRef] [PubMed]
- Van der Zwet, W.C.; Hessels, J.; Canbolat, F.; Deckers, M.M. Evaluation of the Sysmex UF-1000i® urine flow cytometer in the diagnostic work-up of suspected urinary tract infection in a Dutch general hospital. Clin. Chem. Lab. Med. 2010, 48, 1765–1771. [Google Scholar] [CrossRef] [PubMed]
- Broeren, M.A.C.; Bahçeci, S.; Vader, H.L.; Arents, N.L.A. Screening for Urinary Tract Infection with the Sysmex UF-1000i Urine Flow Cytometer. J. Clin. Microbiol. 2011, 49, 1025–1029. [Google Scholar] [CrossRef] [Green Version]
- Geerts, N.; Jansz, A.; Boonen, K.; Wijn, R.; Koldewijn, E.L.; Boer, A.-K.; Scharnhorst, V. Urine flow cytometry can rule out urinary tract infection, but cannot identify bacterial morphologies correctly. Clin. Chim. Acta 2015, 448, 86–90. [Google Scholar] [CrossRef]
- Monsen, T.J.; Rydén, P. Flow Cytometry Analysis Using Sysmex UF-1000i Classifies Uropathogens Based on Bacterial, Leukocyte, and Erythrocyte Counts in Urine Specimens among Patients with Urinary Tract Infections. J. Clin. Microbiol. 2014, 53, 539–545. [Google Scholar] [CrossRef] [Green Version]
- Zboromyrska, Y.; Rubio, E.; Alejo, I.; Vergara, A.; Mons, A.; Campo, I.; Bosch, J.; Marco, F.; Vila, J. Development of a new protocol for rapid bacterial identification and susceptibility testing directly from urine samples. Clin. Microbiol. Infect. 2016, 22, 561.e1–561.e6. [Google Scholar] [CrossRef] [Green Version]
- Monsen, T.J.; Ryden, P. A new concept and a comprehensive evaluation of SYSMEX UF-1000i flow cytometer to identify culture-negative urine specimens in patients with UTI. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 1691–1703. [Google Scholar] [CrossRef] [Green Version]
- Kamerzan, C.; Ciubucă, B.; Dincă, G.; Bleotu, C.; Drumea, V.; Chifiriuc, M.; Popa, M.; Pîrcălăbioru, G.G.; Marutescu, L.; Lazar, V. Development and Sequential Analysis of a New Multi-Agent, Anti-Acne Formulation Based on Plant-Derived Antimicrobial and Anti-Inflammatory Compounds. Int. J. Mol. Sci. 2017, 18, 175. [Google Scholar] [CrossRef] [Green Version]
- Marutescu, L.; Calu, L.; Chifiriuc, M.; Bleotu, C.; Daniliuc, C.G.; Fălcescu, D.; Kamerzan, C.; Badea, M.; Olar, R. Synthesis, Physico-chemical Characterization, Crystal Structure and Influence on Microbial and Tumor Cells of Some Co(II) Complexes with 5,7-Dimethyl-1,2,4-triazolo[1,5-a]pyrimidine. Molecules 2017, 22, 1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scăețeanu, G.V.; Chifiriuc, M.; Bleotu, C.; Kamerzan, C.; Marutescu, L.; Daniliuc, C.G.; Maxim, C.; Calu, L.; Olar, R.; Badea, M. Synthesis, Structural Characterization, Antimicrobial Activity, and In Vitro Biocompatibility of New Unsaturated Carboxylate Complexes with 2,2′-Bipyridine. Molecules 2018, 23, 157. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; CLSI Supplement Document M100; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- Nuding, S.; Zabel, L.T. Detection, Identification, and Susceptibility Testing of Bacteria by Flow Cytometry. J. Bacteriol. Parasitol. 2013, S5, 005. [Google Scholar] [CrossRef] [Green Version]
- Garcia, L.S.; Isenberg, H.D. Clinical Microbiology Procedures Handbook; ASM Press: Washington, DC, USA, 2010. [Google Scholar]
- Kass, E.H. Bacteriuria and the Diagnosis of Infections of the Urinary Tract. AMA. Arch. Intern. Med. 1957, 100, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Stamm, W.E.; Counts, G.W.; Running, K.R.; Fihn, S.; Turck, M.; Holmes, K.K. Diagnosis of Coliform Infection in Acutely Dysuric Women. N. Engl. J. Med. 1982, 307, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.L.; Gaido, L. Laboratory Diagnosis of Urinary Tract Infections in Adult Patients. Clin. Infect. Dis. 2004, 38, 1150–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velican, A.M.; Kamerzan, C.; Maruțescu, L.; Lambert, C.; Chifiriuc, M.C. The development of an analysis protocol based on flow cytometry for rapid detection of uropathogenic E. coli in artificially contaminated urine samples. Rom. Biotechnol. Lett. 2019, 24, 563–570. [Google Scholar] [CrossRef]
- Premanandh, J.; Samara, B.S.; Mazen, A.N. Race against Antimicrobial Resistance Requires Coordinated Action–An Overview. Front. Microbiol. 2016, 6, 1536. [Google Scholar] [CrossRef]
- Lee, C.-R.; Cho, I.H.; Jeong, B.C.; Lee, S.H. Strategies to Minimize Antibiotic Resistance. Int. J. Environ. Res. Public Health 2013, 10, 4274–4305. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.jpiamr.eu/now-open-call-on-amr-diagnostics-and-surveillance/ (accessed on 13 August 2020).
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Genet. 2015, 13, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Schmiemann, G.; Kniehl, E.; Gebhardt, K.; Matejczyk, M.M.; Hummers-Pradier, E. The Diagnosis of Urinary Tract Infection. Dtsch. Aerzteblatt Online 2010, 107, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.; Vega Castaño, S.; Sánchez-Juanes, F.; González, M.; Herrero, A.; Muñiz, M.C.; González-Buitrago, J.M.; Muñoz, J.L. Identifying bacteria using a matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometer. Comparison with routine methods used in clinical microbiology laboratories. Enferm. Infecc. Microbiol. Clin. 2010, 28, 492–497. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Zhang, L.; Zhang, W.; Liao, K.; Zhang, S.; Zhang, Z.; Ma, X.; Chen, J.; Zhang, X.; Qu, P.; et al. Direct Detection and Identification of Bacterial Pathogens from Urine with Optimized Specimen Processing and Enhanced Testing Algorithm. J. Clin. Microbiol. 2017, 55, 1488–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pulido, M.R.; García-Quintanilla, M.; Martín-Peña, R.; Cisneros, J.M.; McConnell, M.J. Progress on the development of rapid methods for antimicrobial susceptibility testing. J. Antimicrob. Chemother. 2013, 68, 2710–2717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mach, K.E.; Mohan, R.; Baron, E.J.; Shih, M.-C.; Gau, V.; Wong, P.K.; Liao, J. A Biosensor Platform for Rapid Antimicrobial Susceptibility Testing Directly From Clinical Samples. J. Urol. 2011, 185, 148–153. [Google Scholar] [CrossRef] [Green Version]
- Mezger, A.; Gullberg, E.; Göransson, J.; Zorzet, A.; Herthnek, D.; Tano, E.; Nilsson, M.; Andersson, D.I. A General Method for Rapid Determination of Antibiotic Susceptibility and Species in Bacterial Infections. J. Clin. Microbiol. 2014, 53, 425–432. [Google Scholar] [CrossRef] [Green Version]
- European Public Health Alliance. In the Red Zone–Antimicrobial Resistance: Lessons from Romania Brussels; European Public Health Alliance: Brussels, Belgium, March 2017. [Google Scholar]
- Ciontea, A.S.; Cristea, D.; Andrei, M.M.; Popa, A.; Usein, C.R. In vitro antimicrobial resistance of urinary Escherichia coli isolates from outpatients collected in a laboratory during two years, 2015–2017. Roum. Arch. Microbiol. Immunol. 2018, 77, 28–32. [Google Scholar]
- Gouvras, G. The European Centre for Disease Prevention and Control. Eurosurveillance 2004, 9, 2. [Google Scholar] [CrossRef]
- Mitache, M.M.; Curutiu, C.; Rusu, E.; Bahna, R.; Ditu, M.; Moldovan, H.; Hancu, V.; Chifiriuc, M.C. Urinary Tract Infections in Patients with Type 1 and Type 2 Diabetes: Etiology, Resistance to Antibacterial Chemicals and Virulence Features. Rev. Chim. 2017, 68, 566–569. [Google Scholar] [CrossRef]
- Trușcă, B.-S.; Gheorghe, I.; Marutescu, L.; Curutiu, C.; Marinescu, F.; Ghiță, C.M.; Borcan, E.; Țuică, L.; Minciuna, V.; Gherghin, H.-E.; et al. Beta-lactam and quinolone resistance markers in uropathogenic strains isolated from renal transplant recipients. Rev. Romana Med. Lab. 2017, 25, 365–373. [Google Scholar] [CrossRef] [Green Version]
- Usein, C.-R.; Tatu-Chiţoiu, D.; Nica, M.; Ciontea, S.A.; Palade, A.-M.; Condei, M.; Damian, M. Characteristics of Romanian fluoroquinolone-resistant human clinical Escherichia coli isolates. Roum. Arch. Microbiol. Immunol. 2009, 67, 23–29. [Google Scholar]
- Gauthier, C.; St-Pierre, Y.; Villemur, R. Rapid antimicrobial susceptibility testing of urinary tract isolates and samples by flow cytometry. J. Med. Microbiol. 2002, 51, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Lebaron, P.; Joux, F. Review Use of fluorescent probes to assess physiological functions of bacteria at single-cell level. Microbes Infect. 2000, 2, 1523–1535. [Google Scholar]
- Léonard, L.; Chibane, L.B.; Bouhedda, B.O.; Degraeve, P.; Oulahal, N. Recent Advances on Multi-Parameter Flow Cytometry to Characterize Antimicrobial Treatments. Front. Microbiol. 2016, 7, 1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saint-Ruf, C.; Crussard, S.; Franceschi, C.; Orenga, S.; Ouattara, J.; Ramjeet, M.; Surre, J.; Matic, I. Antibiotic Susceptibility Testing of the Gram-Negative Bacteria Based on Flow Cytometry. Front. Microbiol. 2016, 7, 1121. [Google Scholar] [CrossRef] [Green Version]
- Alanazi, M.Q. An evaluation of community-acquired urinary tract infection and appropriateness of treatment in an emergency department in Saudi Arabia. Ther. Clin. Risk Manag. 2018, 14, 2363–2373. [Google Scholar] [CrossRef] [Green Version]
- Bischoff, S.; Walter, T.; Gerigk, M.; Boutros, M.; Vogelmann, R. Empiric antibiotic therapy in urinary tract infection in patients with risk factors for antibiotic resistance in a German emergency department. BMC Infect. Dis. 2018, 18, 56. [Google Scholar] [CrossRef]
- CDC. Antibiotic Use in the United States, 2018 Update: Progress and Opportunities; Department of Health and Human Services, CDC: Atlanta, GA, USA, 2019.
- Andersson, D.I.; Hughes, D.; Kubicek-Sutherland, J.; Kubicek-Sutherland, J.Z. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist. Updat. 2016, 26, 43–57. [Google Scholar] [CrossRef]
- Damper, P.D.; Epstein, W. Role of the membrane potential in bacterial resistance to aminoglycoside antibiotics. Antimicrob. Agents Chemother. 1981, 20, 803–808. [Google Scholar] [CrossRef] [Green Version]
- Halder, S.; Yadav, K.K.; Sarkar, R.; Mukherjee, S.; Saha, P.; Haldar, S.; Karmakar, S.; Sen, T. Alteration of Zeta potential and membrane permeability in bacteria: A study with cationic agents. SpringerPlus 2015, 4, 672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, F.; Fernandes, M.; Lopes, R.; Muñoz, M.; Sabino, C.P.; Cunha, M.; Silva, K.C.; Cayô, R.; Martins, W.M.; Moreno, A.M.; et al. Detection of Colistin-Resistant MCR-1-Positive Escherichia coli by Use of Assays Based on Inhibition by EDTA and Zeta Potential. J. Clin. Microbiol. 2017, 55, 3454–3465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nebe-Von-Caron, G.; Stephens, P.J.; Hewitt, C.J.; Powell, J.R.; Badley, R.A. Analysis of bacterial function by multi-colour fluorescence flow cytometry and single cell sorting. J. Microbiol. Methods 2000, 42, 97–114. [Google Scholar] [CrossRef]
Strains | Nitrofurantoin | Trimethoprim-SulfamethoxaZole | Ceftriaxone | Ciprofloxacin | ||||
---|---|---|---|---|---|---|---|---|
FC AST | Standard AST | FC AST | Standard AST | FC AST | Standard AST | FC AST | Standard AST | |
E. coli 428 | S | S | S | S | S | S | S | R |
E. coli127 | S | S | S | S | S | R | R | R |
E. coli 956 | S | S | R | R | R | R | R | R |
E. coli 4493 | S | S | S | S | R | R | R | R |
E. coli 451 | S | S | S | S | R | R | R | R |
E. coli 424 | S | S | S | S | R | R | R | R |
E. coli 547 | S | S | S | R | S | S | S | S |
E. coli 491 | S | S | R | R | R | S | S | S |
E. coli 3894 | S | S | S | S | S | S | S | S |
E. coli 3830 | S | S | R | R | R | R | R | R |
E. coli 213 | S | S | R | R | S | S | R | R |
E. coli 3812 | S | S | R | R | S | S | R | R |
E. coli 220 | S | S | S | S | S | S | R | R |
E. coli 253 | S | S | S | S | S | S | R | R |
E. coli 214 | S | S | S | S | S | S | S | S |
E. coli 8426 | S | S | S | S | S | S | S | S |
E. coli 130 | S | S | S | S | S | S | S | S |
E. coli 429 | S | S | S | S | S | S | S | S |
E. coli 3865 | S | S | S | S | R | R | R | R |
E. coli 27 | S | S | S | S | R | R | R | R |
E. coli 102 | S | S | R | R | R | R | R | R |
E. coli 2448 | S | S | S | S | R | R | S | S |
E. coli 3906 | S | S | S | S | S | S | S | S |
E. coli 2498 | S | S | S | S | R | R | R | R |
E. coli 2416 | S | S | S | S | S | S | S | S |
E. coli 218 | S | S | S | S | R | R | R | R |
E. coli 2432 | S | S | R | S | S | S | S | S |
E. coli 439 | S | S | S | S | S | S | S | S |
E. coli 2415 | S | S | S | S | S | S | S | S |
Sensitivity (%) a/(a+c) | 100 | 85.7 | 91.6 | 93.7 | ||||
Specificity (%) d/(b+d) | 100 | 95.6 | 94.1 | 100 | ||||
No. of major discrepancy/no. of susceptible isolates (%) | 0 | 1/22 (4.5) | 1/17 (5.8) | 0 | ||||
No. of very major discrepancy/no. of resistant isolates (%) | 0 | 1/7 (14.2) | 1/12 (8.3) | 1/16 (6.25) |
Urine Samples | No of Urine Samples Tested | Ceftriaxone | Ciprofloxacin | ||||||
---|---|---|---|---|---|---|---|---|---|
No of Urine Samples Tested Resistant | No of Urine Samples Tested Susceptible | No of Urine Samples Tested Resistant | No of Urine Samples Tested Susceptible | ||||||
FC AST | Standard AST | FC AST | Standard AST | FC AST | Standard AST | FC AST | Standard AST | ||
E. coli | 16 | 2 | 2 | 14 | 14 | 7 | 6 | 9 | 10 |
K. pneumoniae | 9 | 2 | 2 | 7 | 7 | 4 | 3 | 5 | 6 |
P. mirabilis | 4 | 3 | 3 | 1 | 1 | 3 | 3 | 1 | 1 |
P. aeruginoasa | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
Sensitivity (%) | 100 | 92.3 | |||||||
Specificity (%) | 100 | 85.7 | |||||||
No. of major discrepancy/no. of susceptible isolates (%) | 0 | 14.2 | |||||||
No. of very major discrepancy/no. of resistant isolates (%) | 0 | 7.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velican, A.M.; Măruţescu, L.; Kamerzan, C.; Cristea, V.C.; Banu, O.; Borcan, E.; Chifiriuc, M.-C. Rapid Detection and Antibiotic Susceptibility of Uropathogenic Escherichia coli by Flow Cytometry. Microorganisms 2020, 8, 1233. https://doi.org/10.3390/microorganisms8081233
Velican AM, Măruţescu L, Kamerzan C, Cristea VC, Banu O, Borcan E, Chifiriuc M-C. Rapid Detection and Antibiotic Susceptibility of Uropathogenic Escherichia coli by Flow Cytometry. Microorganisms. 2020; 8(8):1233. https://doi.org/10.3390/microorganisms8081233
Chicago/Turabian StyleVelican, Alexandra Mihaela, Luminiţa Măruţescu, Crina Kamerzan, Violeta Corina Cristea, Otilia Banu, Elvira Borcan, and Mariana-Carmen Chifiriuc. 2020. "Rapid Detection and Antibiotic Susceptibility of Uropathogenic Escherichia coli by Flow Cytometry" Microorganisms 8, no. 8: 1233. https://doi.org/10.3390/microorganisms8081233
APA StyleVelican, A. M., Măruţescu, L., Kamerzan, C., Cristea, V. C., Banu, O., Borcan, E., & Chifiriuc, M. -C. (2020). Rapid Detection and Antibiotic Susceptibility of Uropathogenic Escherichia coli by Flow Cytometry. Microorganisms, 8(8), 1233. https://doi.org/10.3390/microorganisms8081233