[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Urinary tract infections: epidemiology, mechanisms of infection and treatment options

Key Points

  • Urinary tract infections (UTIs) are some of the most common bacterial infections and are caused by both Gram-negative and Gram-positive species. UTIs are categorized into uncomplicated and complicated, and are a severe public health problem; this situation is being exacerbated by the rise in multidrug-resistant strains.

  • Uropathogens carry multiple virulence factors involved in the pathophysiology of UTIs. These virulence factors are involved in invasion and colonization, as well as in mediating the subversion of host defences.

  • Knowledge about the mechanism of action of these virulence factors is being used to develop new therapeutics against UTIs.

  • Therapies that are currently in the initial stages of development include vaccines targeting bacterial factors that are essential for initial attachment and disease progression (such as adhesins, toxins, proteases and siderophores), and small-molecule inhibitors that prevent adhesin–receptor interactions.

Abstract

Urinary tract infections (UTIs) are a severe public health problem and are caused by a range of pathogens, but most commonly by Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Enterococcus faecalis and Staphylococcus saprophyticus. High recurrence rates and increasing antimicrobial resistance among uropathogens threaten to greatly increase the economic burden of these infections. In this Review, we discuss how basic science studies are elucidating the molecular details of the crosstalk that occurs at the host–pathogen interface, as well as the consequences of these interactions for the pathophysiology of UTIs. We also describe current efforts to translate this knowledge into new clinical treatments for UTIs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Epidemiology of urinary tract infections.
Figure 2: Pathogenesis of urinary tract infections.
Figure 3: Virulence factors of uropathogenic Escherichia coli that contribute to urinary tract infections.
Figure 4: Mechanisms of pathogenesis during catheter-associated urinary tract infections.

Similar content being viewed by others

References

  1. Stamm, W. E. & Norrby, S. R. Urinary tract infections: disease panorama and challenges. J. Infect. Dis. 183 (Suppl. 1), S1–S4 (2001).

    PubMed  Google Scholar 

  2. Schappert, S. M. & Rechtsteiner, E. A. Ambulatory medical care utilization estimates for 2007. Vital Health Stat. 13, 1–38 (2011).

    Google Scholar 

  3. Foxman, B. Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect. Dis. Clin. North Am. 28, 1–13 (2014). This paper presents the most recent information about UTIs and their socioeconomic impact.

    PubMed  Google Scholar 

  4. Foxman, B. The epidemiology of urinary tract infection. Nature Rev. Urol. 7, 653–660 (2010).

    Google Scholar 

  5. Hooton, T. M. Uncomplicated urinary tract infection. New Engl. J. Med. 366, 1028–1037 (2012).

    CAS  PubMed  Google Scholar 

  6. Nielubowicz, G. R. & Mobley, H. L. Host–pathogen interactions in urinary tract infection. Nature Rev. Urol. 7, 430–441 (2010). This review compares the strategies used by two important uropathogens, E. coli and P. mirabilis , the host response to each pathogen, and the current treatments and therapies to prevent UTIs.

    CAS  Google Scholar 

  7. Hannan, T. J. et al. Host–pathogen checkpoints and population bottlenecks in persistent and intracellular uropathogenic Escherichia coli bladder infection. FEMS Microbiol. Rev. 36, 616–648 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lichtenberger, P. & Hooton, T. M. Complicated urinary tract infections. Curr. Infect. Dis. Rep. 10, 499–504 (2008).

    PubMed  Google Scholar 

  9. Levison, M. E. & Kaye, D. Treatment of complicated urinary tract infections with an emphasis on drug-resistant Gram-negative uropathogens. Curr. Infect. Dis. Rep. 15, 109–115 (2013).

    PubMed  Google Scholar 

  10. Lo, E. et al. Strategies to prevent catheter-associated urinary tract infections in acute care hospitals: 2014 update. Infect. Control Hosp. Epidemiol. 35, 464–479 (2014).

    PubMed  Google Scholar 

  11. Chenoweth, C. E., Gould, C. V. & Saint, S. Diagnosis, management, and prevention of catheter-associated urinary tract infections. Infect. Dis. Clin. North Am. 28, 105–119 (2014).

    PubMed  Google Scholar 

  12. Kline, K. A., Schwartz, D. J., Lewis, W. G., Hultgren, S. J. & Lewis, A. L. Immune activation and suppression by group B Streptococcus in a murine model of urinary tract infection. Infect. Immun. 79, 3588–3595 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ronald, A. The etiology of urinary tract infection: traditional and emerging pathogens. Am. J. Med. 113 (Suppl. 1A), 14S–19S (2002).

    PubMed  Google Scholar 

  14. Fisher, J. F., Kavanagh, K., Sobel, J. D., Kauffman, C. A. & Newman, C. A. Candida urinary tract infection: pathogenesis. Clin. Infect. Dis. 52 (Suppl. 6), S437–S451 (2011).

    PubMed  Google Scholar 

  15. Chen, Y. H., Ko, W. C. & Hsueh, P. R. Emerging resistance problems and future perspectives in pharmacotherapy for complicated urinary tract infections. Expert Opin. Pharmacother. 14, 587–596 (2013). This paper highlights the emerging resistance among bacterial pathogens, the problems we face in combating these resistant bacteria and potential effective agents for the treatment of UTIs caused by multidrug-resistant pathogens.

    PubMed  Google Scholar 

  16. Jacobsen, S. M., Stickler, D. J., Mobley, H. L. & Shirtliff, M. E. Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin. Microbiol. Rev. 21, 26–59 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kostakioti, M., Hultgren, S. J. & Hadjifrangiskou, M. Molecular blueprint of uropathogenic Escherichia coli virulence provides clues toward the development of anti-virulence therapeutics. Virulence 3, 592–594 (2012).

    PubMed  PubMed Central  Google Scholar 

  18. Subashchandranose, S. et al. Host-specific induction of Escherichia coli fitness genes during human urinary tract infection. Proc. Natl Acad. Sci. USA 111, 18327–18332 (2014).

    Google Scholar 

  19. Khandelwal, P., Abraham, S. N. & Apodaca, G. Cell biology and physiology of the uroepithelium. Am. J. Physiol. Renal Physiol. 297, F1477–F1501 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee, G. Uroplakins in the lower urinary tract. Int. Neurourol. J. 15, 4–12 (2011).

    PubMed  PubMed Central  Google Scholar 

  21. Eto, D. S., Jones, T. A., Sundsbak, J. L. & Mulvey, M. A. Integrin-mediated host cell invasion by type 1-piliated uropathogenic Escherichia coli. PLoS Pathog. 3, e100 (2007).

    PubMed  PubMed Central  Google Scholar 

  22. Niveditha, S., Pramodhini, S., Umadevi, S., Kumar, S. & Stephen, S. The isolation and the biofilm formation of uropathogens in the patients with catheter associated urinary tract infections (UTIs). J. Clin. Diagn. Res. 6, 1478–1482 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Jacobsen, S. M. & Shirtliff, M. E. Proteus mirabilis biofilms and catheter-associated urinary tract infections. Virulence 2, 460–465 (2011). This paper briefly outlines the steps of P. mirabilis crystalline-biofilm formation during CAUTIs.

    PubMed  Google Scholar 

  24. Kline, K. A., Dodson, K. W., Caparon, M. G. & Hultgren, S. J. A tale of two pili: assembly and function of pili in bacteria. Trends Microbiol. 18, 224–232 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wurpel, D. J., Beatson, S. A., Totsika, M., Petty, N. K. & Schembri, M. A. Chaperone–usher fimbriae of Escherichia coli. PLoS ONE 8, e52835 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Waksman, G. & Hultgren, S. J. Structural biology of the chaperone–usher pathway of pilus biogenesis. Nature Rev. Microbiol. 7, 765–774 (2009). This review presents the most current, in-depth understanding of how pili are assembled through the chaperone–usher pathway.

    CAS  Google Scholar 

  27. Vallet, I., Olson, J. W., Lory, S., Lazdunski, A. & Filloux, A. The chaperone/usher pathways of Pseudomonas aeruginosa: identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc. Natl Acad. Sci. USA 98, 6911–6916 (2001).

    CAS  PubMed  Google Scholar 

  28. Chorell, E. et al. Mapping pilicide anti-virulence effect in Escherichia coli, a comprehensive structure-activity study. Bioorg. Med. Chem. 20, 3128–3142 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Thanassi, D. G., Saulino, E. T. & Hultgren, S. J. The chaperone/usher pathway: a major terminal branch of the general secretory pathway. Curr. Opin. Microbiol. 1, 223–231 (1998).

    CAS  PubMed  Google Scholar 

  30. Piatek, R. et al. Pilicides inhibit the FGL chaperone/usher assisted biogenesis of the Dr fimbrial polyadhesin from uropathogenic Escherichia coli. BMC Microbiol. 13, 131 (2013). This paper provides a brief overview of two similar CUP pilus assembly pathways and shows that antivirulence compounds (pilicides) which were originally designed to specifically target one pathway have broad-spectrum activity against both CUP pilus pathways in E. coli.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dang, H. T. et al. Syntheses and biological evaluation of 2-amino-3-acyl-tetrahydrobenzothiophene derivatives; antibacterial agents with antivirulence activity. Org. Biomol. Chem. 12, 1942–1956 (2014).

    PubMed  PubMed Central  Google Scholar 

  32. Geibel, S., Procko, E., Hultgren, S. J., Baker, D. & Waksman, G. Structural and energetic basis of folded-protein transport by the FimD usher. Nature 496, 243–246 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wright, K. J. & Hultgren, S. J. Sticky fibers and uropathogenesis: bacterial adhesins in the urinary tract. Future Microbiol. 1, 75–87 (2006).

    CAS  PubMed  Google Scholar 

  34. Hadjifrangiskou, M. et al. Transposon mutagenesis identifies uropathogenic Escherichia coli biofilm factors. J. Bacteriol. 194, 6195–6205 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Guiton, P. S. et al. Combinatorial small-molecule therapy prevents uropathogenic Escherichia coli catheter-associated urinary tract infections in mice. Antimicrob. Agents Chemother. 56, 4738–4745 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Martinez, J. J. & Hultgren, S. J. Requirement of Rho-family GTPases in the invasion of type 1-piliated uropathogenic Escherichia coli. Cell. Microbiol. 4, 19–28 (2002).

    CAS  PubMed  Google Scholar 

  37. Song, J. et al. TLR4-mediated expulsion of bacteria from infected bladder epithelial cells. Proc. Natl Acad. Sci. USA 106, 14966–14971 (2009).

    CAS  PubMed  Google Scholar 

  38. Anderson, G. G. et al. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301, 105–107 (2003). This is the first paper to describe the intracellular cycle of a uropathogen and its importance for persistance.

    CAS  PubMed  Google Scholar 

  39. Hannan, T. J., Mysorekar, I. U., Hung, C. S., Isaacson-Schmid, M. L. & Hultgren, S. J. Early severe inflammatory responses to uropathogenic E. coli predispose to chronic and recurrent urinary tract infection. PLoS Pathog. 6, e1001042 (2010).

    PubMed  PubMed Central  Google Scholar 

  40. Kostakioti, M., Hadjifrangiskou, M. & Hultgren, S. J. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb. Perspect. Med. 3, a010306 (2013). This review details the importance of biofilm formation for the survival and persistance of different pathogens and the threat that represents in clinical settings. In addition, it discusses novel alternative strategies for the prevention of biofilm formation.

    PubMed  PubMed Central  Google Scholar 

  41. Rosen, D. A., Hooton, T. M., Stamm, W. E., Humphrey, P. A. & Hultgren, S. J. Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med. 4, e329 (2007).

    PubMed  PubMed Central  Google Scholar 

  42. Robino, L. et al. Intracellular bacteria in the pathogenesis of Escherichia coli urinary tract infection in children. Clin. Infect. Dis. 59, e158–e164 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Schwartz, D. J., Chen, S. L., Hultgren, S. J. & Seed, P. C. Population dynamics and niche distribution of uropathogenic Escherichia coli during acute and chronic urinary tract infection. Infect. Immun. 79, 4250–4259 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Blango, M. G., Ott, E. M., Erman, A., Veranic, P. & Mulvey, M. A. Forced resurgence and targeting of intracellular uropathogenic Escherichia coli reservoirs. PLoS ONE 9, e93327 (2014).

    PubMed  PubMed Central  Google Scholar 

  45. Rice, J. C. et al. Pyelonephritic Escherichia coli expressing P fimbriae decrease immune response of the mouse kidney. J. Am. Soc. Nephrol. 16, 3583–3591 (2005).

    CAS  PubMed  Google Scholar 

  46. Ashkar, A. A., Mossman, K. L., Coombes, B. K., Gyles, C. L. & Mackenzie, R. FimH adhesin of type 1 fimbriae is a potent inducer of innate antimicrobial responses which requires TLR4 and type 1 interferon signalling. PLoS Pathog. 4, e1000233 (2008).

    PubMed  PubMed Central  Google Scholar 

  47. Gerlach, G. F., Clegg, S. & Allen, B. L. Identification and characterization of the genes encoding the type-3 and type-1 fimbrial adhesins of Klebsiella pneumoniae. J. Bacteriol. 171, 1262–1270 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Stahlhut, S. G. et al. Comparative structure–function analysis of mannose-specific FimH adhesins from Klebsiella pneumoniae and Escherichia coli. J. Bacteriol. 191, 6592–6601 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rosen, D. A. et al. Molecular variations in Klebsiella pneumoniae and Escherichia coli FimH affect function and pathogenesis in the urinary tract. Infect. Immun. 76, 3346–3356 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rosen, D. A. et al. Utilization of an intracellular bacterial community pathway in Klebsiella pneumoniae urinary tract infection and the effects of FimK on type 1 pilus expression. Infect. Immun. 76, 3337–3345 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Murphy, C. N., Mortensen, M. S., Krogfelt, K. A. & Clegg, S. Role of Klebsiella pneumoniae type 1 and type 3 fimbriae in colonizing silicone tubes implanted into the bladders of mice as a model of catheter-associated urinary tract infections. Infect. Immun. 81, 3009–3017 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Struve, C., Bojer, M. & Krogfelt, K. A. Characterization of Klebsiella pneumoniae type 1 fimbriae by detection of phase variation during colonization and infection and impact on virulence. Infect. Immun. 76, 4055–4065 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Armbruster, C. E. & Mobley, H. L. Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nature Rev. Microbiol. 10, 743–754 (2012).

    CAS  Google Scholar 

  54. Arias, C. A. & Murray, B. E. The rise of the Enterococcus: beyond vancomycin resistance. Nature Rev. Microbiol. 10, 266–278 (2012). This is a comprehensive review of the epidemiology, pathogenesis and mechanism of antimicrobial resistance of Enterococcus spp. This review also outlines how Enterococcus spp. are becoming a challenging nosocomial problem.

    CAS  Google Scholar 

  55. Guiton, P. S., Hung, C. S., Hancock, L. E., Caparon, M. G. & Hultgren, S. J. Enterococcal biofilm formation and virulence in an optimized murine model of foreign body-associated urinary tract infections. Infect. Immun. 78, 4166–4175 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Nielsen, H. V. et al. The metal ion-dependent adhesion site motif of the Enterococcus faecalis EbpA pilin mediates pilus function in catheter-associated urinary tract infection. mBio 3, e00177-12 (2012).

    PubMed  PubMed Central  Google Scholar 

  57. Goble, N. M., Clarke, T. & Hammonds, J. C. Histological changes in the urinary bladder secondary to urethral catheterisation. Br. J. Urol. 63, 354–357 (1989).

    CAS  PubMed  Google Scholar 

  58. Glahn, B. E. Influence of drainage conditions on mucosal bladder damage by indwelling catheters. I. Pressure study. Scand. J. Urol. Nephrol. 22, 87–92 (1988).

    CAS  PubMed  Google Scholar 

  59. Guiton, P. S., Hannan, T. J., Ford, B., Caparon, M. G. & Hultgren, S. J. Enterococcus faecalis overcomes foreign body-mediated inflammation to establish urinary tract infections. Infect. Immun. 81, 329–339 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Flores-Mireles, A. L., Pinkner, J. S., Caparon, M. G. & Hultgren, S. J. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated bladder infection in mice. Sci. Transl. Med. 6, 254ra127 (2014). This is the first study to dissect the mechanism of E. faecalis infection during a CAUTI; this work led to the development of a vaccine that prevents infection in a mouse model of a CAUTI.

    PubMed  PubMed Central  Google Scholar 

  61. Nielsen, H. V. et al. Pilin and sortase residues critical for endocarditis- and biofilm-associated pilus biogenesis in Enterococcus faecalis. J. Bacteriol. 195, 4484–4495 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Dhakal, B. K. & Mulvey, M. A. The UPEC pore-forming toxin α-hemolysin triggers proteolysis of host proteins to disrupt cell adhesion, inflammatory, and survival pathways. Cell Host Microbe 11, 58–69 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Nagamatsu, K. et al. Dysregulation of Escherichia coli α-hemolysin expression alters the course of acute and persistent urinary tract infection. Proc. Natl Acad. Sci. USA 112, E871–E880 (2015).

    CAS  PubMed  Google Scholar 

  64. Mulvey, M. A. et al. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282, 1494–1497 (1998).

    CAS  PubMed  Google Scholar 

  65. Justice, S. S. & Hunstad, D. A. UPEC hemolysin: more than just for making holes. Cell Host Microbe 11, 4–5 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hannan, T. J. et al. LeuX tRNA-dependent and -independent mechanisms of Escherichia coli pathogenesis in acute cystitis. Mol. Microbiol. 67, 116–128 (2008).

    CAS  PubMed  Google Scholar 

  67. Garcia, T. A., Ventura, C. L., Smith, M. A., Merrell, D. S. & O'Brien, A. D. Cytotoxic necrotizing factor 1 and hemolysin from uropathogenic Escherichia coli elicit different host responses in the murine bladder. Infect. Immun. 81, 99–109 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Landraud, L. et al. E. coli CNF1 toxin: a two-in-one system for host-cell invasion. Int. J. Med. Microbiol. 293, 513–518 (2004).

    CAS  PubMed  Google Scholar 

  69. Piteau, M. et al. Lu/BCAM adhesion glycoprotein is a receptor for Escherichia coli cytotoxic necrotizing factor 1 (CNF1). PLoS Pathog. 10, e1003884 (2014).

    PubMed  PubMed Central  Google Scholar 

  70. Doye, A. et al. CNF1 exploits the ubiquitin-proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion. Cell 111, 553–564 (2002).

    CAS  PubMed  Google Scholar 

  71. Miraglia, A. G. et al. Cytotoxic necrotizing factor 1 prevents apoptosis via the Akt/IκB kinase pathway: role of nuclear factor-κB and Bcl-2. Mol. Biol. Cell 18, 2735–2744 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Cestari, S. E. et al. Molecular detection of HpmA and HlyA hemolysin of uropathogenic Proteus mirabilis. Curr. Microbiol. 67, 703–707 (2013).

    CAS  PubMed  Google Scholar 

  73. Alamuri, P. & Mobley, H. L. A novel autotransporter of uropathogenic Proteus mirabilis is both a cytotoxin and an agglutinin. Mol. Microbiol. 68, 997–1017 (2008).

    CAS  PubMed  Google Scholar 

  74. Mittal, R., Khandwaha, R. K., Gupta, V., Mittal, P. K. & Harjai, K. Phenotypic characters of urinary isolates of Pseudomonas aeruginosa and their association with mouse renal colonization. Indian J. Med. Res. 123, 67–72 (2006).

    PubMed  Google Scholar 

  75. Mittal, R., Sharma, S., Chhibber, S. & Harjai, K. Iron dictates the virulence of Pseudomonas aeruginosa in urinary tract infections. J. Biomed. Sci. 15, 731–741 (2008).

    PubMed  Google Scholar 

  76. Rocha, C. L., Coburn, J., Rucks, E. A. & Olson, J. C. Characterization of Pseudomonas aeruginosa exoenzyme S as a bifunctional enzyme in J774A.1 macrophages. Infect. Immun. 71, 5296–5305 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cathcart, G. R. et al. Novel inhibitors of the Pseudomonas aeruginosa virulence factor LasB: a potential therapeutic approach for the attenuation of virulence mechanisms in pseudomonal infection. Antimicrob. Agents Chemother. 55, 2670–2678 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Meyers, D. J. et al. In vivo and in vitro toxicity of phospholipase C from Pseudomonas aeruginosa. Toxicon 30, 161–169 (1992).

    CAS  PubMed  Google Scholar 

  79. Wargo, M. J. et al. Hemolytic phospholipase C inhibition protects lung function during Pseudomonas aeruginosa infection. Am. J. Respir. Crit. Care Med. 184, 345–354 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Berka, R. M. & Vasil, M. L. Phospholipase C (heat-labile hemolysin) of Pseudomonas aeruginosa: purification and preliminary characterization. J. Bacteriol. 152, 239–245 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Senturk, S., Ulusoy, S., Bosgelmez-Tinaz, G. & Yagci, A. Quorum sensing and virulence of Pseudomonas aeruginosa during urinary tract infections. J. Infect. Dev. Ctries 6, 501–507 (2012).

    CAS  PubMed  Google Scholar 

  82. Mittal, R., Aggarwal, S., Sharma, S., Chhibber, S. & Harjai, K. Urinary tract infections caused by Pseudomonas aeruginosa: a mini review. J. Infect. Publ. Health 2, 101–111 (2009).

    Google Scholar 

  83. Li, X. et al. Visualization of Proteus mirabilis within the matrix of urease-induced bladder stones during experimental urinary tract infection. Infect. Immun. 70, 389–394 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Gatermann, S., John, J. & Marre, R. Staphylococcus saprophyticus urease: characterization and contribution to uropathogenicity in unobstructed urinary tract infection of rats. Infect. Immun. 57, 110–116 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Podschun, R. & Ullmann, U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev. 11, 589–603 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Visca, P. et al. Virulence determinants in Pseudomonas aeruginosa strains from urinary tract infections. Epidemiol. Infect. 108, 323–336 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Griffith, D. P., Musher, D. M. & Itin, C. Urease. The primary cause of infection-induced urinary stones. Invest. Urol. 13, 346–350 (1976).

    CAS  PubMed  Google Scholar 

  88. Coker, C., Poore, C. A., Li, X. & Mobley, H. L. Pathogenesis of Proteus mirabilis urinary tract infection. Microbes Infect. 2, 1497–1505 (2000).

    CAS  PubMed  Google Scholar 

  89. Kosikowska, P. & Berlicki, L. Urease inhibitors as potential drugs for gastric and urinary tract infections: a patent review. Expert Opin. Ther. Pat. 21, 945–957 (2011).

    CAS  PubMed  Google Scholar 

  90. Jones, B. D. & Mobley, H. L. Genetic and biochemical diversity of ureases of Proteus, Providencia, and Morganella species isolated from urinary tract infection. Infect. Immun. 55, 2198–2203 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Stickler, D. J. Clinical complications of urinary catheters caused by crystalline biofilms: something needs to be done. J. Intern. Med. 276, 120–129 (2014).

    CAS  PubMed  Google Scholar 

  92. Caza, M. & Kronstad, J. W. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans. Front. Cell. Infect. Microbiol. 3, 80 (2013).

    PubMed  PubMed Central  Google Scholar 

  93. Garcia, E. C., Brumbaugh, A. R. & Mobley, H. L. Redundancy and specificity of Escherichia coli iron acquisition systems during urinary tract infection. Infect. Immun. 79, 1225–1235 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Watts, R. E. et al. Contribution of siderophore systems to growth and urinary tract colonization of asymptomatic bacteriuria Escherichia coli. Infect. Immun. 80, 333–344 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Valdebenito, M., Crumbliss, A. L., Winkelmann, G. & Hantke, K. Environmental factors influence the production of enterobactin, salmochelin, aerobactin, and yersiniabactin in Escherichia coli strain Nissle 1917. Int. J. Med. Microbiol. 296, 513–520 (2006).

    CAS  PubMed  Google Scholar 

  96. Chaturvedi, K. S., Hung, C. S., Crowley, J. R., Stapleton, A. E. & Henderson, J. P. The siderophore yersiniabactin binds copper to protect pathogens during infection. Nature Chem. Biol. 8, 731–736 (2012).

    CAS  Google Scholar 

  97. Himpsl, S. D. et al. Proteobactin and a yersiniabactin-related siderophore mediate iron acquisition in Proteus mirabilis. Mol. Microbiol. 78, 138–157 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Brumbaugh, A. R., Smith, S. N. & Mobley, H. L. Immunization with the yersiniabactin receptor, FyuA, protects against pyelonephritis in a murine model of urinary tract infection. Infect. Immun. 81, 3309–3316 (2013). This investigation uses data from genomic, proteomic and metabolic screens to identify vaccine targets in E. coli ., all of which are involved in iron acquisition. Vaccination with several iron receptors during experimental UTIs in mice revealed that these factors were an effective target for the development of vaccines.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Paterson, D. L. Resistance in Gram-negative bacteria: Enterobacteriaceae. Am. J. Infect. Control 34, S20–S28 (2006).

    PubMed  Google Scholar 

  100. Garau, J. Other antimicrobials of interest in the era of extended-spectrum β-lactamases: fosfomycin, nitrofurantoin and tigecycline. Clin. Microbiol. Infect. 14, 198–202 (2008).

    CAS  PubMed  Google Scholar 

  101. Pendleton, J. N., Gorman, S. P. & Gilmore, B. F. Clinical relevance of the ESKAPE pathogens. Expert Rev. Anti Infect. Ther. 11, 297–308 (2013).

    CAS  PubMed  Google Scholar 

  102. Gupta, K. & Bhadelia, N. Management of urinary tract infections from multidrug-resistant organisms. Infect. Dis. Clin. North Am. 28, 49–59 (2014).

    PubMed  Google Scholar 

  103. Bradford, P. A. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 14, 933–951 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Courvalin, P. Vancomycin resistance in Gram-positive cocci. Clin. Infect. Dis. 42 (Suppl. 1), S25–S34 (2006).

    CAS  PubMed  Google Scholar 

  105. Zhanel, G. G. et al. Ceftazidime–avibactam: a novel cephalosporin/β-lactamase inhibitor combination. Drugs 73, 159–177 (2013).

    CAS  PubMed  Google Scholar 

  106. Livermore, D. M. & Mushtaq, S. Activity of biapenem (RPX2003) combined with the boronate β-lactamase inhibitor RPX7009 against carbapenem-resistant Enterobacteriaceae. J. Antimicrob. Chemother. 68, 1825–1831 (2013).

    CAS  PubMed  Google Scholar 

  107. Mushtaq, S., Woodford, N., Hope, R., Adkin, R. & Livermore, D. M. Activity of BAL30072 alone or combined with β-lactamase inhibitors or with meropenem against carbapenem-resistant Enterobacteriaceae and non-fermenters. J. Antimicrob. Chemother. 68, 1601–1608 (2013).

    CAS  PubMed  Google Scholar 

  108. Asadi Karam, M. R., Oloomi, M., Mahdavi, M., Habibi, M. & Bouzari, S. Vaccination with recombinant FimH fused with flagellin enhances cellular and humoral immunity against urinary tract infection in mice. Vaccine 31, 1210–1216 (2013).

    CAS  PubMed  Google Scholar 

  109. Langermann, S. et al. Vaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli. J. Infect. Dis. 181, 774–778 (2000).

    CAS  PubMed  Google Scholar 

  110. Langermann, S. et al. Prevention of mucosal Escherichia coli infection by FimH-adhesin-based systemic vaccination. Science 276, 607–611 (1997). This pivotal study shows that blocking the interaction between the bacterial adhesin and the host receptor through vaccination can prevent UTIs in mice.

    CAS  PubMed  Google Scholar 

  111. Roberts, J. A. et al. Antibody responses and protection from pyelonephritis following vaccination with purified Escherichia coli PapDG protein. J. Urol. 171, 1682–1685 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Savar, N. S. et al. In silico and in vivo studies of truncated forms of flagellin (FliC) of enteroaggregative Escherichia coli fused to FimH from uropathogenic Escherichia coli as a vaccine candidate against urinary tract infections. J. Biotechnol. 175, 31–37 (2014).

    CAS  PubMed  Google Scholar 

  113. Li, X. et al. Use of translational fusion of the MrpH fimbrial adhesin-binding domain with the cholera toxin A2 domain, coexpressed with the cholera toxin B subunit, as an intranasal vaccine to prevent experimental urinary tract infection by Proteus mirabilis. Infect. Immun. 72, 7306–7310 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Sivick, K. E. & Mobley, H. L. Waging war against uropathogenic Escherichia coli: winning back the urinary tract. Infect. Immun. 78, 568–585 (2010).

    CAS  PubMed  Google Scholar 

  115. O'Hanley, P., Lalonde, G. & Ji, G. Alpha-hemolysin contributes to the pathogenicity of piliated digalactoside-binding Escherichia coli in the kidney: efficacy of an α-hemolysin vaccine in preventing renal injury in the BALB/c mouse model of pyelonephritis. Infect. Immun. 59, 1153–1161 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Alamuri, P., Eaton, K. A., Himpsl, S. D., Smith, S. N. & Mobley, H. L. Vaccination with proteus toxic agglutinin, a hemolysin-independent cytotoxin in vivo, protects against Proteus mirabilis urinary tract infection. Infect. Immun. 77, 632–641 (2009).

    CAS  PubMed  Google Scholar 

  117. Alteri, C. J., Hagan, E. C., Sivick, K. E., Smith, S. N. & Mobley, H. L. Mucosal immunization with iron receptor antigens protects against urinary tract infection. PLoS Pathog. 5, e1000586 (2009).

    PubMed  PubMed Central  Google Scholar 

  118. Nagaya, H., Satoh, H., Kubo, K. & Maki, Y. Possible mechanism for the inhibition of gastric (H+ + K+)-adenosine triphosphatase by the proton pump inhibitor AG-1749. J. Pharmacol. Exp. Ther. 248, 799–805 (1989).

    CAS  PubMed  Google Scholar 

  119. Sjostrom, J. E., Kuhler, T. & Larsson, H. Basis for the selective antibacterial activity in vitro of proton pump inhibitors against Helicobacter spp. Antimicrob. Agents Chemother. 41, 1797–1801 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Pinkner, J. S. et al. Rationally designed small compounds inhibit pilus biogenesis in uropathogenic bacteria. Proc. Natl Acad. Sci. USA 103, 17897–17902 (2006).

    CAS  PubMed  Google Scholar 

  121. Cusumano, C. K. et al. Treatment and prevention of urinary tract infection with orally active FimH inhibitors. Sci. Transl. Med. 3, 109ra115 (2011). This key work uses compounds designed to prevent the E. coli type 1 pilus adhesin from binding the host receptor and demonstrates that these compounds are effective at preventing UTIs in mice.

    PubMed  PubMed Central  Google Scholar 

  122. Greene, S. E. et al. Pilicide ec240 disrupts virulence circuits in uropathogenic E. coli. mBio 5, e02038 (2014). This is the first paper to describe the role of pilicide in transcriptional and translational regulation in UPEC.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Abgottspon, D. et al. Development of an aggregation assay to screen FimH antagonists. J. Microbiol. Methods 82, 249–255 (2010).

    CAS  PubMed  Google Scholar 

  124. Klein, T. et al. FimH antagonists for the oral treatment of urinary tract infections: from design and synthesis to in vitro and in vivo evaluation. J. Med. Chem. 53, 8627–8641 (2010).

    CAS  PubMed  Google Scholar 

  125. Totsika, M. et al. A FimH inhibitor prevents acute bladder infection and treats chronic cystitis caused by multidrug-resistant uropathogenic Escherichia coli ST131. J. Infect. Dis. 208, 921–928 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Schwartz, D. J. et al. Positively selected FimH residues enhance virulence during urinary tract infection by altering FimH conformation. Proc. Natl Acad. Sci. USA 110, 15530–15537 (2013). This study identifies the role of key FimH residues in protein conformation and virulence.

    CAS  PubMed  Google Scholar 

  127. Sokurenko, E. V., Chesnokova, V., Doyle, R. J. & Hasty, D. L. Diversity of the Escherichia coli type 1 fimbrial lectin. Differential binding to mannosides and uroepithelial cells. J. Biol. Chem. 272, 17880–17886 (1997).

    CAS  PubMed  Google Scholar 

  128. Weissman, S. J. et al. Differential stability and trade-off effects of pathoadaptive mutations in the Escherichia coli FimH adhesin. Infect. Immun. 75, 3548–3555 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Justice, S. S., Hunstad, D. A., Cegelski, L. & Hultgren, S. J. Morphological plasticity as a bacterial survival strategy. Nature Rev. Microbiol. 6, 162–168 (2008).

    CAS  Google Scholar 

  130. Horvath, D. J. Jr et al. Morphological plasticity promotes resistance to phagocyte killing of uropathogenic Escherichia coli. Microbes Infect. 13, 426–437 (2011).

    CAS  PubMed  Google Scholar 

  131. Danese, P. N., Pratt, L. A., Dove, S. L. & Kolter, R. The outer membrane protein, antigen 43, mediates cell-to-cell interactions within Escherichia coli biofilms. Mol. Microbiol. 37, 424–432 (2000).

    CAS  PubMed  Google Scholar 

  132. Lane, M. C., Li, X., Pearson, M. M., Simms, A. N. & Mobley, H. L. Oxygen-limiting conditions enrich for fimbriate cells of uropathogenic Proteus mirabilis and Escherichia coli. J. Bacteriol. 191, 1382–1392 (2009).

    CAS  PubMed  Google Scholar 

  133. Yu, H. et al. Elastase LasB of Pseudomonas aeruginosa promotes biofilm formation partly through rhamnolipid-mediated regulation. Can. J. Microbiol. 60, 227–235 (2014).

    CAS  PubMed  Google Scholar 

  134. Diggle, S. P. et al. The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ. Microbiol. 8, 1095–1104 (2006).

    CAS  PubMed  Google Scholar 

  135. Fazli, M. et al. Regulation of biofilm formation in Pseudomonas and Burkholderia species. Environ. Microbiol. 16, 1961–1981 (2014).

    CAS  PubMed  Google Scholar 

  136. Wagner, V. E., Li, L. L., Isabella, V. M. & Iglewski, B. H. Analysis of the hierarchy of quorum-sensing regulation in Pseudomonas aeruginosa. Anal. Bioanal. Chem. 387, 469–479 (2007).

    CAS  PubMed  Google Scholar 

  137. Kumar, R., Chhibber, S. & Harjai, K. Quorum sensing is necessary for the virulence of Pseudomonas aeruginosa during urinary tract infection. Kidney Int. 76, 286–292 (2009).

    CAS  PubMed  Google Scholar 

  138. Justice, S. S., Hunstad, D. A., Seed, P. C. & Hultgren, S. J. Filamentation by Escherichia coli subverts innate defenses during urinary tract infection. Proc. Natl Acad. Sci. USA 103, 19884–19889 (2006).

    CAS  PubMed  Google Scholar 

  139. Morgenstein, R. M. & Rather, P. N. Role of the Umo proteins and the Rcs phosphorelay in the swarming motility of the wild type and an O-antigen (waaL) mutant of Proteus mirabilis. J. Bacteriol. 194, 669–676 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Walther-Rasmussen, J. & Hoiby, N. Cefotaximases (CTX-M-ases), an expanding family of extended-spectrum β-lactamases. Can. J. Microbiol. 50, 137–165 (2004).

    CAS  PubMed  Google Scholar 

  141. Schwan, W. R. Flagella allow uropathogenic Escherichia coli ascension into murine kidneys. Int. J. Med. Microbiol. 298, 441–447 (2008).

    CAS  PubMed  Google Scholar 

  142. Ulett, G. C. et al. Functional analysis of antigen 43 in uropathogenic Escherichia coli reveals a role in long-term persistence in the urinary tract. Infect. Immun. 75, 3233–3244 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Tarkkanen, A. M. et al. Fimbriation, capsulation, and iron-scavenging systems of Klebsiella strains associated with human urinary tract infection. Infect. Immun. 60, 1187–1192 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Podschun, R., Sievers, D., Fischer, A. & Ullmann, U. Serotypes, hemagglutinins, siderophore synthesis, and serum resistance of Klebsiella isolates causing human urinary tract infections. J. Infect. Dis. 168, 1415–1421 (1993).

    CAS  PubMed  Google Scholar 

  145. Dumanski, A. J., Hedelin, H., Edin-Liljegren, A., Beauchemin, D. & McLean, R. J. Unique ability of the Proteus mirabilis capsule to enhance mineral growth in infectious urinary calculi. Infect. Immun. 62, 2998–3003 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Cole, S. J., Records, A. R., Orr, M. W., Linden, S. B. & Lee, V. T. Catheter-associated urinary tract infection by Pseudomonas aeruginosa is mediated by exopolysaccharide-independent biofilms. Infect. Immun. 82, 2048–2058 (2014).

    PubMed  PubMed Central  Google Scholar 

  147. Gupta, P., Gupta, R. K. & Harjai, K. Multiple virulence factors regulated by quorum sensing may help in establishment and colonisation of urinary tract by Pseudomonas aeruginosa during experimental urinary tract infection. Indian J. Med. Microbiol. 31, 29–33 (2013).

    CAS  PubMed  Google Scholar 

  148. Hell, W., Meyer, H. G. W. & Gatermann, S. G. Cloning of aas, a gene encoding a Staphylococcus saprophyticus surface protein with adhesive and autolytic properties. Mol. Microbiol. 29, 871–881 (1998).

    CAS  PubMed  Google Scholar 

  149. Kline, K. A. et al. Characterization of a novel murine model of Staphylococcus saprophyticus urinary tract infection reveals roles for Ssp and SdrI in virulence. Infect. Immun. 78, 1943–1951 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to researchers whose work could not be included in this Review owing to space limitations. They thank members of S.J.H.'s and M.G.C.'s laboratories, especially K. W. Dodson, for their suggestions and comments. This work was supported by the 1F32DK104516-01 grant to A.L.F.-M. and the R01-DK051406, R01-AI108749-01 and P50-DK0645400 grants from the US National Institute of Allergy and Infectious Diseases (NIAID) and US National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott J. Hultgren.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Resistance profiles for uropathogens (PDF 180 kb)

PowerPoint slides

Glossary

Pyelonephritis

A kidney infection characterized by cystitis symptoms with additional fever, flank pain, costovertebral-angle tenderness, nausea and vomiting.

Cystitis

An infection of the bladder with accompanying symptoms of dysuria (painful urination), pain (particularly suprapubic), urinary frequency, urinary urgency and haematuria (blood in urine).

Globosides

Glycosylceramides containing acetylated amino sugars and simple hexoses. These molecules are found in the kidneys.

Lamellopodium

A cytoskeletal actin projection at the surface of a cell. In some cases, these actin-powered protrusions are a key factor driving cell motility.

Teratogenicity

The capability of a compound to cause fetal malformation.

Musculo-integumentary

Refers to the interaction between the muscular and integumentary systems. The muscular system is composed by the skeletal, smooth and cardiac muscles, whereas the skin, hair, nails and other specialized structures form the integumentary system.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores-Mireles, A., Walker, J., Caparon, M. et al. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 13, 269–284 (2015). https://doi.org/10.1038/nrmicro3432

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3432

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology