[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New and developing diagnostic technologies for urinary tract infections

Key Points

  • UTIs are increasingly caused by multidrug-resistant organisms as a result of the overuse of empirical, broad-spectrum antibiotic therapy

  • Antimicrobial susceptibility, determined by the phenotypic response to antibiotic exposure, is key for clinical decision making for treating the wide variety of uropathogens and identifying resistance markers

  • Existing technologies (such as PCR, fluorescence in situ hybridization, and mass spectrometry) and new technologies (such as droplet microfluidic and biosensor platforms) need to focus on direct urine testing to expedite objective diagnoses

  • Integrated biosensor–microfluidic platforms have the most potential for point-of-care testing, as they facilitate direct urine analysis and can encompass all assay steps in a compact device

  • New technologies are a key step towards improved antimicrobial stewardship

Abstract

Timely and accurate identification and determination of the antimicrobial susceptibility of uropathogens is central to the management of UTIs. Urine dipsticks are fast and amenable to point-of-care testing, but do not have adequate diagnostic accuracy or provide microbiological diagnosis. Urine culture with antimicrobial susceptibility testing takes 2–3 days and requires a clinical laboratory. The common use of empirical antibiotics has contributed to the rise of multidrug-resistant organisms, reducing treatment options and increasing costs. In addition to improved antimicrobial stewardship and the development of new antimicrobials, novel diagnostics are needed for timely microbial identification and determination of antimicrobial susceptibilities. New diagnostic platforms, including nucleic acid tests and mass spectrometry, have been approved for clinical use and have improved the speed and accuracy of pathogen identification from primary cultures. Optimization for direct urine testing would reduce the time to diagnosis, yet these technologies do not provide comprehensive information on antimicrobial susceptibility. Emerging technologies including biosensors, microfluidics, and other integrated platforms could improve UTI diagnosis via direct pathogen detection from urine samples, rapid antimicrobial susceptibility testing, and point-of-care testing. Successful development and implementation of these technologies has the potential to usher in an era of precision medicine to improve patient care and public health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the clinical workflow of existing and future diagnostic technologies for UTI.
Figure 2: Biosensor-based diagnosis of UTI.
Figure 3: Single-cell analysis of antimicrobial susceptibility.

Similar content being viewed by others

References

  1. Foxman, B. The epidemiology of urinary tract infection. Nat. Rev. Urol. 7, 653–660 (2010).

    Article  PubMed  Google Scholar 

  2. Griebling, T. L. Urologic diseases in America project: trends in resource use for urinary tract infections in women. J. Urol. 173, 1281–1287 (2005).

    Article  PubMed  Google Scholar 

  3. Griebling, T. L. Urologic diseases in America project: trends in resource use for urinary tract infections in men. J. Urol. 173, 1288–1294 (2005).

    Article  PubMed  Google Scholar 

  4. Nicolle, L. E. Urinary tract infection. Crit. Care Clin. 29, 699–715 (2013).

    Article  PubMed  Google Scholar 

  5. Wagenlehner, F. M. et al. Diagnosis and management for urosepsis. Int. J. Urol. 20, 963–970 (2013).

    PubMed  Google Scholar 

  6. Wilson, M. L. & Gaido, L. Laboratory diagnosis of urinary tract infections in adult patients. Clin. Infect. Dis. 38, 1150–1158 (2004).

    Article  PubMed  Google Scholar 

  7. Kauffman, C. A. Diagnosis and management of fungal urinary tract infection. Infect. Dis. Clin. North Am. 28, 61–74 (2014).

    Article  PubMed  Google Scholar 

  8. Sobel, J. D., Fisher, J. F., Kauffman, C. A. & Newman, C. A. Candida urinary tract infections — epidemiology. Clin. Infect. Dis. 52 (Suppl. 6), S433–S436 (2011).

    Article  PubMed  Google Scholar 

  9. Wise, G. J. & Schlegel, P. N. Sterile pyuria. N. Engl. J. Med. 372, 1048–1054 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. President's Council of Advisors on Science and Technology. National action plan for combating antibiotic-resistant bacteria. cdc.gov https://www.cdc.gov/drugresistance/pdf/national_action_plan_for_combating_antibotic-resistant_bacteria.pdf (2015).

  11. Aminov, R. I. The role of antibiotics and antibiotic resistance in nature. Environ. Microbiol. 11, 2970–2988 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Holmes, A. H. et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387, 176–187 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Balcazar, J. L. Bacteriophages as vehicles for antibiotic resistance genes in the environment. PLoS Pathog. 10, e1004219 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Colomer-Lluch, M., Jofre, J. & Muniesa, M. Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples. PLoS ONE 6, e17549 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sharfstein, J. M. Antibiotic resistance and the use of antibiotics in animal agriculture. FDA http://www.fda.gov/NewsEvents/Testimony/ucm219015.htm (2010).

    Google Scholar 

  16. Boyd, L. B. et al. Increased fluoroquinolone resistance with time in Escherichia coli from >17,000 patients at a large county hospital as a function of culture site, age, sex, and location. BMC Infect. Dis. 8, 4 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Johnson, L. et al. Emergence of fluoroquinolone resistance in outpatient urinary Escherichia coli isolates. Am. J. Med. 121, 876–884 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Sanchez, G. V. et al. Antibiotic resistance among urinary isolates from female outpatients in the United States in 2003 and 2012. Antimicrob. Agents Chemother. 60, 2680–2683 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bouchillon, S. K., Badal, R. E., Hoban, D. J. & Hawser, S. P. Antimicrobial susceptibility of inpatient urinary tract isolates of gram-negative bacilli in the United States: results from the study for monitoring antimicrobial resistance trends (SMART) program: 2009–2011. Clin. Ther. 35, 872–877 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Cox, H. U. & Luther, D. G. Determination of antimicrobial susceptibility of Pseudomonas aeruginosa by disk diffusion and microdilution methods. Am. J. Vet. Res. 41, 906–909 (1980).

    CAS  PubMed  Google Scholar 

  21. Cai, T. et al. Asymptomatic bacteriuria treatment is associated with a higher prevalence of antibiotic resistant strains in women with urinary tract infections. Clin. Infect. Dis. 61, 1655–1661 (2015).

    CAS  PubMed  Google Scholar 

  22. Gross, P. A. & Patel, B. Reducing antibiotic overuse: a call for a national performance measure for not treating asymptomatic bacteriuria. Clin. Infect. Dis. 45, 1335–1337 (2007).

    Article  PubMed  Google Scholar 

  23. Suriano, F. et al. Bacteriuria in patients with an orthotopic ileal neobladder: urinary tract infection or asymptomatic bacteriuria? BJU Int. 101, 1576–1579 (2008).

    Article  PubMed  Google Scholar 

  24. Liss, M. A. et al. AUA White Paper: the prevention and treatment of the more common complications related to prostate biopsy update. AUAnet.org https://www.auanet.org/common/pdf/education/clinical-guidance/AUA-PNB-White-Paper.pdf (2016).

    Google Scholar 

  25. Loeb, S., Carter, H. B., Berndt, S. I., Ricker, W. & Schaeffer, E. M. Complications after prostate biopsy: data from SEER-Medicare. J. Urol. 186, 1830–1834 (2011).

    Article  PubMed  Google Scholar 

  26. Halpern, J. A. et al. Indications, utilization, and complications following prostate biopsy: a New York state analysis. J. Urol. http://dx.doi.org/10.1016/j.juro.2016.11.081 (2016).

  27. Cussans, A., Somani, B. K., Basarab, A. & Dudderidge, T. J. The role of targeted prophylactic antimicrobial therapy before transrectal ultrasonography-guided prostate biopsy in reducing infection rates: a systematic review. BJU Int. 117, 725–731 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Deville, W. L. et al. The urine dipstick test useful to rule out infections. A meta-analysis of the accuracy. BMC Urol. 4, 4 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kunin, C. M. (ed.) Urinary Tract Infections: Detection, Prevention, and Management (Williams & Wilkins, 1997).

    Google Scholar 

  30. D'Souza, H. A., Campbell, M. & Baron, E. J. Practical bench comparison of BBL CHROMagar Orientation and standard two-plate media for urine cultures. J. Clin. Microbiol. 42, 60–64 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Arena, F., Viaggi, B., Galli, L. & Rossolini, G. M. Antibiotic susceptibility testing: present and future. Pediatr. Infect. Dis. J. 34, 1128–1130 (2015).

    Article  PubMed  Google Scholar 

  32. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing in M100. CLSI http://clsi.org/m100/ (2015).

  33. Eigner, U., Schmid, A., Wild, U., Bertsch, D. & Fahr, A. M. Analysis of the comparative workflow and performance characteristics of the VITEK 2 and Phoenix systems. J. Clin. Microbiol. 43, 3829–3834 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Thomson, K. S. et al. Comparison of Phoenix and VITEK 2 extended-spectrum-beta-lactamase detection tests for analysis of Escherichia coli and Klebsiella isolates with well-characterized beta-lactamases. J. Clin. Microbiol. 45, 2380–2384 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Caliendo, A. M. et al. Better tests, better care: improved diagnostics for infectious diseases. Clin. Infect. Dis. 57 (Suppl. 3), S139–S170 (2013).

    Article  PubMed  Google Scholar 

  36. Society for Healthcare Epidemiology, Infectious Diseases Society of America & Pediatric Infectious Diseases Society. Policy statement on antimicrobial stewardship by the Society for Healthcare Epidemiology of America (SHEA), the Infectious Diseases Society of America (IDSA), and the Pediatric Infectious Diseases Society (PIDS). Infect. Control Hosp. Epidemiol. 33, 322–327 (2012).

  37. Bignardi, G. E. Validation and verification of automated urine particle analysers. J. Clin. Pathol. 70, 94–101 (2016).

    Article  PubMed  Google Scholar 

  38. Yusuf, E., Van Herendael, B. & van Schaeren, J. Performance of urinalysis tests and their ability in predicting results of urine cultures: a comparison between automated test strip analyser and flow cytometry in various subpopulations and types of samples. J. Clin. Pathol. http://dx.doi.org/10.1136/jclinpath-2016-204108 (2016).

  39. Lammers, R. L., Gibson, S., Kovacs, D., Sears, W. & Strachan, G. Comparison of test characteristics of urine dipstick and urinalysis at various test cutoff points. Ann. Emerg. Med. 38, 505–512 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. McNair, R. D., MacDonald, S. R., Dooley, S. L. & Peterson, L. R. Evaluation of the centrifuged and Gram-stained smear, urinalysis, and reagent strip testing to detect asymptomatic bacteriuria in obstetric patients. Am. J. Obstet. Gynecol. 182, 1076–1079 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Stapleton, A. E. et al. Performance of a new rapid immunoassay test kit for point-of-care diagnosis of significant bacteriuria. J. Clin. Microbiol. 53, 2805–2809 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rajwa, B. et al. Discovering the unknown: detection of emerging pathogens using a label-free light-scattering system. Cytometry A 77, 1103–1112 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Steen, H. B. Light scattering measurement in an arc lamp-based flow cytometer. Cytometry 11, 223–230 (1990).

    Article  CAS  PubMed  Google Scholar 

  44. Fouchet, P., Jayat, C., Hechard, Y., Ratinaud, M. H. & Frelat, G. Recent advances of flow cytometry in fundamental and applied microbiology. Biol. Cell 78, 95–109 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Broeren, M. A., Bahceci, S., Vader, H. L. & Arents, N. L. Screening for urinary tract infection with the Sysmex UF-1000i urine flow cytometer. J. Clin. Microbiol. 49, 1025–1029 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Geerts, N. et al. Urine flow cytometry can rule out urinary tract infection, but cannot identify bacterial morphologies correctly. Clin. Chim. Acta 448, 86–90 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Inigo, M. et al. Evaluation of the SediMax automated microscopy sediment analyzer and the Sysmex UF-1000i flow cytometer as screening tools to rule out negative urinary tract infections. Clin. Chim. Acta 456, 31–35 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Inigo, M. et al. Direct identification of urinary tract pathogens from urine samples, combining urine screening methods and matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 54, 988–993 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, X. H. et al. Direct identification of bacteria causing urinary tract infections by combining matrix-assisted laser desorption ionization-time of flight mass spectrometry with UF-1000i urine flow cytometry. J. Microbiol. Methods 92, 231–235 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Zboromyrska, Y. et al. Development of a new protocol for rapid bacterial identification and susceptibility testing directly from urine samples. Clin. Microbiol. Infect. 22, 561.e1–561.e6 (2016).

    Article  CAS  Google Scholar 

  51. Hale, D. C. et al. Rapid screening for bacteriuria by light scatter photometry (Autobac): a collaborative study. J. Clin. Microbiol. 13, 147–150 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Jenkins, R. D., Hale, D. C. & Matsen, J. M. Rapid semiautomated screening and processing of urine specimens. J. Clin. Microbiol. 11, 220–225 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wada, A. et al. Rapid discrimination of Gram-positive and Gram-negative bacteria in liquid samples by using NaOH-sodium dodecyl sulfate solution and flow cytometry. PLoS ONE 7, e47093 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gessoni, G., Saccani, G., Valverde, S., Manoni, F. & Caputo, M. Does flow cytometry have a role in preliminary differentiation between urinary tract infections sustained by gram positive and gram negative bacteria? An Italian polycentric study. Clin. Chim. Acta 440, 152–156 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Land, M. et al. Insights from 20 years of bacterial genome sequencing. Funct. Integr. Genomics 15, 141–161 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mizrahi-Man, O., Davenport, E. R. & Gilad, Y. Taxonomic classification of bacterial 16S rRNA genes using short sequencing reads: evaluation of effective study designs. PLoS ONE 8, e53608 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zankari, E. et al. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67, 2640–2644 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McArthur, A. G. & Wright, G. D. Bioinformatics of antimicrobial resistance in the age of molecular epidemiology. Curr. Opin. Microbiol. 27, 45–50 (2015).

    Article  PubMed  Google Scholar 

  59. Fields, F. R., Lee, S. W. & McConnell, M. J. Using bacterial genomes and essential genes for the development of new antibiotics. Biochem. Pharmacol. http://dx.doi.org/10.1016/j.bcp.2016.12.002 (2016).

  60. Fairfax, M. R. & Salimnia, H. Diagnostic molecular microbiology: a 2013 snapshot. Clin. Lab. Med. 33, 787–803 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tang, Y. W., Procop, G. W. & Persing, D. H. Molecular diagnostics of infectious diseases. Clin. Chem. 43, 2021–2038 (1997).

    CAS  PubMed  Google Scholar 

  62. Veron, L. et al. Rapid urine preparation prior to identification of uropathogens by MALDI-TOF MS. Eur. J. Clin. Microbiol. Infect. Dis. 34, 1787–1795 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Wu, Q., Li, Y., Wang, M., Pan, X. P. & Tang, Y. F. Fluorescence in situ hybridization rapidly detects three different pathogenic bacteria in urinary tract infection samples. J. Microbiol. Methods 83, 175–178 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Kothari, A., Morgan, M. & Haake, D. A. Emerging technologies for rapid identification of bloodstream pathogens. Clin. Infect. Dis. 59, 272–278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Seng, P. et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin. Infect. Dis. 49, 543–551 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Ferreira, L. et al. Direct identification of urinary tract pathogens from urine samples by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 48, 2110–2115 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Burillo, A. et al. Gram-stain plus MALDI-TOF MS (matrix-assisted laser desorption ionization-time of flight mass spectrometry) for a rapid diagnosis of urinary tract infection. PLoS ONE 9, e86915 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kohling, H. L. et al. Direct identification of bacteria in urine samples by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and relevance of defensins as interfering factors. J. Med. Microbiol. 61, 339–344 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Singhal, N., Kumar, M., Kanaujia, P. K. & Virdi, J. S. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Frontiers Microbiol. 6, 791 (2015).

    Article  Google Scholar 

  70. Angeletti, S. Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology. J. Microbiol. Methods http://dx.doi.org/10.1016/j.mimet.2016.09.003 (2016).

  71. Tran, A., Alby, K., Kerr, A., Jones, M. & Gilligan, P. H. Cost savings realized by implementation of routine microbiological identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 53, 2473–2479 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Armbruster, C. E. & Mobley, H. L. Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat. Rev. Microbiol. 10, 743–754 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kline, K. A. & Lewis, A. L. Gram-positive uropathogens, polymicrobial urinary tract infection, and the emerging microbiota of the urinary tract. Microbiol. Spectr. http://dx.doi.org/10.1128/microbiolspec.UTI-0012-2012 (2016).

  74. Siegman-Igra, Y. The significance of urine culture with mixed flora. Curr. Opin. Nephrol. Hypertens. 3, 656–659 (1994).

    Article  CAS  PubMed  Google Scholar 

  75. Jung, J. S. et al. Rapid detection of antibiotic resistance based on mass spectrometry and stable isotopes. Eur. J. Clin. Microbiol. Infect. Dis. 33, 949–955 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Moter, A. & Gobel, U. B. Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J. Microbiol. Methods 41, 85–112 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Lane, D. J. et al. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl Acad. Sci. USA 82, 6955–6959 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ludwig, W. & Schleifer, K. H. Bacterial phylogeny based on 16S and 23S rRNA sequence analysis. FEMS Microbiol. Rev. 15, 155–173 (1994).

    Article  CAS  PubMed  Google Scholar 

  79. Zwirglmaier, K., Ludwig, W. & Schleifer, K. H. Recognition of individual genes in a single bacterial cell by fluorescence in situ hybridization — RING-FISH. Mol. Microbiol. 51, 89–96 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Stender, H., Fiandaca, M., Hyldig-Nielsen, J. J. & Coull, J. PNA for rapid microbiology. J. Microbiol. Methods 48, 1–17 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Deck, M. K. et al. Multicenter evaluation of the Staphylococcus QuickFISH method for simultaneous identification of Staphylococcus aureus and coagulase-negative staphylococci directly from blood culture bottles in less than 30 minutes. J. Clin. Microbiol. 50, 1994–1998 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Deck, M. K. et al. Rapid detection of Enterococcus spp. direct from blood culture bottles using Enterococcus QuickFISH method: a multicenter investigation. Diagn. Microbiol. Infect. Dis. 78, 338–342 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Sakarikou, C., Parisato, M., Lo Cascio, G. & Fontana, C. Beacon-based (bbFISH®) technology for rapid pathogens identification in blood cultures. BMC Microbiol. 14, 99 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Oliveira, K., Procop, G. W., Wilson, D., Coull, J. & Stender, H. Rapid identification of Staphylococcus aureus directly from blood cultures by fluorescence in situ hybridization with peptide nucleic acid probes. J. Clin. Microbiol. 40, 247–251 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sogaard, M., Stender, H. & Schonheyder, H. C. Direct identification of major blood culture pathogens, including Pseudomonas aeruginosa and Escherichia coli, by a panel of fluorescence in situ hybridization assays using peptide nucleic acid probes. J. Clin. Microbiol. 43, 1947–1949 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Egholm, M. et al. PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen-bonding rules. Nature 365, 566–568 (1993).

    Article  CAS  PubMed  Google Scholar 

  87. Nielsen, P. E. & Egholm, M. An introduction to peptide nucleic acid. Curr. Issues Mol. Biol. 1, 89–104 (1999).

    CAS  PubMed  Google Scholar 

  88. Saiki, R. K. et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491 (1988).

    Article  CAS  PubMed  Google Scholar 

  89. Lehmann, L. E. et al. Rapid qualitative urinary tract infection pathogen identification by SeptiFast real-time PCR. PLoS ONE 6, e17146 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Blaschke, A. J. et al. Rapid identification of pathogens from positive blood cultures by multiplex polymerase chain reaction using the FilmArray system. Diagn. Microbiol. Infect. Dis. 74, 349–355 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Buss, S. N. et al. Multicenter evaluation of the BioFire FilmArray gastrointestinal panel for etiologic diagnosis of infectious gastroenteritis. J. Clin. Microbiol. 53, 915–925 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Altun, O., Almuhayawi, M., Ullberg, M. & Ozenci, V. Clinical evaluation of the FilmArray blood culture identification panel in identification of bacteria and yeasts from positive blood culture bottles. J. Clin. Microbiol. 51, 4130–4136 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Salimnia, H. et al. Evaluation of the FilmArray blood culture identification panel: results of a multicenter controlled trial. J. Clin. Microbiol. 54, 687–698 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Gaydos, C. A. et al. Performance of the Cepheid CT/NG Xpert rapid PCR test for detection of Chlamydia trachomatis and Neisseria gonorrhoeae. J. Clin. Microbiol. 51, 1666–1672 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Tabrizi, S. N. et al. Analytical evaluation of GeneXpert CT/NG, the first genetic point-of-care assay for simultaneous detection of Neisseria gonorrhoeae and Chlamydia trachomatis. J. Clin. Microbiol. 51, 1945–1947 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Buchan, B. W. & Ledeboer, N. A. Emerging technologies for the clinical microbiology laboratory. Clin. Microbiol. Rev. 27, 783–822 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nadkarni, M. A., Martin, F. E., Jacques, N. A. & Hunter, N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148, 257–266 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Fredborg, M. et al. Real-time optical antimicrobial susceptibility testing. J. Clin. Microbiol. 51, 2047–2053 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fredborg, M. et al. Rapid antimicrobial susceptibility testing of clinical isolates by digital time-lapse microscopy. Eur. J. Clin. Microbiol. Infect. Dis. 34, 2385–2394 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Price, C. S., Kon, S. E. & Metzger, S. Rapid antibiotic susceptibility phenotypic characterization of Staphylococcus aureus using automated microscopy of small numbers of cells. J. Microbiol. Methods 98, 50–58 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Keller, M. S. et al. Reproducibility of the Accelerate ID/AST blood culture assay at multiple clinical sites. AcceleratedDiagnostics http://acceleratediagnostics.com/wp-content/uploads/2016/09/ASM-2016-Reproducibility-Study-Poster.pdf (2016).

    Google Scholar 

  102. Douglas, I. S. et al. Rapid automated microscopy for microbiological surveillance of ventilator-associated pneumonia. Am. J. Respir. Crit. Care Med. 191, 566–573 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Metzger, S., Frobel, R. A. & Dunne, W. M. Jr. Rapid simultaneous identification and quantitation of Staphylococcus aureus and Pseudomonas aeruginosa directly from bronchoalveolar lavage specimens using automated microscopy. Diagn. Microbiol. Infect. Dis. 79, 160–165 (2014).

    Article  PubMed  Google Scholar 

  104. Wilson, M. R. et al. Actionable diagnosis of neuroleptospirosis by next-generation sequencing. N. Engl. J. Med. 370, 2408–2417 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sin, M. L., Mach, K. E., Wong, P. K. & Liao, J. C. Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Rev. Mol. Diagn. 14, 225–244 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Syedmoradi, L. et al. Point of care testing: the impact of nanotechnology. Biosens. Bioelectron. 87, 373–387 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Rapp, B. E., Gruhl, F. J. & Lange, K. Biosensors with label-free detection designed for diagnostic applications. Anal. Bioanal. Chem. 398, 2403–2412 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Li, B., Yu, Q. & Duan, Y. Fluorescent labels in biosensors for pathogen detection. Crit. Rev. Biotechnol. 35, 82–93 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Mach, K. E. et al. A biosensor platform for rapid antimicrobial susceptibility testing directly from clinical samples. J. Urol. 185, 148–153 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Kadlec, M. W., You, D., Liao, J. C. & Wong, P. K. A. Cell phone-based microphotometric system for rapid antimicrobial susceptibility testing. J. Lab. Autom. 19, 258–266 (2014).

    Article  PubMed  Google Scholar 

  111. Smith, G. T. et al. Robust dipstick urinalysis using a low-cost, micro-volume slipping manifold and mobile phone platform. Lab Chip 16, 2069–2078 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Mach, K. E., Wong, P. K. & Liao, J. C. Biosensor diagnosis of urinary tract infections: a path to better treatment? Trends Pharmacol. Sci. 32, 330–336 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Roine, A. et al. Rapid and accurate detection of urinary pathogens by mobile IMS-based electronic nose: a proof-of-principle study. PLoS ONE 9, e114279 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Carey, J. R. et al. Rapid identification of bacteria with a disposable colorimetric sensing array. J. Am. Chem. Soc. 133, 7571–7576 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hong, J. I. & Chang, B. Y. Development of the smartphone-based colorimetry for multi-analyte sensing arrays. Lab Chip 14, 1725–1732 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Lim, S. H. et al. Bacterial culture detection and identification in blood agar plates with an optoelectronic nose. Analyst 141, 918–925 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Lim, S. H. et al. Colorimetric sensor array allows fast detection and simultaneous identification of sepsis-causing bacteria in spiked blood culture. J. Clin. Microbiol. 52, 592–598 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Altobelli, E. et al. Integrated biosensor assay for rapid uropathogen identification and phenotypic antimicrobial susceptibility testing. Eur. Urol. http://dx.doi.org/10.1016/j.euf.2015.12.010 (2016).

  120. Mach, K. E. et al. Multiplex pathogen identification for polymicrobial urinary tract infections using biosensor technology: a prospective clinical study. J. Urol. 182, 2735–2741 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ouyang, M. et al. An AC electrokinetics facilitated biosensor cassette for rapid pathogen identification. Analyst 138, 3660–3666 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mohan, R. et al. Clinical validation of integrated nucleic acid and protein detection on an electrochemical biosensor array for urinary tract infection diagnosis. PLoS ONE 6, e26846 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Halford, C. et al. Rapid antimicrobial susceptibility testing by sensitive detection of precursor rRNA using a novel electrochemical biosensing platform. Antimicrob. Agents Chemother. 57, 936–943 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mach, K. E. et al. Development of a biosensor-based rapid urine test for detection of urogenital schistosomiasis. PLoS Negl. Trop. Dis. 9, e0003845 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sin, M. L., Gao, J., Liao, J. C. & Wong, P. K. System integration — a major step toward lab on a chip. J. Biol. Eng. 5, 6 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Pan, Y. et al. Electrochemical immunosensor detection of urinary lactoferrin in clinical samples for urinary tract infection diagnosis. Biosens. Bioelectron. 26, 649–654 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sin, M. L., Gau, V., Liao, J. C. & Wong, P. K. Electrothermal fluid manipulation of high-conductivity samples for laboratory automation applications. JALA 15, 426–432 (2010).

    CAS  PubMed  Google Scholar 

  128. Sin, M. L., Gau, V., Liao, J. C. & Wong, P. K. A universal electrode approach for automated electrochemical molecular analyses. J. Microelectromech. Syst. 22, 1126–1132 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Garcia Leoni, M. E. & Esclarin De Ruz, A. Management of urinary tract infection in patients with spinal cord injuries. Clin. Microbiol. Infect. 9, 780–785 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Jayawardena, V. & Midha, M. Significance of bacteriuria in neurogenic bladder. J. Spinal Cord Med. 27, 102–105 (2004).

    Article  PubMed  Google Scholar 

  131. Tullus, K. Difficulties in diagnosing urinary tract infections in small children. Pediatr. Nephrol. 26, 1923–1926 (2011).

    Article  PubMed  Google Scholar 

  132. Choi, J. et al. Rapid antibiotic susceptibility testing by tracking single cell growth in a microfluidic agarose channel system. Lab Chip 13, 280–287 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Choi, J. et al. A rapid antimicrobial susceptibility test based on single-cell morphological analysis. Sci. Transl Med. 6, 267ra174 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Cira, N. J., Ho, J. Y., Dueck, M. E. & Weibel, D. B. A self-loading microfluidic device for determining the minimum inhibitory concentration of antibiotics. Lab Chip 12, 1052–1059 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Chen, C. H. et al. Antimicrobial susceptibility testing using high surface-to-volume ratio microchannels. Anal. Chem. 82, 1012–1019 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lu, Y. et al. Single cell antimicrobial susceptibility testing by confined microchannels and electrokinetic loading. Anal. Chem. 85, 3971–3976 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Baraban, L. et al. Millifluidic droplet analyser for microbiology. Lab Chip 11, 4057–4062 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Boedicker, J. Q., Li, L., Kline, T. R. & Ismagilov, R. F. Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip 8, 1265–1272 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Churski, K. et al. Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab Chip 12, 1629–1637 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Eun, Y. J., Utada, A. S., Copeland, M. F., Takeuchi, S. & Weibel, D. B. Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation. ACS Chem. Biol. 6, 260–266 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Sinn, I. et al. Asynchronous magnetic bead rotation (AMBR) biosensor in microfluidic droplets for rapid bacterial growth and susceptibility measurements. Lab Chip 11, 2604–2611 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Zhang, Y., Shin, D. J. & Wang, T. H. Serial dilution via surface energy trap-assisted magnetic droplet manipulation. Lab Chip 13, 4827–4831 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Rane, T. D., Zec, H. C. & Wang, T. H. A serial sample loading system: interfacing multiwell plates with microfluidic devices. J. Lab. Autom. 17, 370–377 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Rane, T. D., Zec, H. C., Puleo, C., Lee, A. P. & Wang, T. H. Droplet microfluidics for amplification-free genetic detection of single cells. Lab Chip 12, 3341–3347 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kaushik, A., Hsieh, K., Chen, L., Shin, D. J. & Wang, T. H. Rapid-assessment of bacterial vitality and antibiotic susceptibility via high-throughput picoliter-droplet single-cell assay. 19th International Conference on Miniaturized Systems for Chemistry and Life Sciences http://engineering.jhu.edu/old-thwang/publications/ (2015).

    Google Scholar 

  146. Li, B. et al. Gradient microfluidics enables rapid bacterial growth inhibition testing. Anal. Chem. 86, 3131–3137 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Leung, K. et al. A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities. Proc. Natl Acad. Sci. USA 109, 7665–7670 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Rane, T. D., Zec, H. C. & Wang, T. H. A barcode-free combinatorial screening platform for matrix metalloproteinase screening. Anal. Chem. 87, 1950–1956 (2015).

    Article  CAS  PubMed  Google Scholar 

  149. Zec, H., Rane, T. D. & Wang, T. H. Microfluidic platform for on-demand generation of spatially indexed combinatorial droplets. Lab Chip 12, 3055–3062 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Liao and Wang Laboratories for helpful discussions. Research is supported in part by National Institutes of Health (NIH)/National Institute of Allergy and Infectious Diseases grant R01 AI117032 (J.C.L. and T.W.) and U01 AI082457 (J.C.L.).

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to discussions of content and reviewed and edited the article before submission. M.D., K.E.M., N.B., T.-H.W. and J.C.L. researched data for the article and M.D., K.E.M., T.-H.W. and J.C.L. wrote the manuscript.

Corresponding author

Correspondence to Joseph C. Liao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Antimicrobial susceptibility

Antimicrobial susceptibility refers to phenotypic response of the bacteria in the presence of antimicrobial agents.

Multidrug-resistant pathogens

Bacterial pathogens that have developed resistance to multiple antimicrobials. Common multidrug resistant uropathogens include Enterobacteriaceae that produce AmpC β-lactamase, extended-spectrum β-lactamase and carbapenamase.

Antimicrobial resistance

Antimicrobial resistance refers to the inherent or acquired genetic mechanisms by which bacteria withstand antimicrobial agents.

Antimicrobial stewardship

Coordinated interventions to improve the appropriate use of antimicrobials by reducing the administration of unnecessary antimicrobials and promoting the selection of the optimal antimicrobial drug, dose, duration of therapy, and route of administration when needed. The major goals of antimicrobial stewardship include achieving optimal clinical outcomes at the same time minimizing toxicity and adverse events, limiting the selection pressure on bacterial populations that drives the emergence of antimicrobial-resistant strains, and reducing excessive costs related to suboptimal antimicrobial use.

Sample preparation

Multistep assay preparation that includes pipetting (such as reagent transfer and mixing), centrifugation (separation and concentration), and washing.

Lateral flow assays

A single-use, point-of-care diagnostic tool based on liquid transport driven by capillary action without the requirement of external support. The major advantages of these test strips include simplicity, portability, and cost-effectiveness. Examples include urinalysis test strips.

Mass spectrometry

A technique in which charged molecules are created by ionization and their identity determined based on the mass:charge ratio. Matrix-assisted laser desorption ionization–time of flight (MALDI–TOF) mass spectrometry can be used for the identification of large biological molecules enabling its use in pathogen identification. In the current clinical application of MALD–TOF mass spectrometry for pathogen identification, the sample (such as urine) is first cultured to isolate the bacteria and a colony from the culture plate is analysed by MALDI–TOF mass spectrometry.

System integration

Integration of the functional building blocks of microfluidic components including pumps, mixers, concentrators, and valves to create an automated system capable of 'sample-in, answer-out' for the end users. System integration is a major hurdle in translating microfluidic devices into practical applications. Key factors include throughput, cost, multiplexity, diversity of components, accuracy, and programmability.

Fluorescence in situ hybridization

(FISH). A cytogenetic technique that uses fluorescent probes that bind to complementary sequences in target cells (such as bacterial pathogens).

Matrix

Components present in biological samples can affect the detection of the analyte of interest. Urinary constituents that can cause matrix effects in diagnostics include somatic cells, electrolytes, organic molecules, proteins, and crystals. Matrix effects can affect assay sensitivity and reproducibility.

Minimum inhibitory concentration

(MIC). The lowest dose of antimicrobial to which a bacterial strain is sensitive.

Biosensors

A molecular sensing device composed of a recognition element that binds specifically to a target analyte and generates a measurable signal via a transducer. For quantitative detection, the magnitude of the signal is proportional to the analyte concentration.

Microfluidics

A multidisciplinary field based on the manipulation of small amounts of fluids at the micron scale. Microfluidics-based platforms commonly integrate reagent transfer, target isolation, and sample-mixing steps in a multilayered cartridge containing channels, valves, and reagent reservoirs. Such 'lab-on-a-chip' platforms offer the potential advantages of microfluidics including low fluid volumes (reduced reagent use and cost), short assay time, low power consumption, rapid generation of small liquid compartments, and a high degree of parallelization.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davenport, M., Mach, K., Shortliffe, L. et al. New and developing diagnostic technologies for urinary tract infections. Nat Rev Urol 14, 296–310 (2017). https://doi.org/10.1038/nrurol.2017.20

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2017.20

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing