Mixed Pt-Ni Halide Perovskites for Photovoltaic Application
<p>Atmospheric synthesis of PtI<sub>2</sub>, mixed PtI<sub>2</sub>-NiCl<sub>2</sub>, and NiCl<sub>2</sub>-based films in 50:50 DMF: DMSO via solution processing.</p> "> Figure 2
<p>USD/Watt (solute) of various Pb and Pb-free perovskite compositions calculated with respect to the PCE and thickness reported in the corresponding literature (blue) and the highest PCE of 25.6% and thickness of 2000 nm reported for the Pb-based FAPbI<sub>3</sub> perovskite (red). <a href="#app1-materials-17-06196" class="html-app">Figure S1</a> represents the USD/watt with the discrete effect of optimized PCE and absorber layer thickness.</p> "> Figure 3
<p>USD/Watt (solute + encapsulant) of various Pb and Pb-free perovskite compounds calculated with respect to the highest PCE of 25.6% and thickness of 2000 nm reported for the Pb-based FAPbI<sub>3</sub> perovskite. E1, E2, E3, and E4 represent different encapsulants: Polyolefin, Teflon, PET, and EVA, respectively. <a href="#app1-materials-17-06196" class="html-app">Figure S2</a> represents the USD/Watt (solute + encapsulant) calculated with respect to the PCE and absorber layer thickness reported in the corresponding literature. <a href="#app1-materials-17-06196" class="html-app">Figure S3</a> represents the USD/watt (solute + encapsulant) with the discrete effect of optimized PCE reported for the Pb-based FAPbI<sub>3</sub> perovskite and the corresponding absorber layer thickness from the literature. <a href="#app1-materials-17-06196" class="html-app">Figure S4</a> represents the USD/watt (solute + encapsulant) with the discrete effect of the optimized absorber layer thickness reported for the Pb-based FAPbI<sub>3</sub> perovskite and PCE from the literature.</p> "> Figure 4
<p>(<b>a</b>) Absorption spectrums of 2 h annealed (at −15 in Hg and 100 °C) PtI<sub>2</sub>, mixed PtI<sub>2</sub>-NiCl<sub>2</sub>, and NiCl<sub>2</sub>-based films; (<b>b</b>) Tauc plot showing the optical bandgap of the 2 h annealed (at −15 in Hg and 100 °C) PtI<sub>2</sub>, mixed PtI<sub>2</sub>-NiCl<sub>2</sub>, and NiCl<sub>2</sub>-based films; (<b>c</b>) XRD spectra of the 2 h annealed (at −15 in Hg and 100 °C) PtI<sub>2</sub>, mixed PtI<sub>2</sub>-NiCl<sub>2</sub>, and NiCl<sub>2</sub>-based films; SEM images of (<b>d</b>) PtI<sub>2</sub>, (<b>e</b>) mixed PtI<sub>2</sub>-NiCl<sub>2</sub>, and (<b>f</b>) NiCl<sub>2</sub>-based films; Raman spectra of (<b>g</b>) PtI<sub>2</sub>-based and (<b>h</b>) NiCl<sub>2</sub>-based films, respectively; (<b>i</b>) Goldschmidt and (<b>j</b>) Bartel tolerance factors for Cs(Pt,Ni)(Cl,I)<sub>3</sub>.</p> "> Figure 5
<p>PtI<sub>2</sub>-based films before and after the dark thermal annealing test with t representing the annealing duration: (<b>a</b>) absorption coefficient; (<b>b</b>) Tauc plot; (<b>c</b>) XRD pattern; (<b>d</b>) cross-section SEM images before annealing; (<b>e</b>) cross-section SEM images after annealing; and (<b>f</b>) EDS analysis showing the atomic % of the elemental distribution.</p> "> Figure 6
<p>Mixed PtI<sub>2</sub>-NiCl<sub>2</sub>-based films before and after the dark thermal annealing test with t representing the annealing duration: (<b>a</b>) absorption spectrum; (<b>b</b>) Tauc plot; (<b>c</b>) XRD pattern; (<b>d</b>) cross-section SEM image before annealing; (<b>e</b>) cross-section SEM image after annealing; and (<b>f</b>) EDS analysis showing the atomic % of the elemental distribution.</p> "> Figure 7
<p>NiCl<sub>2</sub>-based films before and after the dark thermal annealing test with t representing the annealing duration: (<b>a</b>) absorption spectrum; (<b>b</b>) Tauc plot; (<b>c</b>) XRD pattern; (<b>d</b>) SEM morphology before annealing; (<b>e</b>) SEM morphology after annealing; and (<b>f</b>) EDS analysis showing the atomic % of the elemental distribution.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Cost Analysis of Solutes for Perovskite Precursor and Encapsulation for HPSCs
3.2. Pt-Ni Mixing in Halide Perovskite
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Best Research-Cell Efficiency Chart. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 6 November 2024).
- Jeong, J.; Kim, M.; Seo, J.; Lu, H.; Ahlawat, P.; Mishra, A.; Yang, Y.; Hope, M.A.; Eickemeyer, F.T.; Kim, M.; et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 2021, 592, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Xu, J.; Wei, M.; Wang, Y.; Qin, Z.; Liu, Z.; Wu, J.; Xiao, K.; Chen, B.; Park, S.M.; et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 2022, 603, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; You, J.; Yang, Y. Addressing the stability issue of perovskite solar cells for commercial applications. Nat. Commun. 2018, 9, 5265. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Wang, C.; Wang, Y.; Xu, Z.; Lu, Z.; Ma, Y.; Zhu, H.; Hu, Y.; Xiao, C.; Yi, X.; et al. All-Inorganic Perovskite Solar Cells. J. Am. Chem. Soc. 2016, 138, 15829–15832. [Google Scholar] [PubMed]
- Gao, X.X.; Luo, W.; Zhang, Y.; Hu, R.; Zhang, B.; Züttel, A.; Feng, Y.; Nazeeruddin, M.K. Stable and High-Efficiency Methylammonium-Free Perovskite Solar Cells. Adv. Mater. 2020, 32, 1905502. [Google Scholar] [CrossRef]
- Min, H.; Kim, M.; Lee, S.U.; Kim, H.; Kim, G.; Choi, K.; Lee, J.H.; Seok, S.I. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 2019, 366, 749–753. [Google Scholar]
- Ono, L.K.; Park, N.G.; Zhu, K.; Huang, W.; Qi, Y. Perovskite Solar Cells—Towards Commercialization. ACS Energy Lett. 2017, 2, 1749–1751. [Google Scholar]
- Li, J.; Cao, H.L.; Jiao, W.B.; Wang, Q.; Wei, M.; Cantone, I.; Lü, J.; Abate, A. Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold. Nat. Commun. 2020, 11, 310. [Google Scholar]
- Leijtens, T.; Prasanna, R.; Parker, A.G.; Toney, M.F.; McGehee, M.D. Mechanism of Tin Oxidation and Stabilization by Lead Substitution in Tin Halide Perovskites. ACS Energy Lett. 2017, 2, 2159–2165. [Google Scholar]
- Noel, N.K.; Stranks, S.D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A.A.; Sadhanala, A.; Eperon, G.E.; Pathak, S.K.; Johnston, M.B.; et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 2014, 7, 3061–3068. [Google Scholar]
- Chen, G.; Li, P.; Xue, T.; Su, M.; Ma, J.; Zhang, Y.; Wu, T.; Han, L.; Aldamasy, M.; Li, M.; et al. Design of Low Bandgap CsPb1−xSnxI2Br Perovskite Solar Cells with Excellent Phase Stability. Small 2021, 17, 2101380. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, K.; Kamarudin, M.A.; Hirotani, D.; Hamada, K.; Shen, Q.; Iikubo, S.; Minemoto, T.; Yoshino, K.; Hayase, S. Lead-free tin-halide perovskite solar cells with 13% efficiency. Nano Energy 2020, 74, 104858. [Google Scholar] [CrossRef]
- Yang, S.; Wang, L.; Zhao, S.; Liu, A.; Zhou, Y.; Han, Q.; Yu, F.; Gao, L.; Zhang, C.; Ma, T. Novel Lead-Free Material Cs2PtI6 with Narrow Bandgap and Ultra-Stability for Its Photovoltaic Application. ACS Appl. Mater. Interfaces 2020, 12, 44700–44709. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, D.; Murshed, R.; Larson, H.; Usprung, B.; Soltanmohamad, S.; Pandey, R.; Barnard, E.S.; Rockett, A.; Hartmann, T.; Castelli, I.E.; et al. Air Stable, High-Efficiency, Pt-Based Halide Perovskite Solar Cells with Long Carrier Lifetimes. Phys. Status Solidi RRL 2020, 14, 2000182. [Google Scholar] [CrossRef]
- Walkons, C.; Murshed, R.; Bansal, S. Numerical Analysis of Pb-Free Perovskite Absorber Materials: Prospects and Challenges. Sol. RRL 2020, 4, 2000299. [Google Scholar] [CrossRef]
- Ravi, V.K.; Markad, G.B.; Nag, A. Band Edge Energies and Excitonic Transition Probabilities of Colloidal CsPbX3 (X = Cl, Br, I) Perovskite Nanocrystals. ACS Energy Lett. 2016, 1, 665–671. [Google Scholar]
- Slavney, A.H.; Hu, T.; Lindenberg, A.M.; Karunadasa, H.I. A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications. J Am Chem Soc. 2016, 138, 2138–2141. [Google Scholar]
- Yang, J.; Zhang, P.; Wei, S. Band Structure Engineering of Cs2AgBiBr6 Perovskite through Order–Disordered Transition: A First-Principle Study. J. Phys. Chem. Lett. 2018, 9, 31–35. [Google Scholar]
- Soni, Y.; Rani, U.; Shukla, A.; Joshi, T.K.; Verma, A.S. Transition metal-based halides double Cs2ZSbX6 (Z = Ag, Cu, and X = Cl, Br, I) perovskites: A mechanically stable and highly absorptive materials for photovoltaic devices. J. Solid State Chem. 2022, 314, 123420. [Google Scholar]
- Filip, M.R.; Giustino, F. Computational Screening of Homovalent Lead Substitution in Organic–Inorganic Halide Perovskites. Phys. Chem. C 2016, 120, 166–173. [Google Scholar] [CrossRef]
- Wang, L.; Li, G.; Zhao, Q.; Gao, X. Non-precious transition metals as counter electrode of perovskite solar cells. Energy Storage Mater. 2017, 7, 40–47. [Google Scholar] [CrossRef]
- Jiang, Q.; Sheng, X.; Shi, B.; Feng, X.; Xu, T. Nickel-Cathoded Perovskite Solar Cells. J. Phys. Chem. C 2014, 118, 25878–25883. [Google Scholar] [CrossRef]
- Sekine, T.; Okuno, T.; Awaga, K. Observation of Spontaneous Magnetization in the Layered Perovskite Ferromagnet, (p-Chloroanilinium)2CuBr4. Inorg. Chem. 1998, 37, 2129–2133. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Bradford, A.J.; Slawin, A.M.Z.; Bode, B.E.; Fusco, E.; Lee, S.L.; Tang, C.C.; Lightfoot, P. Structural Features in Some Layered Hybrid Copper Chloride Perovskites: ACuCl4 or A2CuCl4. Inorg. Chem. 2021, 60, 11014–11024. [Google Scholar] [CrossRef] [PubMed]
- McNulty, J.A.; Lightfoot, P. Unprecedented tin iodide perovskite-like structures featuring ordering of organic moieties. Chem. Commun. 2020, 56, 4543–4546. [Google Scholar] [CrossRef]
- Jaffe, A.; Mack, S.A.; Lin, Y.; Mao, W.L.; Neaton, J.B.; Karunadasa, H.I. High Compression-Induced Conductivity in a Layered Cu–Br Perovskite. Angew. Chem. Int. Ed. 2020, 59, 4017–4022. [Google Scholar] [CrossRef]
- Bi, L.; Hu, T.; Li, M.; Ling, B.; Lassoued, M.S.; Hu, Y.; Wu, Z.; Zhou, G.; Zheng, Y. Template effects in Cu(i)–Bi(iii) iodide double perovskites: A study of crystal structure, film orientation, band gap and photocurrent response. J. Mater. Chem. A 2020, 8, 7288–7296. [Google Scholar] [CrossRef]
- Chen, Y.; Qin, H.; Wang, X.; Li, L.; Hu, J. Acetone sensing properties and mechanism of nano-LaFeO3 thick-films. Sens. Actuators B 2016, 235, 56–66. [Google Scholar] [CrossRef]
- Alharbi, A.A.; Sackmann, A.; Weimar, U.; Barsan, N. A highly selective sensor to acetylene and ethylene based on LaFeO3. Sens. Actuators B 2020, 303, 127204. [Google Scholar] [CrossRef]
- Dennison, J.C.; Trout, J.M. Transformer oil DGA monitoring technology study 2015. In Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, Dallas, TX, USA, 3–5 May 2016. [Google Scholar]
- Duval, M. A review of faults detectable by gas-in-oil analysis in transformers. IEEE Electr. Insul. Mag. 2002, 18, 8–17. [Google Scholar] [CrossRef]
- Esser, B.; Schnorr, J.M.; Swager, T.M. Selective Detection of Ethylene Gas Using Carbon Nanotube-based Devices: Utility in Determination of Fruit Ripeness. Angew. Chem. Int. Ed. 2012, 51, 5752–5756. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ren, J.; Wu, Y.; Zhong, X.; Luo, T.; Cao, J.; Yin, M.; Huang, M.; Zhang, Z. Application of moisture-induced discoloration material Nickel(II) iodide in humidity detection. Sens. Actuators B Chem. 2020, 309, 127769. [Google Scholar] [CrossRef]
- Zhang, H.M.; Shimizu, Y.; Teraoka, Y.; Miura, N.; Yamazoe, N. Oxygen sorption and catalytic properties of La1−xSrxCo1−yFeyO3 Perovskite-type oxides. J. Catal. 1990, 121, 432–440. [Google Scholar] [CrossRef]
- Arai, H.; Yamada, T.; Eguchi, K.; Seiyama, T. Catalytic combustion of methane over various perovskite-type oxides. Appl. Catal. 1986, 26, 265–276. [Google Scholar] [CrossRef]
- Connell, M.O.; Norman, A.K.; Hüttermann, C.F.; Morris, M.A. Catalytic oxidation over lanthanum-transition metal perovskite materials. Catal. Today 1999, 47, 123–132. [Google Scholar] [CrossRef]
- Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.; Ummadisngu, A.; Zakeeruddin, S.M.; Baena, J.P.C.; Tress, W.R.; Abate, A.; Hagfeldt, A.; et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 2016, 354, 206–209. [Google Scholar] [CrossRef]
- Baena, J.P.C.; Saliba, M.; Buonassisi, T.; Grätzel, M.; Abate, A.; Tress, W.; Hagfeldt, A.A. Promises and challenges of perovskite solar cells. Science 2017, 358, 739–744. [Google Scholar] [CrossRef]
- Jang, D.M.; Park, K.; Kim, D.H.; Park, J.; Shojaei, F.; Kang, H.S.; Ahn, J.; Lee, J.W.; Song, J.K. Reversible Halide Exchange Reaction of Organometal Trihalide Perovskite Colloidal Nanocrystals for Full-Range Band Gap Tuning. Nano Lett. 2015, 15, 5191–5199. [Google Scholar] [CrossRef]
- Murugadoss, G.; Tanake, S.; Mizuta, G.; Kanaya, S.; Nishino, H.; Umeyama, T.; Imahori, H.; Ito, S. Light stability tests of methylammonium and formamidinium Pb-halide perovskites for solar cell applications. Jpn. J. Appl. Phys. 2015, 54, 08KF08. [Google Scholar] [CrossRef]
- Lee, J.; Kim, D.; Kim, H.; Seo, S.; Cho, S.M.; Park, N. Formamidinium and Cesium Hybridization for Photo- and Moisture-Stable Perovskite Solar Cell. Adv. Energy Mater. 2015, 5, 1501310. [Google Scholar] [CrossRef]
- Cai, Y.; Xie, W.; Ding, H.; Chen, Y.; Thirumal, K.; Wong, L.H.; Mathews, N.; Mhaisalkar, S.G.; Sherbume, M.; Asta, M. Computational Study of Halide Perovskite-Derived A2BX6 Inorganic Compounds: Chemical Trends in Electronic Structure and Structural Stability. Chem. Mater. 2017, 29, 7740–7749. [Google Scholar] [CrossRef]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef]
- Murshed, R.; Bansal, S. Additive-Assisted Optimization in Morphology and Optoelectronic Properties of Inorganic Mixed Sn-Pb Halide Perovskites. Materials 2022, 15, 899. [Google Scholar] [CrossRef]
- Lead and Copper Rule. US EPA. Available online: https://www.epa.gov/dwreginfo/lead-and-copper-rule (accessed on 6 November 2024).
- Lead(II) Iodide. PbI2. CID 24931. PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/24931 (accessed on 6 November 2024).
- Aitola, K.; Sonal, G.G.; Markkanen, M.; Kaschuk, J.J.; Hou, X.; Miettunen, K.; Lund, P.D. Encapsulation of commercial and emerging solar cells with focus on perovskite solar cells. Sol. Energy 2022, 237, 264–283. [Google Scholar] [CrossRef]
- Czanderna, A.W.; Pern, F.J. Encapsulation of PV modules using ethylene vinyl acetate copolymer as a pottant: A critical review. Sol. Energy Mater. Sol. Cells 1996, 43, 101–181. [Google Scholar] [CrossRef]
- Cattaneo, G.; Faes, A.; Li, H.; Galliano, F.; Gragert, M.; Yao, Y.; Despeisse, M.; Ballif, C. Lamination process and encapsulation materials for glass–glass PV module design. Photovolt. Int. 2014, 1, 1–8. [Google Scholar]
- López-Escalante, M.C.; Caballero, L.J.; Martín, F.; Gabás, M.; Cuevas, A.; Ramos-Barrado, J.R. Polyolefin as PID-resistant encapsulant material in PV modules. Sol. Energy Mater. Sol. Cells 2016, 144, 691–699. [Google Scholar] [CrossRef]
- Luo, L.; Liu, P.; Zhang, K.; Tang, G.; Hou, H.; Li, B.; Wang, W. Vinyl-Functionalized Polyolefins for Fast Photovoltaic Cell Encapsulation. ACS Appl. Polym. Mater. 2020, 2, 2571–2577. [Google Scholar] [CrossRef]
- Adothu, B.; Bhatt, P.; Chattopadhyay, S.; Zele, S.; Oderkerk, J.; Sagar, H.P.; Costa, F.R.; Mallick, S. Newly developed thermoplastic polyolefin encapsulant–A potential candidate for crystalline silicon photovoltaic modules encapsulation. Sol. Energy 2019, 194, 581–588. [Google Scholar] [CrossRef]
- Ouedraogo, N.A.N.; Yang, M.; He, C.; Chen, Y.; Zhang, X.; Yan, H.; Han, C.B.; Zhang, Y. Influence of polytetrafluoroethylene (PTFE) on photovoltaic performance and perovskite solar cell stability. Sustain. Energy Fuels 2020, 4, 4257–4263. [Google Scholar] [CrossRef]
- Hwang, I.; Jeong, I.; Lee, J.; Ko, M.J.; Yong, K. Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation. ACS Appl. Mater. Interfaces 2015, 7, 17330–17336. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Yang, S.; Yu, Y.; Li, M.; Xie, J.; Bao, S.; Jin, P.; Huang, A. Long-term stable perovskite solar cells with room temperature processed metal oxide carrier transporters. J. Mater. Chem. A 2019, 7, 21085–21095. [Google Scholar] [CrossRef]
- Xu, Y.; Xia, R.; Gao, J.; Wang, S.; Zhu, J.; Xiong, W.; Yuan, N.; Ding, J. A Facile Approach for the Encapsulation of Perovskite Solar Cells. Energies 2023, 16, 598. [Google Scholar] [CrossRef]
- Chang, C.; Lee, K.; Huang, W.; Siao, H.; Chang, Y. High-Performance, Air-Stable, Low-Temperature Processed Semitransparent Perovskite Solar Cells Enabled by Atomic Layer Deposition. Chem. Mater. 2015, 27, 5122–5130. [Google Scholar] [CrossRef]
- Kim, D.; Jeon, G.G.; Kim, J.H.; Kim, J.; Park, N. Design of a Flexible Thin-Film Encapsulant with Sandwich Structures of Perhydropolysilazane Layers. ACS Appl. Mater. Interfaces 2022, 14, 34678–34685. [Google Scholar] [CrossRef]
- Crespo, C.T. The effect of the halide anion on the optical properties of lead halide perovskites. Sol. Energy Mater. Sol. Cells 2019, 195, 269–273. [Google Scholar] [CrossRef]
- Akman, E.; Ozturk, T.; Xiang, W.; Sadegh, F.; Prochowicz, D.; Tavakoli, M.M.; Yadav, P.; Yilmaz, M.; Akin, S. The effect of B-site doping in all-inorganic CsPbIxBr3−x absorbers on the performance and stability of perovskite photovoltaics. Energy Environ. Sci. 2023, 16, 372–403. [Google Scholar] [CrossRef]
- Dong, L.; Chen, Z.; Ye, L.; Yu, Y.; Zhang, J.; Liu, H.; Zang, J. Gram-scale synthesis of all-inorganic perovskite quantum dots with high Mn substitution ratio and enhanced dual-color emission. Nano Res. 2019, 12, 1733–1738. [Google Scholar] [CrossRef]
- Lau, C.F.J.; Deng, X.; Zheng, J.; Kim, J.; Zhang, Z.; Zhang, M.; Bing, J.; Wilkinson, B.; Hu, L.; Patterson, R.; et al. Enhanced performance via partial lead replacement with calcium for a CsPbI3 perovskite solar cell exceeding 13% power conversion efficiency. J. Mater. Chem. A 2018, 6, 5580–5586. [Google Scholar] [CrossRef]
- Raw, A.D.; Ibers, J.A.; Poeppelmeier, K.R. Syntheses and structure of hydrothermally prepared CsNiX3 (X=Cl, Br, I). J. Solid State Chem. 2012, 192, 34–37. [Google Scholar] [CrossRef]
- ICSD. Cs2PtI6, Details on Search Result. Available online: https://icsd.fiz-karlsruhe.de/display/details.xhtml (accessed on 6 November 2024).
- Jandl, S.; Banvile, M.; Xu, Q.F.; Ait-Ouali, A. Raman and infrared studies of the one-dimensional antiferromagnet CsNiCl3. Phys. Rev. B 1992, 46, 11585. [Google Scholar] [CrossRef] [PubMed]
- Kolari, P. Engineering Properties of Transition Metal Halides via Cationic Alloying. Master’s Thesis, Arizona State University, Tempe, AZ, USA, 2020. [Google Scholar]
- Lockwoodtf, D.J.; Bertrand, D.; Carrarat, P.; Mischlert, G.; Billereys, D. Raman spectrum of NiCl2. Phys. C Solid State Phys. 1979, 12, 3615. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Wu, J.; Chen, Y.; Wan, J.; Wen, R.; Yang, J.; Liu, Y.; Song, Z.; Xie, L. Vapor Deposition of Magnetic Van der Waals NiI2 Crystals. ACS Nano 2020, 14, 10544–10551. [Google Scholar] [CrossRef] [PubMed]
- Baechle, W.; Rotter, H.W.; Thiele, G.; Clark, R.J.H. Raman and resonance Raman spectroscopy of iodoplatinate(II), iodoplatinate(IV) and mixed-valence iodoplatinate(II,IV) salts. Inorg. Chim. Acta 1992, 191, 121–129. [Google Scholar] [CrossRef]
- Hamaguchi, H.; Harada, I.; Shimanouchi, T. Resonance Raman Effect of Octahedral Complex Ions, PtBr62- and PtI62-. J. Raman Spectrosc. 1974, 2, 517–528. [Google Scholar] [CrossRef]
- Parker, S.F.; Williams, K.P.J.; Smith, T.; Ramirez-Cuesta, A.J.; Daemen, L.L. Vibrational Spectroscopy of Hexahalo Complexes. Inorg. Chem. 2022, 61, 5844–5854. [Google Scholar] [CrossRef]
- Thiele, G.; Weigl, W.; Wochner, H. Die Platiniodide PtI2 und Pt3I8. Z. Anorg. Allg. Chem. 1986, 539, 141–153. [Google Scholar] [CrossRef]
- Cortecchia, D.; Dewi, H.A.; Yin, J.; Bruno, A.; Chen, S.; Baikie, T.; Boix, P.P.; Grätzel, M.; Mhaisalkar, S.; Soci, C.; et al. Lead-free MA2CuClxBr4–x hybrid perovskites. Inorg. Chem. 2016, 55, 1044–1052. [Google Scholar] [CrossRef]
- Bartel, C.J.; Sutton, C.; Goldsmith, B.R.; Ouyang, R.; Musgrave, C.B.; Ghiringhelli, L.M.; Scheffler, M. New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 2019, 5, eaav0693. [Google Scholar] [CrossRef]
- Yeo, J.; Kang, R.; Lee, S.; Jeon, Y.; Myoung, N.; Lee, C.; Kim, D.; Yun, J.; Seo, Y.; Kim, S.; et al. Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer. Nano Energy 2015, 12, 96–104. [Google Scholar] [CrossRef]
- Siegler, T.D.; Reimnitz, L.C.; Suri, M.; Cho, S.H.; Bergerud, A.J.; Abney, M.K.; Milliron, D.J.; Korgel, B.A. Deliquescent Chromism of Nickel (II) Iodide Thin Films. Langmuir 2019, 35, 2146–2152. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Murshed, R.; Bansal, S. Mixed Pt-Ni Halide Perovskites for Photovoltaic Application. Materials 2024, 17, 6196. https://doi.org/10.3390/ma17246196
Liu H, Murshed R, Bansal S. Mixed Pt-Ni Halide Perovskites for Photovoltaic Application. Materials. 2024; 17(24):6196. https://doi.org/10.3390/ma17246196
Chicago/Turabian StyleLiu, Huilong, Rubaiya Murshed, and Shubhra Bansal. 2024. "Mixed Pt-Ni Halide Perovskites for Photovoltaic Application" Materials 17, no. 24: 6196. https://doi.org/10.3390/ma17246196
APA StyleLiu, H., Murshed, R., & Bansal, S. (2024). Mixed Pt-Ni Halide Perovskites for Photovoltaic Application. Materials, 17(24), 6196. https://doi.org/10.3390/ma17246196