Mesoporous Carbon Composites Containing Carbon Nanostructures: Recent Advances in Synthesis and Applications in Electrochemistry
<p>Schematic idea of hard-template approaches and their application to the synthesis of mesoporous carbon/CN composites. Abbreviations: TEOS—tetraethyl orthosilicate; F127 and P123—pluronics; CTAB—cetyltrimethylammonium bromide; ILs—ionic liquids; MWCNT—multiwalled carbon nanotube; GO—graphene oxide; CNO—carbon nano-onion.</p> "> Figure 2
<p>Example of the application of a hard-template approach. Synthesis of polymerized mesoporous C<sub>60</sub> [<a href="#B40-materials-17-06195" class="html-bibr">40</a>].</p> "> Figure 3
<p>Schematic of soft-template approaches and their application to the synthesis of mesoporous carbon/CN composites. Abbreviations: MWCNT—multiwalled carbon nanotube; GO—graphene oxide; CNO—carbon nano-onion; F127—pluronic; ILs—ionic liquids.</p> "> Figure 4
<p>Example of the application of a soft-template approach: the synthesis of CNTs from mesoporous N-doped carbon core-shell nanofibers.</p> "> Figure 5
<p>Heteroatom doping strategies for the synthesis of nanostructure carbon/CN composites.</p> "> Figure 6
<p>Preparation of ordered mesoporous carbon/graphene composites.</p> "> Figure 7
<p>Electrochemical properties of the asymmetric capacitors in a PVA/LiCl gel electrolyte. (<b>a</b>) CV curves (10 mV s<sup>−1</sup>) at different potential windows. (<b>b</b>) CV curves at various scan rates. (<b>c</b>) Specific capacitance calculated from the CV curves as a function of the scan rate. (<b>d</b>) GCD curves at different current densities. (<b>e</b>) Rate performance at different current densities from 2 to 32 mA cm<sup>−2</sup>. (<b>f</b>) Long-term cycling stability at 10 mA cm<sup>−2</sup>. The inset is the GCD curves of the first 5 cycles and those after 5000 cycles [<a href="#B47-materials-17-06195" class="html-bibr">47</a>].</p> "> Figure 8
<p>Composites containing CNOs and different resins [<a href="#B83-materials-17-06195" class="html-bibr">83</a>].</p> "> Figure 9
<p>Preparation of an electrochemical sensor based on mesoporous carbon–graphene composites [<a href="#B57-materials-17-06195" class="html-bibr">57</a>].</p> "> Figure 10
<p>(<b>A</b>) The LSV of bulk g-C<sub>3</sub>N<sub>4</sub> (cyan) and bulk triazole-based C<sub>3</sub>N<sub>5</sub> (purple). (<b>B</b>) The LSV and (<b>C</b>) Tafel plots and (<b>D</b>) kinetic current density of MCN-11 (black), MCN-11-G1 (red), MCN-11-G2 (green), MCN-11-G3 (blue), MCN-11-G4 (pink), and bulk g-C<sub>3</sub>N<sub>4</sub> (cyan) measured in an O<sub>2</sub>-saturated 0.1 M KOH electrolyte at 5 mV s<sup>−1</sup> and 1600 rpm. (<b>E</b>) (top) Electron transfer number and (bottom) HO<sub>2</sub><sup>−</sup> yield of bulk g-C<sub>3</sub>N<sub>4</sub> and MCN-11-G3 and (<b>F</b>) chronoamperometric responses at 0.56 V in N<sub>2</sub>-saturated 0.1 M KOH on MCN-11-G3 (blue) and Pt/C electrode (red) following the introduction of O<sub>2</sub> and methanol (0.3 M) at a 1600 rpm rotation rate. Abbreviations: MCN-11; MCN-11-G1; MCN-11-G2; MCN-11-G3, and MCN-11-G4—the materials obtained for the g-C<sub>3</sub>N<sub>4</sub> hybrids prepared from GO with different amounts: 0, 0.7, 1.4, 2.1, and 2.8 wt%, respectively [<a href="#B109-materials-17-06195" class="html-bibr">109</a>].</p> "> Figure 11
<p>(<b>a</b>) Fourier-transform infrared spectra. (<b>b</b>) C K- and (<b>c</b>) N K-edge Near Edge X-Ray Absorption Fine Structure spectra of the (i) C<sub>3</sub>N<sub>7</sub> and (ii) C<sub>3</sub>N<sub>6</sub> with the reference materials of (iii) triazole-based mesoporous C<sub>3</sub>N<sub>5</sub> and (iv) g-C<sub>3</sub>N<sub>4</sub>. (<b>d</b>) The proposed phase transition route of 5-amino-1<span class="html-italic">H</span>-tetrazole depending on its pyrolysis temperature [<a href="#B112-materials-17-06195" class="html-bibr">112</a>].</p> ">
Abstract
:1. Introduction
2. Definition of Mesoporous Materials and Composites
3. Physical and Chemical Properties of Mesoporous Materials with Relevance in Electrochemical Processes
4. Preparation of Mesoporous Carbon/CN Composites
4.1. Possible Modification Approaches of CNs
4.2. Methods of Synthesis of Mesoporus Carbon Composites
4.3. Factors Affecting the Size of the Pores
4.4. Heteroatom-Doped Mesoporous Carbon/CN Composites
5. Application of Mesoporous Carbon/CN Composites: Catalysis and Electrochemistry
5.1. Electrochemical Applications of Mesoporous Carbon/CN Composites
Carbon Nanostructure | Precursor of Mesoporous Carbon | Template | Pore-Forming Agent | T (°C) | Surface Area (m2 g−1) | Pore Volume (cm3 g−1) | Pore Size (nm) | Heteroatom (%) | Cs (F g−1) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Graphene | Resol, urea | Hard | F127, TEOS | 850 | 1348 | 1.18 | 3.6 | N (3) | 246 | [46] |
Graphene | 3-Aminophenol, HCHO, ethylenediamine | Hard | TEOS | 700 | 989 | 1.82 | 10.6 | N (7) | 249 | [43] |
Graphene | Pyrrole, (NH4)2S2O8 | Hard | P123, TEOS | 900 | 383 | - | 2–5 | N (3.9) | 196.5 | [47] |
Graphene | CCl4, ethylenediamine | Hard | SBA-15 | 600 | 362 | 0.43 | 4–22 | N (10) | 240 | [39] |
Graphene | Phenol, HCHO, S | Hard | F127, TEOS | 800 | 1709 | 1.89 | 1.41 4.54 | S (0.1) | 314 | [44] |
Graphene | Resol, dicyandiamide | Hard | F127, TEOS | 700 | 1569 | 1.38 | 0.56–6.4 | N (6.25) | 377 | [45] |
Fullerene C60 | Chlorinated naphthalene | Hard | SBA-15 | 900 | 680 | 0.85 | 4.5–10.6 | - | 116 | [40] |
Graphene CNTs | Aniline, (NH4)2S2O8 | Hard | SiO2 | 900 | 785.7 | 1.66 | 7–22 | N (7.3) | 112 | [35] |
Fullerene C70 | Chlorinated naphthalene | Hard | SBA-15 | 900 | 585.8 | 0.79 | 2.7–10.1 | - | 172 | [41] |
Fullerene C60 | Sucrose | Hard | SBA-15 | 900 | 808 | 1.5 | 3.6 | - | 213 | [42] |
Graphene | 2,6-Diaminopyridine | Soft | PS-b-PEO | 700 | 324 | - | 8–25 | N (19) | 256 | [76] |
Graphene | resorcinol, hexamine | Soft | F127 | 800 | 1072 | - | 2.7 | - | 209 | [55] |
Graphene | phenol, HCHO | Soft | F127 | 800 | 2109 | 1.24 | 3.41 | - | 329.5 | [51] |
Graphene | Resorcinol, mesitylene, hexamine | Soft | F127 | 800 | 1040 | 0.73 | 1.4–3.6 | N (5.24) | 304 | [56] |
Graphene | Phenol, HCHO | Soft | F127 | 800 | 1309 | 0.89 | 0.71–4.75 | - | 332.5 | [52] |
CNOs | ‘Star’ polymer, HCHO | Block copolymer | PMA chains | 800 | 247 | 0.139 | 4–8 | N (0.7) | 139 | [30] |
CNOs | ‘Star’ polymer | Block copolymer | PMA chains | 800 | 74 | 1.44 | 3–14 | N (8.0) | 83 | [34] |
Graphene | Pyrrole, (NH4)2S2O8 | - | - | 700 | - | - | - | N (9) | 296 | [77] |
Graphene | Glucose, graphene | - | - | 800 | 763 | 3.06 | - | 305.5 | [78] | |
Graphene | Ethylenediamine, phytic acid | - | - | 900 | 596 | 0.55 | 3.7 | N (3.6) P (0.3) | 201 | [79] |
Graphene | Resorcinol, HCHO | - | - | 800 | 534 | 1.28 | 7.2 | - | 120 | [74] |
Graphene | CTAB, aqueous mesophase pitch | - | - | 900 | 1151 | 0.86 | 4.3–17 | - | 356.3 | [80] |
Graphene | Polyacrylonitrile | - | - | 800 | 389 | - | 15–65 | N (10) | 431.9 | [81] |
Graphene | Urea, pyrrole | - | - | 550 | 158 | - | 3.2 | N (-) | 803 | [75] |
Graphene CNTs | Activated carbon | - | - | 450 | 953 | 1.075 | 4.5 | N (7.38) | 750 | [82] |
CNOs | Resorcinol, HCHO | Soft | F127 | 800 | 723 | 0.659 | 5.5–6.5 | - | 85 | [83] |
CNOs | Resorcinol, HCHO, melamine | Soft | F127 | 800 | 923 | 1.242 | 8–11 | N (2.3) | 160 | [83] |
5.2. Catalytic and Electrocatalytic Properties of Mesoporous Carbon/CN Composites
5.3. Other Applications of Mesoporous Carbon/CN Composites
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Poothanari, M.A.; Pottathara, Y.B.; Thomas, S. Carbon Nanostructures for Electromagnetic Shielding Applications. In Industrial Applications of Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2019; pp. 205–223. ISBN 978-0-12-815749-7. [Google Scholar]
- Wang, N.; Pandit, S.; Ye, L.; Edwards, M.; Mokkapati, V.R.S.S.; Murugesan, M.; Kuzmenko, V.; Zhao, C.; Westerlund, F.; Mijakovic, I.; et al. Efficient Surface Modification of Carbon Nanotubes for Fabricating High Performance CNT Based Hybrid Nanostructures. Carbon 2017, 111, 402–410. [Google Scholar] [CrossRef]
- Slepičková Kasálková, N.; Slepička, P.; Švorčík, V. Carbon Nanostructures, Nanolayers, and Their Composites. Nanomaterials 2021, 11, 2368. [Google Scholar] [CrossRef] [PubMed]
- Noonan, O.; Liu, Y.; Huang, X.; Yu, C. Layered Graphene/Mesoporous Carbon Heterostructures with Improved Mesopore Accessibility for High Performance Capacitive Deionization. J. Mater. Chem. A 2018, 6, 14272–14280. [Google Scholar] [CrossRef]
- Wang, G.; Dong, Q.; Wu, T.; Zhan, F.; Zhou, M.; Qiu, J. Ultrasound-Assisted Preparation of Electrospun Carbon Fiber/Graphene Electrodes for Capacitive Deionization: Importance and Unique Role of Electrical Conductivity. Carbon 2016, 103, 311–317. [Google Scholar] [CrossRef]
- Javanbakht, S.; Namazi, H. Doxorubicin Loaded Carboxymethyl Cellulose/Graphene Quantum Dot Nanocomposite Hydrogel Films as a Potential Anticancer Drug Delivery System. Mater. Sci. Eng. C 2018, 87, 50–59. [Google Scholar] [CrossRef]
- Mohamed, M.G.; Atayde, E.C.; Matsagar, B.M.; Na, J.; Yamauchi, Y.; Wu, K.C.-W.; Kuo, S.-W. Construction Hierarchically Mesoporous/Microporous Materials Based on Block Copolymer and Covalent Organic Framework. J. Taiwan Inst. Chem. Eng. 2020, 112, 180–192. [Google Scholar] [CrossRef]
- Eftekhari, A.; Fan, Z. Ordered Mesoporous Carbon and Its Applications for Electrochemical Energy Storage and Conversion. Mater. Chem. Front. 2017, 1, 1001–1027. [Google Scholar] [CrossRef]
- Petkovich, N.D.; Stein, A. Controlling Macro- and Mesostructures with Hierarchical Porosity through Combined Hard and Soft Templating. Chem. Soc. Rev. 2013, 42, 3721–3739. [Google Scholar] [CrossRef]
- Xin, W.; Song, Y. Mesoporous Carbons: Recent Advances in Synthesis and Typical Applications. RSC Adv. 2015, 5, 83239–83285. [Google Scholar] [CrossRef]
- Tanaka, S.; Nishiyam, N. Morphology Control of Ordered Mesoporous Carbon Using Organic-Templating Approach. In Progress in Molecular and Environmental Bioengineering—From Analysis and Modeling to Technology Applications; Carpi, A., Ed.; InTech: Houston, TX, USA, 2011; ISBN 978-953-307-268-5. [Google Scholar]
- Wang, H.; Shao, Y.; Mei, S.; Lu, Y.; Zhang, M.; Sun, J.; Matyjaszewski, K.; Antonietti, M.; Yuan, J. Polymer-Derived Heteroatom-Doped Porous Carbon Materials. Chem. Rev. 2020, 120, 9363–9419. [Google Scholar] [CrossRef]
- Lin, Z.; Zeng, Z.; Gui, X.; Tang, Z.; Zou, M.; Cao, A. Carbon Nanotube Sponges, Aerogels, and Hierarchical Composites: Synthesis, Properties, and Energy Applications. Adv. Energy Mater. 2016, 6, 1600554. [Google Scholar] [CrossRef]
- Lamy-Mendes, A.; Silva, R.F.; Durães, L. Advances in Carbon Nanostructure–Silica Aerogel Composites: A Review. J. Mater. Chem. A 2018, 6, 1340–1369. [Google Scholar] [CrossRef]
- Hu, Y.; Shenderova, O.A.; Hu, Z.; Padgett, C.W.; Brenner, D.W. Carbon Nanostructures for Advanced Composites. Rep. Prog. Phys. 2006, 69, 1847–1895. [Google Scholar] [CrossRef]
- Dai, L.; Mau, A.W.H. Controlled Synthesis and Modification of Carbon Nanotubes and C60: Carbon Nanostructures for Advanced Polymeric Composite Materials. Adv. Mater. 2001, 13, 899–913. [Google Scholar] [CrossRef]
- Park, S.-H.; Bae, J. Polymer Composite Containing Carbon Nanotubes and Their Applications. Recent Pat. Nanotechnol. 2017, 11, 109–115. [Google Scholar] [CrossRef]
- Rahman, M.M.; Ara, M.G.; Alim, M.A.; Uddin, M.S.; Najda, A.; Albadrani, G.M.; Sayed, A.A.; Mousa, S.A.; Abdel-Daim, M.M. Mesoporous Carbon: A Versatile Material for Scientific Applications. Int. J. Mol. Sci. 2021, 22, 4498. [Google Scholar] [CrossRef]
- Sattler, K.D. Carbon Nanomaterials Sourcebook: Nanoparticles, Nanocapsules, Nanofibers, Nanoporous Structures, and Nanocomposites, Volume II; CRC Press: Boca Raton, FL, USA, 2018; ISBN 978-1-315-36244-1. [Google Scholar]
- Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt, K.D.; Chu, C.T.W.; Olson, D.H.; Sheppard, E.W.; McCullen, S.B.; et al. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J. Am. Chem. Soc. 1992, 114, 10834–10843. [Google Scholar] [CrossRef]
- Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism. Nature 1992, 359, 710–712. [Google Scholar] [CrossRef]
- Ryoo, R.; Joo, S.H.; Jun, S. Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation. J. Phys. Chem. B 1999, 103, 7743–7746. [Google Scholar] [CrossRef]
- Liu, C.; Chu, J.; Liu, Y.; Lyu, Y.; Guo, B. The Synergistic Effect of Carbon Coating and CNTs Compositing on the Hard Carbon Anode for Sodium Ion Batteries. RSC Adv. 2019, 9, 21667–21670. [Google Scholar] [CrossRef]
- Liu, B.; Liu, L.; Yu, Y.; Zhang, Y.; Chen, A. Synthesis of Mesoporous Carbon with Tunable Pore Size for Supercapacitors. New J. Chem. 2020, 44, 1036–1044. [Google Scholar] [CrossRef]
- Liu, R.; Wang, X.; Zhao, X.; Feng, P. Sulfonated Ordered Mesoporous Carbon for Catalytic Preparation of Biodiesel. Carbon 2008, 46, 1664–1669. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, S.; Luo, Y.; Pan, S.; Ding, H.; Li, G. Synthesis of Mesoporous Carbon Capsules Encapsulated with Magnetite Nanoparticles and Their Application in Wastewater Treatment. J. Mater. Chem. 2011, 21, 3664. [Google Scholar] [CrossRef]
- Srivastava, I.; Singh, P.K.; Gupta, T.; Sankararamakrishnan, N. Preparation of Mesoporous Carbon Composites and Its Highly Enhanced Removal Capacity of Toxic Pollutants from Air. J. Environ. Chem. Eng. 2019, 7, 103271. [Google Scholar] [CrossRef]
- Kerimkulova, A.R.; Azat, S.; Mansurov, Z.A.; Gilmanov, M.K.; Ibragimova, S.A.; Adekenov, S.M.; Rachimova, B.B. Mesoporous Nano Carbon Sorbents for Separating Different Biomolecules. Adv. Mater. Res. 2012, 535–537, 284–288. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-Based Composite Materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef]
- Siemiaszko, G.; Hryniewicka, A.; Breczko, J.; Delgado, O.F.; Markiewicz, K.H.; Echegoyen, L.; Plonska-Brzezinska, M.E. Polymeric Network Hierarchically Organized on Carbon Nano-Onions: Block Polymerization as a Tool for the Controlled Formation of Specific Pore Diameters. ACS Appl. Polym. Mater. 2022, 4, 2442–2458. [Google Scholar] [CrossRef]
- Reyhani, R.; Zadhoush, A.; Tabrizi, N.S.; Nazockdast, H.; Naeimirad, M. Synthesis and Characterization of Powdered CNT-Doped Carbon Aerogels. J. Non-Cryst. Solids 2021, 571, 121058. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Gong, H.; Wu, K.-H.; Ba, H.; Duong-Viet, C.; Jiang, C.; Pham-Huu, C.; Su, D. N-Doped 3D Mesoporous Carbon/Carbon Nanotubes Monolithic Catalyst for H2S Selective Oxidation. ACS Appl. Nano Mater. 2019, 2, 3780–3792. [Google Scholar] [CrossRef]
- Fulvio, P.F.; Mayes, R.T.; Wang, X.; Mahurin, S.M.; Bauer, J.C.; Presser, V.; McDonough, J.; Gogotsi, Y.; Dai, S. “Brick-and-Mortar” Self-Assembly Approach to Graphitic Mesoporous Carbon Nanocomposites. Adv. Funct. Mater. 2011, 21, 2208–2215. [Google Scholar] [CrossRef]
- Siemiaszko, G.; Hryniewicka, A.; Breczko, J.; Brzezinski, K.; Plonska-Brzezinska, M.E. Carbon Nano-Onion Induced Organization of Polyacrylonitrile-Derived Block Star Polymers to Obtain Mesoporous Carbon Materials. Chem. Commun. 2022, 58, 6829–6832. [Google Scholar] [CrossRef] [PubMed]
- Tu, S.; Su, H.; Sui, D.; He, Y.; Cheng, M.; Bai, P.; Zhang, C.; Sun, P.; Wang, C.; Jiang, J.; et al. Mesoporous Carbon Nanomaterials with Tunable Geometries and Porous Structures Fabricated by a Surface-Induced Assembly Strategy. Energy Storage Mater. 2021, 35, 602–609. [Google Scholar] [CrossRef]
- Xie, Y.; Kocaefe, D.; Chen, C.; Kocaefe, Y. Review of Research on Template Methods in Preparation of Nanomaterials. J. Nanomater. 2016, 2016, 2302595. [Google Scholar] [CrossRef]
- Kong, Y.; Nanjundan, A.K.; Liu, Y.; Song, H.; Huang, X.; Yu, C. Modulating Ion Diffusivity and Electrode Conductivity of Carbon Nanotube@Mesoporous Carbon Fibers for High Performance Aluminum–Selenium Batteries. Small 2019, 15, 1904310. [Google Scholar] [CrossRef]
- Song, X.; Ning, G.; Ma, X.; Yu, Z.; Wang, G. N-Doped Carbon Nanotube-Reinforced N-Doped Mesoporous Carbon for Flue Gas Desulfurization. Ind. Eng. Chem. Res. 2018, 57, 4245–4252. [Google Scholar] [CrossRef]
- Nazari, M.; Rahmanifar, M.S.; Noori, A.; Li, W.; Zhang, C.; Mousavi, M.F. The Ordered Mesoporous Carbon Nitride-Graphene Aerogel Nanocomposite for High-Performance Supercapacitors. J. Power Sources 2021, 494, 229741. [Google Scholar] [CrossRef]
- Benzigar, M.R.; Joseph, S.; Ilbeygi, H.; Park, D.-H.; Sarkar, S.; Chandra, G.; Umapathy, S.; Srinivasan, S.; Talapaneni, S.N.; Vinu, A. Highly Crystalline Mesoporous C60 with Ordered Pores: A Class of Nanomaterials for Energy Applications. Angew. Chem. Int. Ed. 2018, 57, 569–573. [Google Scholar] [CrossRef]
- Benzigar, M.R.; Joseph, S.; Baskar, A.V.; Park, D.-H.; Chandra, G.; Umapathy, S.; Talapaneni, S.N.; Vinu, A. Ordered Mesoporous C70 with Highly Crystalline Pore Walls for Energy Applications. Adv. Funct. Mater. 2018, 28, 1803701. [Google Scholar] [CrossRef]
- Baskar, A.V.; Ruban, A.M.; Davidraj, J.M.; Singh, G.; Al-Muhtaseb, A.H.; Lee, J.M.; Yi, J.; Vinu, A. Single-Step Synthesis of 2D Mesoporous C60/Carbon Hybrids for Supercapacitor and Li-Ion Battery Applications. Bull. Chem. Soc. Jpn. 2021, 94, 133–140. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Song, H.; Noonan, O.; Liang, C.; Huang, X.; Yu, C. Single-Layered Mesoporous Carbon Sandwiched Graphene Nanosheets for High Performance Ionic Liquid Supercapacitors. J. Phys. Chem. C 2017, 121, 23947–23954. [Google Scholar] [CrossRef]
- Lu, S.; Guo, K.; Xie, Y.; Ning, J. Ordered Mesoporous Carbons Loading on Sulfonated Graphene by Multi-Components Co-Assembly for Supercapacitor Applications. Energy Technol. 2018, 6, 1975–1985. [Google Scholar] [CrossRef]
- Song, Y.; Yang, J.; Wang, K.; Haller, S.; Wang, Y.; Wang, C.; Xia, Y. In-Situ Synthesis of Graphene/Nitrogen-Doped Ordered Mesoporous Carbon Nanosheet for Supercapacitor Application. Carbon 2016, 96, 955–964. [Google Scholar] [CrossRef]
- Sui, L.; Wang, Y.; Ji, W.; Kang, H.; Dong, L.; Yu, L. N-Doped Ordered Mesoporous Carbon/Graphene Composites with Supercapacitor Performances Fabricated by Evaporation Induced Self-Assembly. Int. J. Hydrogen Energy 2017, 42, 29820–29829. [Google Scholar] [CrossRef]
- Zhu, J.; Feng, T.; Du, X.; Wang, J.; Hu, J.; Wei, L. High Performance Asymmetric Supercapacitor Based on Polypyrrole/Graphene Composite and Its Derived Nitrogen-Doped Carbon Nano-Sheets. J. Power Sources 2017, 346, 120–127. [Google Scholar] [CrossRef]
- Zhen, Q.; Ma, H.; Jin, Z.; Zhu, D.; Liu, X.; Sun, Y.; Zhang, C.; Pang, H. Electrochemical Sensor for Rutin Detection Based on N-Doped Mesoporous Carbon Nanospheres and Graphene. New J. Chem. 2021, 45, 4986–4993. [Google Scholar] [CrossRef]
- Shen, Z.; Du, J.; Mo, Y.; Chen, A. Nanocomposites of Reduced Graphene Oxide Modified with Mesoporous Carbon Layers Anchored by Hollow Carbon Spheres for Energy Storage. Carbon 2021, 173, 22–30. [Google Scholar] [CrossRef]
- Lei, Z.; Christov, N.; Zhao, X.S. Intercalation of Mesoporous Carbon Spheres between Reduced Graphene Oxide Sheets for Preparing High-Rate Supercapacitor Electrodes. Energy Environ. Sci. 2011, 4, 1866–1873. [Google Scholar] [CrossRef]
- Song, Y.; Li, Z.; Guo, K.; Shao, T. Hierarchically Ordered Mesoporous Carbon/Graphene Composites as Supercapacitor Electrode Materials. Nanoscale 2016, 8, 15671–15680. [Google Scholar] [CrossRef]
- Chen, P.; Lu, S.; Yang, C.; He, Z.; Chen, X.; Guo, K. Ordered Mesoporous Carbons Loading on Graphene after Different Molten Salt Activations for Supercapacitor Applications. Energy Technol. 2018, 6, 2273–2281. [Google Scholar] [CrossRef]
- Yang, S.; Feng, X.; Wang, L.; Tang, K.; Maier, J.; Müllen, K. Graphene-Based Nanosheets with a Sandwich Structure. Angew. Chem. Int. Ed. 2010, 49, 4795–4799. [Google Scholar] [CrossRef]
- Ma, T.-Y.; Liu, L.; Yuan, Z.-Y. Direct Synthesis of Ordered Mesoporous Carbons. Chem. Soc. Rev. 2013, 42, 3977–4003. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Wang, Y.; Wu, F.; Liu, W.; Zhang, S. Graphene-Containing Ordered Mesoporous Carbons Synthesized by One-Pot Aqueous Route and Its Electrochemical Performance. Polym. Compos. 2017, 38, 1438–1446. [Google Scholar] [CrossRef]
- Chen, P.; Yang, C.; He, Z.; Guo, K. One-Pot Facile Route to Fabricate the Precursor of Sulfonated Graphene/N-Doped Mesoporous Carbons Composites for Supercapacitors. J. Mater. Sci. 2019, 54, 4180–4191. [Google Scholar] [CrossRef]
- Liu, J.; Bo, X.; Zhou, M.; Guo, L. A Nanocomposite Prepared from Metal-Free Mesoporous Carbon Nanospheres and Graphene Oxide for Voltammetric Determination of Doxorubicin. Microchim. Acta 2019, 186, 639. [Google Scholar] [CrossRef]
- Zhu, X.; Xia, Y.; Zhang, X.; Al-Khalaf, A.A.; Zhao, T.; Xu, J.; Peng, L.; Hozzein, W.N.; Li, W.; Zhao, D. Synthesis of Carbon Nanotubes@mesoporous Carbon Core–Shell Structured Electrocatalysts via a Molecule-Mediated Interfacial Co-Assembly Strategy. J. Mater. Chem. A 2019, 7, 8975–8983. [Google Scholar] [CrossRef]
- Wang, L.; Sun, L.; Tian, C.; Tan, T.; Mu, G.; Zhang, H.; Fu, H. A Novel Soft Template Strategy to Fabricate Mesoporous Carbon/Graphene Composites as High-Performance Supercapacitor Electrodes. RSC Adv. 2012, 2, 8359–8367. [Google Scholar] [CrossRef]
- Li, M.; Ober, C.K. Block Copolymer Patterns and Templates. Mater. Today 2006, 9, 30–39. [Google Scholar] [CrossRef]
- Naumann, S. Strategies for Pore-Diameter Control in Mesoporous Carbons Derived from Organic Self-Assembly Processes. Org. Mater. 2021, 03, 283–294. [Google Scholar] [CrossRef]
- Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B.F.; Stucky, G.D. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. J. Am. Chem. Soc. 1998, 120, 6024–6036. [Google Scholar] [CrossRef]
- Zhai, C.; Li, S.; Wang, J.; Liu, Y. Nitrogen-Doped Porous Carbon Sphere Supported Pt Nanoparticles for Methanol and Ethanol Electro-Oxidation in Alkaline Media. RSC Adv. 2018, 8, 36353–36359. [Google Scholar] [CrossRef]
- Wang, Z.; Stein, A. Morphology Control of Carbon, Silica, and Carbon/Silica Nanocomposites: From 3D Ordered Macro-/Mesoporous Monoliths to Shaped Mesoporous Particles. Chem. Mater. 2008, 20, 1029–1040. [Google Scholar] [CrossRef]
- Libbrecht, W.; Verberckmoes, A.; Thybaut, J.W.; Van Der Voort, P.; De Clercq, J. Tunable Large Pore Mesoporous Carbons for the Enhanced Adsorption of Humic Acid. Langmuir 2017, 33, 6769–6777. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Gu, D.; Zhang, F.; Shi, Y.; Yang, H.; Li, Z.; Yu, C.; Tu, B.; Zhao, D. Ordered Mesoporous Polymers and Homologous Carbon Frameworks: Amphiphilic Surfactant Templating and Direct Transformation. Angew. Chem. Int. Ed. 2005, 44, 7053–7059. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Song, C.; Kong, A. N–S-Codoped Mesoporous Carbons from Melamine-2-Thenaldehyde Polymers on Carbon Nanotubes for Oxygen Reduction and Zn-Air Batteries. J. Solid State Chem. 2020, 287, 121348. [Google Scholar] [CrossRef]
- Chang, Y.; Ren, Y.; Zhu, L.; Li, Y.; Li, T.; Ren, B. Preparation of Macadamia Nut Shell Porous Carbon and Its Electrochemical Performance as Cathode Material for Lithium–Sulfur Batteries. Electrochimica Acta 2022, 420, 140454. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Q.; Ji, G.; Li, A.; Niu, J. Doping Strategy, Properties and Application of Heteroatom-Doped Ordered Mesoporous Carbon. RSC Adv. 2021, 11, 5361–5383. [Google Scholar] [CrossRef]
- Wang, X.; Lee, J.S.; Zhu, Q.; Liu, J.; Wang, Y.; Dai, S. Ammonia-Treated Ordered Mesoporous Carbons as Catalytic Materials for Oxygen Reduction Reaction. Chem. Mater. 2010, 22, 2178–2180. [Google Scholar] [CrossRef]
- Khan, S.; Ul-Islam, M.; Sajjad, M.; Hussain, I.; Idrees, M.; Saeed, M.; Imran, M.; Javed, M.S. Nitrogen and Sulfur Co-Doped Two-Dimensional Highly Porous Carbon Nanosheets for High-Performance Lithium–Sulfur Batteries. Energy Fuels 2022, 36, 2220–2227. [Google Scholar] [CrossRef]
- Ke, Q.; Wang, J. Graphene-Based Materials for Supercapacitor Electrodes—A Review. J. Mater. 2016, 2, 37–54. [Google Scholar] [CrossRef]
- Li, M.; Ding, J.; Xue, J. Mesoporous Carbon Decorated Graphene as an Efficient Electrode Material for Supercapacitors. J. Mater. Chem. A 2013, 1, 7469. [Google Scholar] [CrossRef]
- Chandrasekaran, N.; Premkumar, V.; Senthil Kumar, S.M.; Ram, R. Single-Step Rapid Synthesis of Monolithic Mesoporous Carbon/Graphene Aerogels with Improved Double Layer Capacitance. New J. Chem. 2018, 42, 7371–7376. [Google Scholar] [CrossRef]
- Baruah, K.; Sarmah, D.; Kumar, A. Ternary Hybrid Nanocomposites of Polypyrrole Nanotubes with 2D Self-Assembled Heterostructures of Protonated g-C3N4-rGO as Supercapacitor Electrodes. Ionics 2021, 27, 3153–3168. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, T.; Gao, T.-N.; Xiong, H.; Zhang, R.; Liu, Z.; Song, S.; Dai, S.; Qiao, Z.-A. Multistage Self-Assembly Strategy: Designed Synthesis of N-Doped Mesoporous Carbon with High and Controllable Pyridine N Content for Ultrahigh Surface-Area-Normalized Capacitance. CCS Chem. 2021, 3, 870–881. [Google Scholar] [CrossRef]
- Sridevi, G.; Narmatha, M.; Sathish, M. N-Containing Carbon/Graphene Nanocomposites for Electrochemical Supercapacitor Applications. J. Nanosci. Nanotechnol. 2017, 17, 1267–1274. [Google Scholar] [CrossRef]
- Liu, K.-K.; Jin, B.; Meng, L.-Y. Glucose/Graphene-Based Aerogels for Gas Adsorption and Electric Double Layer Capacitors. Polymers 2018, 11, 40. [Google Scholar] [CrossRef]
- Zheng, L.; Xia, K.; Han, B.; Zhou, C.; Gao, Q.; Wang, H.; Pu, S.; Wu, J. N/P Codoped Porous Carbon-Coated Graphene Nanohybrid as a High-Performance Electrode for Supercapacitors. ACS Appl. Nano Mater. 2018, 1, 6742–6751. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, Y.; Zhang, Q.; Fang, C.; Wu, L.; Bai, M.; Yao, Y. Facile Synthesis of Mesoporous Carbon Microspheres/Graphene Composites in Situ for Application in Supercapacitors. RSC Adv. 2019, 9, 32258–32269. [Google Scholar] [CrossRef]
- Kong, L.; Ma, Q.; Xu, Z.; Shen, X.; Wang, J.; Zhu, J. Three-Dimensional Graphene Network Deposited with Mesoporous Nitrogen-Doped Carbon from Non-Solvent Induced Phase Inversion for High-Performance Supercapacitors. J. Colloid Interface Sci. 2020, 558, 21–31. [Google Scholar] [CrossRef]
- Liu, Z.-A.; Tao, Y.; Song, X.-Z.; Bao, M.; Tan, Z. A Three Dimensional N-Doped Graphene/CNTs/AC Hybrid Material for High-Performance Supercapacitors. RSC Adv. 2017, 7, 6664–6670. [Google Scholar] [CrossRef]
- Siemiaszko, G.; Breczko, J.; Hryniewicka, A.; Ilnicka, A.; Markiewicz, K.H.; Terzyk, A.P.; Plonska-Brzezinska, M.E. Composites Containing Resins and Carbon Nano-Onions as Efficient Porous Carbon Materials for Supercapacitors. Sci. Rep. 2023, 13, 6606. [Google Scholar] [CrossRef]
- Krestinin, A.V.; Knerel’man, E.I.; Dremova, N.N.; Golodkov, O.N. Carbon Nanopaper Produced from Carbon Nanotubes/Resorcinol–Formaldehyde Xerogel Nanocomposite for Electrochemical Supercapasitors. Russ. J. Electrochem. 2023, 59, 666–677. [Google Scholar] [CrossRef]
- Krestinin, A.V.; Tarasenko, A.B.; Kochanova, S.A.; Kislenko, S.A. Characteristics of Power Supercapacitor with Electrodes Made of Composite Carbon Nanopaper Based on Carbon Nanotubes and Resorcinol–Formaldehyde Xerogel. Russ. J. Electrochem. 2024, 60, 513–525. [Google Scholar] [CrossRef]
- Chen, X.; Wang, S.; Wang, Y.; Yang, Z.; Liu, S.; Gao, J.; Su, Z.; Zhu, P.; Zhao, X.; Wang, G. Nitrogen-Doped Mesoporous Carbon Layer with Embedded Co/CoOx Nanoparticles Coated on CNTs for Oxygen Reduction Reaction in Zn–Air Battery. Electrocatalysis 2019, 10, 277–286. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, J.; Song, H.; Xue, D.; Zhong, X.; Wang, J. Polar and Nonpolar Matrix Consisting of Twined Multiwalled Carbon Nanotube and High Nitrogen-Doped Porous Carbon Derived from Ionic Liquid for Stable Li-S Battery. Energy Technol. 2019, 7, 1900470. [Google Scholar] [CrossRef]
- Zhe, R.; Zhu, T.; Wei, X.; Ren, Y.; Qing, C.; Li, N.; Wang, H.-E. Graphene Oxide Wrapped Hollow Mesoporous Carbon Spheres as a Dynamically Bipolar Host for Lithium–Sulfur Batteries. J. Mater. Chem. A 2022, 10, 24422–24433. [Google Scholar] [CrossRef]
- Wu, X.; Li, S.; Wang, B.; Liu, J.; Yu, M. Free-Standing 3D Network-like Cathode Based on Biomass-Derived N-Doped Carbon/Graphene/g-C3N4 Hybrid Ultrathin Sheets as Sulfur Host for High-Rate Li-S Battery. Renew. Energy 2020, 158, 509–519. [Google Scholar] [CrossRef]
- Wang, Y.-Q.; Zhao, Y.-S.; Yang, X.-X.; Ren, M.-X.; Lei, B.-Y.; Meng, W.-J.; Zhao, D.-L. Graphene Nanosheet@spherical Ordered Mesoporous Carbon/Sulfur Nanocomposites as Cathode Material for High-Performance Lithium-Sulfur Batteries. Int. J. Hydrogen Energy 2020, 45, 32654–32663. [Google Scholar] [CrossRef]
- Xi, J.; Liu, J.; Gong, Z.; Wang, S.; Li, X.; Yuan, J.; Mei, X.; Luo, Z. Graphene Coated and Nitrogen-Rich Porous Carbon Composites with Sulfur Encapusulation as Cathode for Lithium-Sulfur Batteries. Mater. Lett. 2022, 316, 132050. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhao, K.; Ji, G.; Guo, X.; Han, M.; Wen, J.; Ren, Z.; Zhao, S.; Gao, Z.; Wang, R.; et al. High Sulfur Loading, rGO-Linked and Polymer Binder-Free Cathodes Based on rGO Wrapped N,P-Codoped Mesoporous Carbon as Sulfur Host for Li-S Batteries. Chem. Eng. J. 2019, 361, 1043–1052. [Google Scholar] [CrossRef]
- Kim, Y.; Yun, J.; Shin, H.-S.; Jung, K.-N.; Lee, J.-W. Synergistic Nanoarchitecture of Mesoporous Carbon and Carbon Nanotubes for Lithium–Oxygen Batteries. Nano Converg. 2021, 8, 17. [Google Scholar] [CrossRef]
- Shu, C.; Lin, Y.; Su, D. N-Doped Onion-like Carbon as an Efficient Oxygen Electrode for Long-Life Li–O2 Battery. J. Mater. Chem. A 2016, 4, 2128–2136. [Google Scholar] [CrossRef]
- Ren, M.-X.; He, C.-J.; Duan, Y.-J.; Wang, Y.-Q.; Meng, W.-J.; Hou, Y.-L.; Zhao, D.-L. Mesoporous Silicon Nanocubes Coated by Nitrogen-Doped Carbon Shell and Wrapped by Graphene for High Performance Lithium-Ion Battery Anodes. Ceram. Int. 2022, 48, 4812–4820. [Google Scholar] [CrossRef]
- Jeong, Y.; Lee, K.; Kim, K.; Kim, S. Pore-Structure-Optimized CNT-Carbon Nanofibers from Starch for Rechargeable Lithium Batteries. Materials 2016, 9, 995. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Huang, X.; Qu, D.; Zheng, D.; Wang, G.; Harris, J.; Si, J.; Ding, T.; Chen, J.; Qu, D. Confined Phosphorus in Carbon Nanotube-Backboned Mesoporous Carbon as Superior Anode Material for Sodium/Potassium-Ion Batteries. Nano Energy 2018, 52, 1–10. [Google Scholar] [CrossRef]
- Xi, Y.; Yang, D.; Liu, W.; Qin, Y.; Qiu, X. Preparation of Porous Lignin-Derived Carbon/Carbon Nanotube Composites by Hydrophobic Self-Assembly and Carbonization to Enhance Lithium Storage Capacity. Electrochim. Acta 2019, 303, 1–8. [Google Scholar] [CrossRef]
- Wang, Y.; Fugetsu, B.; Wang, Z.; Gong, W.; Sakata, I.; Morimoto, S.; Hashimoto, Y.; Endo, M.; Dresselhaus, M.; Terrones, M. Nitrogen-Doped Porous Carbon Monoliths from Polyacrylonitrile (PAN) and Carbon Nanotubes as Electrodes for Supercapacitors. Sci. Rep. 2017, 7, 40259. [Google Scholar] [CrossRef]
- Hoffmann, F.; Fröba, M. Vitalising Porous Inorganic Silica Networks with Organic Functions—PMOs and Related Hybrid Materials. Chem. Soc. Rev. 2011, 40, 608–620. [Google Scholar] [CrossRef]
- Peng, C.; Li, Z.; Zhang, X.; Zhou, S.; Zhang, W.; Liu, X.; Zhao, P. Simultaneous Determination of Hydroquinone, Catechol and Resorcinol with High Selectivity Based on Hollow Nitrogen-Doped Mesoporous Carbon Spheres Decorated Graphene. J. Electrochem. Soc. 2018, 165, B212–B219. [Google Scholar] [CrossRef]
- Zhu, D.; Chu, M.; Xin, J.; Wang, X.; O’Halloran, K.P.; Ma, H.; Pang, H.; Tan, L.; Yang, G. Hierarchical and Hollow Boron/Nitrogen Co-Doped Yolk-Shell Mesoporous Carbon Nanospheres Attached to Reduced Graphene Oxide with High Sensing Performance for the Simultaneous Detection of Xanthine and Guanosine. Sens. Actuators B Chem. 2021, 343, 130068. [Google Scholar] [CrossRef]
- Zhou, M.; Guo, J.; Guo, L.; Bai, J. Electrochemical Sensing Platform Based on the Highly Ordered Mesoporous Carbon−Fullerene System. Anal. Chem. 2008, 80, 4642–4650. [Google Scholar] [CrossRef]
- Castelo-Quibén, J.; Bailón-García, E.; Pérez-Fernández, F.J.; Carrasco-Marín, F.; Pérez-Cadenas, A.F. Mesoporous Carbon Nanospheres with Improved Conductivity for Electro-Catalytic Reduction of O2 and CO2. Carbon. 2019, 155, 88–99. [Google Scholar] [CrossRef]
- Kim, C.; Talapaneni, S.N.; Dai, L. Porous Carbon Materials for CO2 Capture, Storage and Electrochemical Conversion. Mater. Rep. Energy 2023, 3, 100199. [Google Scholar] [CrossRef]
- Steele, B.C.H.; Heinzel, A. Materials for Fuel-Cell Technologies. Nature 2001, 414, 345–352. [Google Scholar] [CrossRef]
- Han, S.; Wu, D.; Li, S.; Zhang, F.; Feng, X. Porous Graphene Materials for Advanced Electrochemical Energy Storage and Conversion Devices. Adv. Mater. 2014, 26, 849–864. [Google Scholar] [CrossRef]
- Zhou, Z.; Pang, S.; Liu, Z.; Xu, H.; Cui, G. Interface Engineering for High-Performance Perovskite Hybrid Solar Cells. J. Mater. Chem. A 2015, 3, 19205–19217. [Google Scholar] [CrossRef]
- Kim, I.Y.; Kim, S.; Jin, X.; Premkumar, S.; Chandra, G.; Lee, N.-S.; Mane, G.P.; Hwang, S.-J.; Umapathy, S.; Vinu, A. Ordered Mesoporous C3N5 with a Combined Triazole and Triazine Framework and Its Graphene Hybrids for the Oxygen Reduction Reaction (ORR). Angew. Chem. Int. Ed. 2018, 57, 17135–17140. [Google Scholar] [CrossRef]
- Qu, K.; Zheng, Y.; Dai, S.; Qiao, S.Z. Graphene Oxide-Polydopamine Derived N, S-Codoped Carbon Nanosheets as Superior Bifunctional Electrocatalysts for Oxygen Reduction and Evolution. Nano Energy 2016, 19, 373–381. [Google Scholar] [CrossRef]
- Niu, W.; Li, L.; Liu, J.; Wang, N.; Li, W.; Tang, Z.; Zhou, W.; Chen, S. Graphene-Supported Mesoporous Carbons Prepared with Thermally Removable Templates as Efficient Catalysts for Oxygen Electroreduction. Small 2016, 12, 1900–1908. [Google Scholar] [CrossRef]
- Kim, I.Y.; Kim, S.; Premkumar, S.; Yang, J.; Umapathy, S.; Vinu, A. Thermodynamically Stable Mesoporous C3N7 and C3N6 with Ordered Structure and Their Excellent Performance for Oxygen Reduction Reaction. Small 2020, 16, 1903572. [Google Scholar] [CrossRef]
- Wang, N.; Tian, H.; Zhu, S.-Y.; Yan, D.-Y.; Mai, Y.-Y. Two-Dimensional Nitrogen-Doped Mesoporous Carbon/Graphene Nanocomposites from the Self-Assembly of Block Copolymer Micelles in Solution. Chin. J. Polym. Sci. 2018, 36, 266–272. [Google Scholar] [CrossRef]
- Hou, D.; Zhang, J.; Tian, H.; Li, Q.; Li, C.; Mai, Y. Pore Engineering of 2D Mesoporous Nitrogen-Doped Carbon on Graphene through Block Copolymer Self-Assembly. Adv. Mater. Interfaces 2019, 6, 1901476. [Google Scholar] [CrossRef]
- Xu, Z.; Li, L.; Chen, X.; Xiao, G. N,S-Codoped Mesoporous Carbons Derived from Polymer Micelle-Based Assemblies for the Oxygen Reduction Reaction. ACS Appl. Energy Mater. 2021, 4, 1954–1961. [Google Scholar] [CrossRef]
- Li, X.; Fang, Y.; Zhao, S.; Wu, J.; Li, F.; Tian, M.; Long, X.; Jin, J.; Ma, J. Nitrogen-Doped Mesoporous Carbon Nanosheet/Carbon Nanotube Hybrids as Metal-Free Bi-Functional Electrocatalysts for Water Oxidation and Oxygen Reduction. J. Mater. Chem. A 2016, 4, 13133–13141. [Google Scholar] [CrossRef]
- Xu, C.; Gu, Q.; Li, S.; Ma, J.; Zhou, Y.; Zhang, X.; Jiang, C.; Pham-Huu, C.; Liu, Y. Heteroatom-Doped Monolithic Carbocatalysts with Improved Sulfur Selectivity and Impurity Tolerance for H2S Selective Oxidation. ACS Catal. 2021, 11, 8591–8604. [Google Scholar] [CrossRef]
- Ba, H.; Liu, Y.; Truong-Phuoc, L.; Duong-Viet, C.; Nhut, J.-M.; Nguyen, D.L.; Ersen, O.; Tuci, G.; Giambastiani, G.; Pham-Huu, C. N-Doped Food-Grade-Derived 3D Mesoporous Foams as Metal-Free Systems for Catalysis. ACS Catal. 2016, 6, 1408–1419. [Google Scholar] [CrossRef]
- Long, D.; Chen, W.; Rao, X.; Zheng, S.; Zhang, Y. Synergetic Effect of C60/g-C3N4 Nanowire Composites for Enhanced Photocatalytic H2 Evolution under Visible Light Irradiation. ChemCatChem 2020, 12, 2022–2031. [Google Scholar] [CrossRef]
- Mi, M.; Liu, X.; Kong, W.; Ge, Y.; Dang, W.; Hu, J. Hierarchical Composite of N-Doped Carbon Sphere and Holey Graphene Hydrogel for High-Performance Capacitive Deionization. Desalination 2019, 464, 18–24. [Google Scholar] [CrossRef]
- Feng, B.; Khan, Z.U.; Khan, W.U. 3D Graphene-Supported N-Doped Hierarchically Porous Carbon for Capacitive Deionization of Saline Water. Environ. Sci. Nano 2023, 10, 1163–1176. [Google Scholar] [CrossRef]
- Liu, K.; Chen, B.; Feng, A.; Wu, J.; Hu, X.; Zhou, J.; Yu, Y. Bio-Composite Nanoarchitectonics for Graphene Tofu as Useful Source Material for Capacitive Deionization. Desalination 2022, 526, 115461. [Google Scholar] [CrossRef]
- Li, Y.; Qi, J.; Zhang, W.; Zhang, M.; Li, J. Fabrication of Polyvinylidene Fluoride-Derived Porous Carbon Heterostructure with Inserted Carbon Nanotube via Phase-Inversion Coupled with Annealing for Capacitive Deionization Application. J. Colloid Interface Sci. 2019, 554, 353–361. [Google Scholar] [CrossRef]
- Mondal, S.K. Synthesis of Mesoporous Fullerene and Its Platinum Composite: A Catalyst for PEMFc. J. Electrochem. Soc. 2012, 159, K156–K160. [Google Scholar] [CrossRef]
- Mondal, S.K. Synthesis of Novel Mesoporous Fullerene and Its Application to Electro-Oxidation of Methanol. arXiv 2011, arXiv:1004.4046. [Google Scholar]
- Song, J.; Murata, T.; Tsai, K.; Jia, X.; Sciortino, F.; Ma, R.; Yamauchi, Y.; Hill, J.P.; Shrestha, L.K.; Ariga, K. Fullerphene Nanosheets: A Bottom-Up 2D Material for Single-Carbon-Atom-Level Molecular Discrimination. Adv. Mater. Interfaces 2022, 9, 2102241. [Google Scholar] [CrossRef]
- Ren, W.; Tang, D.; Lu, X.; Sun, J.; Li, M.; Qiu, S.; Fan, D. Novel Multilayer ACF@rGO@OMC Cathode Composite with Enhanced Activity for Electro-Fenton Degradation of Phthalic Acid Esters. Ind. Eng. Chem. Res. 2016, 55, 11085–11096. [Google Scholar] [CrossRef]
Hard-Template Method | Soft-Template Method | |
---|---|---|
Advantages |
|
|
Disadvantages |
|
|
Carbon Nanostructure | Precursor of Mesoporous Carbon | Template | Pore-Forming Agent | T (°C) | Surface Area (m2 g−1) | Pore Volume (cm3 g−1) | Pore Size (nm) | Hetero-Atom (%) | Capacity (mAh g−1) | Applications | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
Graphene | n-Butanol, S | Hard | P123, TEOS | 850 | 381 | 0.27 | 3.0–4.2 | S | 1159 | Li-S batteries | [90] |
Graphene | SiO2/MF, S | Hard | SiO2 | 800 | 879 | 2 | - | N (18.6) S (70 wt%) | 880.8 | [91] | |
CNTs | Emim-dca, S | - | 800 | - | - | <8 | N | 1558.6 | [87] | ||
Graphene | Chitin, urea, g-C3N4, S | - | - | 800 | 342 | - | 2–5 | N S (78 wt%) | 1130 | [89] | |
Graphene | Aniline, phytic acid | - | - | 800 | 683 | 0.26 | - | N (4.57) P (5.07) | 1469 | [92] | |
CNTs | Macadamia nut shells, S | - | - | 900 | - | - | - | S | 1253 | [68] | |
Graphene | m-Aminobenzene sulfonic acid | - | - | 900 | 185 | - | 3 | N (4.07) S (1.28) | 1355 | [71] | |
Graphene | Resorcinol, HCHO, ammonia, S | Hard | TPOS | 800 | 973 | [88] | |||||
CNTs | Resorcinol, HCHO, ethylenediamine | Hard | TEOS | 700 | 749 | 0.90 | ~2.7 | N | conductivity 1.54 S cm−1 | Al-Se batteries | [37] |
CNTs | Dicyandiamide | - | - | 800 | 1685 | - | - | N | 1840 | Li-O2 batteries | [93] |
CNOs | Nitric acid | - | - | 550 | 406 | - | 20.0 | N | 12,181 | [94] | |
Fullerene C60 | Sucrose | Hard | SBA-15 | 900 | 808 | 1.5 | 3.6 | - | 1299 | Li-ion batteries | [42] |
Graphene | 3-Aminopropyl triethoxysilane | Hard | TEOS | 750 | 224 | - | 3.8 | N | 1368 | [95] | |
CNTs | Polyvinyl alcohol, starch | - | - | 700 | 982 | 0.48 | 2.0 | - | 743 | [96] | |
CNTs | Dopamine hydrochloride | - | - | 800 | 321 | - | ~3.7 | N (1.6) | - | Zn–air batteries | [86] |
CNTs | Resorcinol, HCHO | Soft | F-127 | 800 | 146 | - | ~3 | - | 203.6 | Na-ion batteries | [23] |
CNTs | Resorcinol, HCHO | Hard | TEOS | 800 | 1045 | 1.09 | 8.3 | - | 1000 | Na/K-ion batteries | [97] |
CNTs | Aniline, (NH4)2S2O8 | Hard | SiO2 | 900 | 786 | 1.66 | 7–22 | N (7.3) | 700 | Flexible sulfur electrodes | [35] |
CNTs | Lignin | - | - | 900 | 1050 | 1.55 | 39 | - | 905 | Lithium storage | [98] |
Graphene | Resorcinol, HCHO | Hard | TEOS, IL | 800 | 740 | 0.87 | 2.7 | N (5.5) | 347.3 | Energy storage systems | [49] |
Fullerene C70 | 1-Chloronaphtalene | Hard | SBA-15 | 900 | 586 | 0.79 | 10.1 | - | Cs = 172 F g−1 | [41] | |
CNTs | Dopamine, TMB | Soft | F-127 | 800 | 768 | 0.57 | 6.9 | N (6.9) | - | [58] | |
CNTs | Phenol, HCHO | Soft | F-127 | 600 | - | - | - | - | Cs = 20 F g−1 | [99] | |
CNOs | Resorcinol, HCHO | Sof | F-127 | 850 | 700 | 1.14 | 13.7 | - | - | [33] | |
Fullerene C60 | 1-Chloronaphtalene | Hard | SBA-15 | 900 | 680 | 0.85 | 10.6 | - | Cs = 116 F g−1 | fuel cell | [40] |
Carbon Nanostructure | Precursor of Mesoporous Carbon | Template | Pore-Forming Agent | T (°C) | Surface Area (m2 g−1) | Pore Size (nm) | Heteroatom | Linear Range | Limit of Detection | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Graphene | Polydopamine | Hard | TEOS | 800 | - | - | N | 0.5–400 mM for HQ) 1–300 mM (for CC) 3–200 mM (for RC) | 0.15 mM 0.3 mM 1.0 mM | [101] |
Graphene | Resorcinol, HCHO, boric acid, CTAB | Hard | TEOS | 700 | 1239 | 6 | N B | 0.0915–103 μM (for X) 0.0822–128 μM (for G) | 0.0503 μM 0.0462 μM | [102] |
Graphene | Resorcinol, HCHO, CTAB | Hard | TEOS | 800 | - | - | N | 0.5–189 mM (for rutin) | 0.05 mM | [48] |
Fullerene C60 | Sucrose | Hard | SBA-15 | 900 | 1302 | 3.21 | - | - | - | [103] |
Graphene | Phenol, HCHO | Soft | F127 | 700 | 514 | 3 | - | 10 nM–10 μM (for doxorubicine) | 1.50 nM | [57] |
Carbon Nanostructure | Precursor of Mesoporous Carbon | Template | Pore-Forming AGENT | T (°C) | Surface Area (m2 g−1) | Pore Volume (cm3 g−1) | Pore Size (nm) | Heteroatom (%) | Feature | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Application in the ORR | ||||||||||
Graphene | Dopamine, mercapto-ethanol | - | - | 800 | 273 | 0.33 | 3.6 | N (4.1) S (6.1) | Double-layer capacitance 11.1 mF cm−2 | [110] |
Graphene | 2-Fluoroaniline | Hard | FeOOH | 800 | 821 | 0.66 | - | - | Current density 6.1 mA cm−2 | [111] |
Graphene | 5-Amino-1H-tetrazole | Hard | P123 TEOS | 540 | 301 | - | 3.4 | N | Current density 11.1 mA cm−2 | [109] |
Graphene | 5-Amino-1H-tetrazole | Hard | P123 TEOS | 250 300 | 114 167 | - | 4.4 3.3 | N | Current density 8.2 mA cm−2 7.5 mA cm−2 | [112] |
Graphene | m-Phenylene-diamine | Soft | PS-b-PEO | 900 | 812 | 0.69 | 19 | N (2.2) | Current density 5.2 mA cm−2 | [113] |
Graphene | m-Phenylene-diamine | Soft | P123 or F127 | 800 | 420 | - | 8 | N (2.6) | Current density 4.8 mA cm−2 | [114] |
Graphene | m-Amino-thiophenol | Soft | PS-b-PEO | 900 | 799 | 0.94 | 9.4 | N (3.4) S (0.4) | Current density 5.66 mA cm–2 | [115] |
CNTs | Melamine, 2-thenaldehyde | - | - | 900 | 407 | - | 5.44 | N (1.9) S (0.23) | - | [67] |
CNTs | Urea, glucose | - | - | 800 | 594.1 | 0.58 | 2–50 | N (8.5) | ORR and OER activity with a low onset potential | [116] |
Application in selective H2S oxidation | ||||||||||
CNTs | D-glucose, citric acid, (NH4)2CO3 | - | - | 900 | 537 | 0.73 | 6.1 | N (4.0–9.1) | - | [32] |
CNTs | D-glucose, citric acid, (NH4)2CO3 | - | - | 800 | 330 | - | - | N (4.0–5.4) P (0.5–3.3) | - | [117] |
Application in catalysis and photocatalysis | ||||||||||
CNTs | D-glucose,citric acid, (NH4)2CO3 | - | - | 900 | 516 | - | ~4 | N (19.5) | - | [118] |
Fullerene C60 | Urea | - | - | 600 | 117.47 | - | 2.0–6.0 | N | - | [119] |
Carbon Nanostructure | Precursor of Mesoporous Carbon | Template | Pore-Forming Agent | T (°C) | Surface Area (m2 g−1) | Pore Volume (cm3 g−1) | Pore Size (nm) | Heteroatom (%) | Feature | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Application in capacitive deionization | ||||||||||
Graphene | Dopamine | Hard | TEOS | 800 | 1270 | 1.6 | 8–10 | N (4.2) | Cs = 125.7 F g−1 | [4] |
Graphene | Bean protein | - | - | 850 | 1286 | 1.15 | 3.58 | N (1.93) | Cs = 370 F g−1 adsorption capacity 38.5 mg g−1 | [122] |
Graphene | Resorcinol, HCHO | Hard | TPOS | 700 | 338 | 0.62 | - | N (3.11) | Cs = 226.5 F g−1 electrosorption capacity 17.8 mg g−1 in 500 mg L−1 NaCl | [120] |
CNTs | Poly(vinylidene fluoride) | - | - | 800 | 905 | 0.48 | 2–10 | - | Electrosorption capacity 15.1 mg g−1 in 500 mg L−1 NaCl | [123] |
Graphene | Polyacrylonitrile, polystyrene | Soft | PS spheres | 700 | 650 | 0.16 | 10.3 | N | Electrosorption capacity 25.5 mg g−1 in 500 mg L−1 NaCl | [121] |
Application in proton-exchange membrane fuel cells | ||||||||||
Fullerene C60 | 1,2,4-Trinitrobenzen | Hard | KIT-6 SBA15 | 900 | 310.5 100.0 | - | 2.5 3.5 | - | - | [124,125] |
Application in single-carbon-atom-level molecular discrimination | ||||||||||
Fullerene C60 | Ethylenediamine | - | - | 700 | 655.2 | 0.659 | 3.66 | N (1.2) | - | [126] |
Fullerene C70 | Ethylenediamine | - | - | 700 | 114.1 | 0.257 | 3.88 | N (1.7) | - | [126] |
Application in flue gas desulfurization | ||||||||||
CNTs | Melamine, phenolic resin | Hard | MgO | 700 | 223 | - | 20 | N (6.1) | SO2 capacity 21.2 mg g−1 | [38] |
Application in the electro-Fenton process | ||||||||||
Graphene | Active carbon fiber, resol | Soft | F127 | 800 | 533 | 0.45 | 3.8 | - | Electroactive surface area 486 cm2 g–1 Electron transfer resistance 8.60 Ω | [127] |
Electrical applications | ||||||||||
CNTs | Resorcinol, HCHO | Soft | NaDBS | 1050 | 1507.5 | 0.99 | 3.26 | - | - | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hryniewicka, A.; Siemiaszko, G.; Plonska-Brzezinska, M.E. Mesoporous Carbon Composites Containing Carbon Nanostructures: Recent Advances in Synthesis and Applications in Electrochemistry. Materials 2024, 17, 6195. https://doi.org/10.3390/ma17246195
Hryniewicka A, Siemiaszko G, Plonska-Brzezinska ME. Mesoporous Carbon Composites Containing Carbon Nanostructures: Recent Advances in Synthesis and Applications in Electrochemistry. Materials. 2024; 17(24):6195. https://doi.org/10.3390/ma17246195
Chicago/Turabian StyleHryniewicka, Agnieszka, Gabriela Siemiaszko, and Marta E. Plonska-Brzezinska. 2024. "Mesoporous Carbon Composites Containing Carbon Nanostructures: Recent Advances in Synthesis and Applications in Electrochemistry" Materials 17, no. 24: 6195. https://doi.org/10.3390/ma17246195
APA StyleHryniewicka, A., Siemiaszko, G., & Plonska-Brzezinska, M. E. (2024). Mesoporous Carbon Composites Containing Carbon Nanostructures: Recent Advances in Synthesis and Applications in Electrochemistry. Materials, 17(24), 6195. https://doi.org/10.3390/ma17246195