Functionalization of Artwork Packaging Materials Utilizing Ag-Doped TiO2 and ZnO Nanoparticles
<p>Stereomicroscope images of TiO<sub>2</sub>, TiO<sub>2</sub>-Ag (0.5%), TiO<sub>2</sub>-Ag (1%), and TiO<sub>2</sub>-Ag (3%).</p> "> Figure 2
<p>X-ray diffraction measurements of TiO<sub>2</sub>, TiO<sub>2</sub>-Ag (0.5%), TiO<sub>2</sub>-Ag (1%), and TiO<sub>2</sub>-Ag (3%). (A: anatase, R: rutile, * Ag).</p> "> Figure 3
<p>Spectra of TiO<sub>2</sub> and TiO<sub>2</sub>-Ag (0.5%, 1%, 3%) acquired from different analyses, respectively. (<b>a</b>) Micro-Raman spectra; (<b>b</b>) UV–Vis spectra; (<b>c</b>) Kubelka–Munch.</p> "> Figure 4
<p>Stereomicroscope images of ZnO (<b>left</b>) and ZnO-Ag NPs (<b>right</b>).</p> "> Figure 5
<p>Spectra of ZnO and doped ZnO with Ag, respectively. (<b>a</b>) Micro-Raman spectra; (<b>b</b>) UV–VIS spectra recorded by diffuse reflectance spectroscopy; (<b>c</b>) Kubelka–Munch spectra; (<b>d</b>) XRD spectra.</p> "> Figure 6
<p>NP UV analysis images of the paper sample (<b>A</b>) and the Tyvek<sup>®</sup> sample (<b>B</b>).</p> "> Figure 7
<p>Paper packaging. Optical microscopy images (50×) acquired using visible light (<b>left</b>) and UV light (<b>right</b>). (<b>A</b>) Paraloid B72 medium (<b>top</b>) and PVA (<b>bottom</b>) + TiO<sub>2</sub> NPs; (<b>B</b>) Paraloid B72 medium (<b>top</b>) and PVA (<b>bottom</b>) + TiO<sub>2</sub>-Ag NPs.</p> "> Figure 8
<p>Paper Packaging. Optical microscopy images (50×) acquired using visible light (<b>left</b>) and UV light (<b>right</b>). (<b>A</b>) Paraloid B72 medium (<b>top</b>) and PVA (<b>bottom</b>) + ZnO NPs; (<b>B</b>) Paraloid B72 medium (<b>top</b>) and PVA (<b>bottom</b>) + ZnO-Ag NPs.</p> "> Figure 9
<p>Tyvek<sup>®</sup> packaging. Optical microscopy images (50×) acquired under visible light (<b>left</b>) and UV light (<b>right</b>). (<b>A</b>) Paraloid B72 medium (<b>top</b>) and PVA (<b>bottom</b>) + TIO<sub>2</sub> NPs; (<b>B</b>) Paraloid B72 medium (<b>top</b>) and PVA (<b>bottom</b>) + TIO<sub>2</sub>-Ag NPs.</p> "> Figure 10
<p>Tyvek<sup>®</sup> packaging. Optical microscopy images (50×) acquired under visible light (<b>left</b>) and UV light (<b>right</b>). (<b>A</b>) Paraloid B72 medium (<b>top</b>) and PVA (<b>bottom</b>) + ZnO NPs; (<b>B</b>) Paraloid B72 medium (<b>top</b>) and PVA (<b>bottom</b>) + ZnO-Ag NPs.</p> "> Figure 11
<p>SEM analysis of NP distribution on packaging paper; (<b>a</b>) spatial distribution of TiO<sub>2</sub>-Ag NPs in Paraloid B72 (TiO<sub>2</sub>-Ag PAR) (<b>top</b>) and PVA (TiO<sub>2</sub>-Ag PVA) (<b>bottom</b>); (<b>b</b>) spatial distribution of ZnO-Ag NPs in Paraloid B72 (ZnO-Ag PAR) (<b>top</b>) and PVA (ZnO-Ag PVA) (<b>bottom</b>).</p> "> Figure 12
<p>SEM analysis of NP distribution on PE; (<b>a</b>) spatial distribution of TiO<sub>2</sub>-Ag NPs in Paraloid B72 (TiO<sub>2</sub>-Ag PAR) (<b>top</b>) and PVA (TiO<sub>2</sub>-Ag PVA) (<b>bottom</b>); (<b>b</b>) spatial distribution of ZnO-Ag NPs in Paraloid B72 (ZnO-PAR) (<b>top</b>) and PVA (ZnO-Ag PVA) (<b>bottom</b>).</p> "> Figure 13
<p>ATP values for several packing materials treated with the different experimental coatings.</p> "> Figure 14
<p>Procedure of TiO<sub>2</sub>/TiO<sub>2</sub>+Ag and ZnO/ZnO+Ag NP application on packaging materials.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of TiO2-Ag NPs
2.2. Characterization of ZnO-Ag NPs
2.3. Application of Nanoparticles on Packaging
3. Microbiological Analysis
4. Materials and Methods
4.1. Reagents
4.2. Synthesis of Nanoparticles
4.2.1. Synthesis of TiO2-Ag Nanoparticles
4.2.2. Synthesis of ZnO-Ag Nanoparticles
4.3. Preparation of TiO2-Ag/PVA and ZnO-Ag/PVA Formulations
4.4. Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferdyn-Grygierek, J.; Grygierek, K. HVAC control methods for drastically improved hygrothermal museum microclimates in warm season. Build. Environ. 2019, 149, 90–99. [Google Scholar] [CrossRef]
- Christensen, J.E.; Kollias, C.G. Hygrothermal Evaluation of a Museum Storage Building based on Actual Measurements and Simulations. Energy Procedia 2015, 78, 651–656. [Google Scholar] [CrossRef]
- Sterflinger, K. Fungi: Their role in deterioration of cultural heritage. Fungal Biol. Rev. 2010, 24, 47–55. [Google Scholar] [CrossRef]
- Grabek-Lejko, D.; Tekiela, A.; Kasprzyk, I. Risk of biodeterioration of cultural heritage objects, stored in the historical and modern repositories in the Regional Museum in Rzeszow (Poland). A case study. Int. Biodeterior. Biodegrad. 2017, 123, 46–55. [Google Scholar] [CrossRef]
- Bakker, A.; Siegel, J.A.; Mendell, M.J.; Prussin, A.; Marr, L.; Peccia, J. Bacterial and fungal ecology on air conditioning cooling coils is influenced by climate and building factors. Indoor Air 2019, 30, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Kavkler, K.; Gunde-Cimerman, N.; Zalar, P.; Demšar, A. Fungal contamination of textile objects preserved in Slovene museums and religious institutions. Int. Biodeterior. Biodegrad. 2015, 97, 51–59. [Google Scholar] [CrossRef]
- de Carvalho, H.P.; Mesquita, N.; Trovão, J.; Rodríguez, S.F.; Pinheiro, A.C.; Gomes, V.; Alcoforado, A.; Gil, F.; Portugal, A. Fungal contamination of paintings and wooden sculptures inside the storage room of a museum: Are current norms and reference values adequate? J. Cult. Herit. 2018, 34, 268–276. [Google Scholar] [CrossRef]
- Lazaridis, M.; Katsivela, E.; Kopanakis, I.; Raisi, L.; Mihalopoulos, N.; Panagiaris, G. Characterization of airborne particulate matter and microbes inside cultural heritage collections. J. Cult. Herit. 2018, 30, 136–146. [Google Scholar] [CrossRef]
- Romero, S.M.; Giudicessi, S.L.; Vitale, R.G. Is the fungus Aspergillus a threat to cultural heritage? J. Cult. Herit. 2021, 51, 107–124. [Google Scholar] [CrossRef]
- Branysova, T.; Demnerova, K.; Durovic, M.; Stiborova, H. Microbial biodeterioration of cultural heritage and identification of the active agents over the last two decades. J. Cult. Herit. 2022, 55, 245–260. [Google Scholar] [CrossRef]
- Scarlat, I.P.; Lazăr, V.; Stepa, R.; Chifiriuc, M.C.; Dițu, L.M.; Haiducu, M. Seasonal monitoring of microbiological air contamination from a museum—A case study. MATEC Web Conf. 2017, 121, 11–17. [Google Scholar] [CrossRef]
- Skóra, J.; Gutarowska, B.; Pielech-Przybylska, K.; Stępień, Ł.; Pietrzak, K.; Piotrowska, M.; Pietrowski, P. Assessment of microbiological contamination in the work environments of museums, archives and libraries. Aerobiologia 2015, 31, 389–401. [Google Scholar] [CrossRef] [PubMed]
- Scarlat, I.; Haiducu, M.; and Stepa, R. Air Contamination With Fungals In Museum. ACTA Univ. Cibiniensis 2015, 66, 165–168. [Google Scholar] [CrossRef]
- Szulc, J.; Otlewska, A.; Ruman, T.; Kubiak, K.; Karbowska-Berent, J.; Kozielec, T.; Gutarowska, B. Analysis of paper foxing by newly available omics techniques. Int. Biodeterior. Biodegrad. 2018, 132, 157–165. [Google Scholar] [CrossRef]
- Goodell, B.; Winandy, J.E.; Morrell, J.J. Fungal Degradation of Wood: Emerging Data, New Insights and Changing Perceptions. Coatings 2020, 10, 1210. [Google Scholar] [CrossRef]
- Trovão, J.; Portugal, A. Current Knowledge on the Fungal Degradation Abilities Profiled through Biodeteriorative Plate Essays. Appl. Sci. 2021, 11, 4196. [Google Scholar] [CrossRef]
- Atwa, D.M.; Ibrahim, S.; Stani, C.; Birarda, G.; Ali, N.; Abdullah, E.; Vaccari, L.; Grenni, P.; Visca, A.; Badran, Y.; et al. Biodeterioration Assessment of a Unique Old Pharaonic Kingdom Wooden Statue Using Advanced Diagnostic Techniques. Appl. Sci. 2022, 12, 7020. [Google Scholar] [CrossRef]
- Macchia, A.; Cerafogli, E.; Rivaroli, L.; Colasanti, I.A.; Aureli, H.; Biribicchi, C.; Brunori, V. Marble Chromatic Alteration Study Using Non-Invasive Analytical Techniques and Evaluation of the Most Suitable Cleaning Treatment: The Case of a Bust Representing Queen Margherita di Savoia at the U.S. Embassy in Rome. Analytica 2022, 3, 406–429. [Google Scholar] [CrossRef]
- De Leo, F.; Antonelli, F.; Pietrini, A.M.; Ricci, S.; Urzì, C. Study of the euendolithic activity of black meristematic fungi isolated from a marble statue in the Quirinale Palace’s Gardens in Rome, Italy. Facies 2019, 65, 18. [Google Scholar] [CrossRef]
- Macchia, A.; Aureli, H.; Prestileo, F.; Ortenzi, F.; Sellathurai, S.; Docci, A.; Cerafogli, E.; Colasanti, I.A.; Ricca, M.; La Russa, M.F. In-Situ Comparative Study of Eucalyptus, Basil, Cloves, Thyme, Pine Tree, and Tea Tree Essential Oil Biocide Efficacy. Methods Protoc. 2022, 5, 37. [Google Scholar] [CrossRef]
- McNamara, C.J.; Mitchell, R. Microbial deterioration of historic stone. Front. Ecol. Environ. 2005, 3, 445–451. [Google Scholar] [CrossRef]
- Gaylarde, C.C.; Baptista-Neto, J.A. Microbiologically induced aesthetic and structural changes to dimension stone. NPJ Mater. Degrad. 2021, 5, 33. [Google Scholar] [CrossRef]
- Cappitelli, F.; Cattò, C.; Villa, F. The Control of Cultural Heritage Microbial Deterioration. Microorganisms 2020, 8, 1542. [Google Scholar] [CrossRef] [PubMed]
- Menegaldo, M.; Livieri, A.; Isigonis, P.; Pizzol, L.; Tyrolt, A.; Zabeo, A.; Semenzin, E.; Marcomini, A. Environmental and economic sustainability in cultural heritage preventive conservation: LCA and LCC of innovative nanotechnology-based products. Clean. Environ. Syst. 2023, 9, 100124. [Google Scholar] [CrossRef]
- Kakakhel, M.A.; Wu, F.; Gu, J.D.; Feng, H.; Shah, K.; Wang, W. Controlling biodeterioration of cultural heritage objects with biocides: A review. Int. Biodeterior. Biodegrad. 2019, 143, 104721. [Google Scholar] [CrossRef]
- Macchia, A.; Aureli, H.; Biribicchi, C.; Docci, A.; Alisi, C.; Prestileo, F.; Galiano, F.; Figoli, A.; Mancuso, R.; Gabriele, B.; et al. In Situ Application of Anti-Fouling Solutions on a Mosaic of the Archaeological Park of Ostia Antica. Materials 2022, 15, 5671. [Google Scholar] [CrossRef]
- Mekonnen, H.; Bires, Z.; Berhanu, K. Practices and challenges of cultural heritage conservation in historical and religious heritage sites: Evidence from North Shoa Zone, Amhara Region, Ethiopia. Herit. Sci. 2022, 10, 172. [Google Scholar] [CrossRef]
- Castrillón Rivera, L.E.; Palma Ramos, A.; Castañeda Sánchez, J.I.; Drago Serrano, M.E. Origin and Control Strategies of Biofilms in the Cultural Heritage. In Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods, 1st ed.; Kirmusaoglu, S., Ed.; IntechOpen: London, UK, 2019; Volume 1, pp. 1–24. [Google Scholar] [CrossRef]
- Ruga, L.; Orlandi, F.; Fornaciari, M. Preventive Conservation of Cultural Heritage: Biodeteriogens Control by Aerobiological Monitoring. Sensors 2019, 19, 3647. [Google Scholar] [CrossRef]
- Franco-Castillo, I.; Hierro, L.; de la Fuente, J.M.; Seral-Ascaso, A.; Mitchell, S.G. Perspectives for antimicrobial nanomaterials in cultural heritage conservation. Chem 2021, 7, 629–669. [Google Scholar] [CrossRef]
- Gorgolis, G.; Ziemann, S.; Kotsidi, M.; Paterakis, G.; Koutroumanis, N.; Tsakonas, C.; Anders, M.; Galiotis, C. Novel Graphene-Based Materials as a Tool for Improving Long-Term Storage of Cultural Heritage. Materials 2023, 16, 3528. [Google Scholar] [CrossRef]
- Abdel-Hamied, M.; Abdelhafez, A.A.M.; Abdel-Maksoud, G. Consolidation materials used with illuminated and non-illuminated paper manuscripts and historical leather bindings: A review. Pigment. Resin Technol. 2024; ahead-of-print. [Google Scholar] [CrossRef]
- Carboni, E. Cultura in Viaggio. Quando la Movimentazione Diventa Un’arte, 12th ed.; Museologia Scientifica: Calenzano, Italy, 2018; pp. 58–65. [Google Scholar]
- Novak, M.; Grau-Bove, J.; De Stefani, C.; Checkley-Scott, C.; Kraševec, I.; Kralj Cigić, I.; Elnaggar, A. Evaluation and modelling of the environmental performance of archival boxes, part 1: Material and environmental assessment. Herit. Sci. 2024, 12, 24. [Google Scholar] [CrossRef]
- Alkassfarity, A.N.; Yassin, M.A.; Abdel Rehim, M.H.; Liu, L.; Jiao, Z.; Wang, B.; Wei, Z. Modified cellulose nanocrystals enhanced polycaprolactone multifunctional films with barrier, UV-blocking and antimicrobial properties for food packaging. Int. J. Biol. Macromol. 2024, 261, 129871. [Google Scholar] [CrossRef]
- Sarfraz, M.H.; Hayat, S.; Siddique, M.H.; Aslam, B.; Ashraf, A.; Saqalein, M.; Khurshid, M.; Sarfraz, M.F.; Afzal, M.; Muzammil, S. Chitosan based coatings and films: A perspective on antimicrobial, antioxidant, and intelligent food packaging. Prog. Org. Coat. 2024, 188, 108235. [Google Scholar] [CrossRef]
- Zagloul, H.; Dhahri, M.; Bashal, A.H.; Khaleil, M.M.; Habeeb, T.H.; Khalil, K.D. Multifunctional Ag2O/chitosan nanocomposites synthesized via sol-gel with enhanced antimicrobial, and antioxidant properties: A novel food packaging material. Int. J. Biol. Macromol. 2024, 264, 129990. [Google Scholar] [CrossRef]
- Alqarni, L.S.; Alghamdi, A.M.; Elamin, N.Y.; Rajeh, A. Enhancing the optical, electrical, dielectric properties and antimicrobial activity of chitosan/gelatin incorporated with Co-doped ZnO nanoparticles: Nanocomposites for use in energy storage and food packaging. J. Mol. Struct. 2024, 1297, 137011. [Google Scholar] [CrossRef]
- Emir, A.A.; Yildiz, E.; Kirtil, E. Peppermint oil-infused polylactic acid films: A novel approach for antimicrobial and biodegradable food packaging. Polym. Eng. Sci. 2024, 64, 2943–2955. [Google Scholar] [CrossRef]
- Bertuzzi, M.A.; Gamboni, J.E.; Slavutsky, A.M.; Ibarguren, C. Novel food packaging systems with antimicrobial agents from microbial source. In Food Packaging and Preservation, 1st ed.; Jaiswal, A.K., Shankar, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 91–111. [Google Scholar] [CrossRef]
- Zeng, J.; Ma, Y.; Li, P.; Zhang, X.; Gao, W.; Wang, B.; Xu, J.; Chen, K. Development of high-barrier composite films for sustainable reduction of non-biodegradable materials in food packaging application. Carbohydr. Polym. 2024, 330, 121824. [Google Scholar] [CrossRef]
- Wyrwa, J.; Barska, A. Innovations in the food packaging market: Active packaging. Eur. Food Res. Technol. 2017, 243, 1681–1692. [Google Scholar] [CrossRef]
- Yao, Q.; Huang, F.; Lu, Y.; Huang, J.; Ali, M.; Jia, X.Z.; Zeng, X.A.; Huang, Y.Y. Polysaccharide-based food packaging and intelligent packaging applications: A comprehensive review. Trends Food Sci. Technol. 2024, 147, 104390. [Google Scholar] [CrossRef]
- Fatima, S.; Khan, M.R.; Ahmad, I.; Sadiq, M.B. Recent advances in modified starch based biodegradable food packaging: A review. Heliyon 2024, 10, e27453. [Google Scholar] [CrossRef]
- Bandelli, D.; Mastrangelo, R.; Poggi, G.; Chelazzi, D.; Baglioni, P. New sustainable polymers and oligomers for Cultural Heritage conservation. Chem. Sci. 2024, 15, 2443–2455. [Google Scholar] [CrossRef]
- Walker, S. Investigation of the properties of Tyvek®, pertaining to its use as a storage material for artifacts. In The Conservation of Artifacts Made from Plant Materials, 1st ed.; International Institute for Conservation of Historic and Artistic Works-Canadian Group (IIC-CG): Ottawa, ON, Canada, 1986; Volume 12, pp. 21–25. [Google Scholar]
- Byrne, K. Handling, Packing, and Shipping. In NPS Museum Handbook, 1st ed.; part II; International Institute for Conservation of Historic and Artistic Works-Canadian Group (IIC-CG): Ottawa, ON, Canada, 2000; pp. 21–25. [Google Scholar]
- Neda, K.E. A Study of Packaging the Museum Pieces for Transportation with an Emphasis on Textiles. J. Packag. Sci. Tech. 2023, 13, 1–10. [Google Scholar]
- Adel, A.M.; Al-Shemy, M.T.; Diab, M.A.; El-Sakhawy, M.; Toro, R.G.; Montanari, R.; de Caro, T.; Caschera, D. Fabrication of packaging paper sheets decorated with alginate/oxidized nanocellulose-silver nanoparticles bio-nanocomposite. Int. J. Biol. Macromol. 2021, 181, 612–620. [Google Scholar] [CrossRef]
- Adel, A.M.; Al-Shemy, M.T.; Diab, M.A.; El-Sakhawy, M.; Toro, R.G.; Cerri, L.; Caschera, D. Immobilization of TiO2NP@ oxidized cellulose nanocrystals for paper-based active packaging materials. Int. J. Biol. Macromol. 2023, 231, 123270. [Google Scholar] [CrossRef]
- Padmavathy, N.; Vijayaraghavan, R. Enhanced bioactivity of ZnO nanoparticles—An antimicrobial study. Sci. Technol. Adv. Mater. 2008, 9, 035004. [Google Scholar] [CrossRef]
- Ruffolo, S.A.; Macchia, A.; La Russa, M.F.; Mazza, L.; Urzì, C.; De Leo, F.; Barberio, M.; Crisci, G.M. Marine Antifouling for Underwater Archaeological Sites: TiO2 and Ag-Doped TiO2. Int. J. Photoenergy 2013, 251647, 1–6. [Google Scholar] [CrossRef]
- Pathak, T.K.; Kroon, R.E.; Craciun, V.; Popa, M.; Chifiriuc, M.C.; Swart, H.C. Influence of Ag, Au and Pd noble metals doping on structural, optical and antimicrobial properties of zinc oxide and titanium dioxide nanomaterials. Heliyon 2019, 5, e01333. [Google Scholar] [CrossRef]
- Artesani, A.; Di Turo, F.; Zucchelli, M.; Traviglia, A. Recent advances in protective coatings for cultural heritage—An overview. Coatings 2020, 10, 217. [Google Scholar] [CrossRef]
- Palanichamy, K.; Anandan, M.; Sridhar, J.; Natarajan, V.; Dhandapani, A. PVA and PMMA nano-composites: A review on strategies, applications and future prospects. Mater. Res. Express 2023, 10, 022002. [Google Scholar] [CrossRef]
- Huang, J.; Lyu, S.; Fu, F.; Wu, Y.; Wang, S. Green preparation of a cellulose nanocrystals/polyvinyl alcohol composite superhydrophobic coating. RSC Adv. 2017, 7, 20152–20159. [Google Scholar] [CrossRef]
- Brandrup, J.; Immergut, E.H.; Grulke, E.A. Polymer Handbook, 4th ed.; Wiley: Hoboken, NJ, USA, 2003; Volume 2. [Google Scholar]
- Hussein Elsayed, N.; Najmi, A.H.; Mohamed, G.M.; Mohamed, A.A.; Al-Sayed, H.M.A. Preparation and characterization of Paraloid B-72/TiO2 nanocomposite and their effect on the properties of polylactic acid as strawberry coating agents. J. Food Saf. 2020, 40, e12838. [Google Scholar] [CrossRef]
- Gîfu, I.C.; Ianchiș, R.; Nistor, C.L.; Petcu, C.; Fierascu, I.; Fierascu, R.C. Polyelectrolyte Coatings—A Viable Approach for Cultural Heritage Protection. Materials 2023, 16, 2873. [Google Scholar] [CrossRef] [PubMed]
- Kanth, A.P.; Soni, A.K. Application of nanocomposites for conservation of materials of cultural heritage. J. Cult. Herit. 2023, 59, 120–130. [Google Scholar] [CrossRef]
- Aldosari, M.A.; Darwish, S.S.; Adam, M.A.; Elmarzugi, N.A.; Ahmed, S.M. Using ZnO nanoparticles in fungal inhibition and self-protection of exposed marble columns in historic sites. Archaeol. Anthropol. Sci. 2019, 11, 3407–3422. [Google Scholar] [CrossRef]
- Abo Elgat, W.A.A.; Taha, A.S.; Böhm, M.; Vejmelková, E.; Mohamed, W.S.; Fares, Y.G.D.; Salem, M.Z.M. Evaluation of the Mechanical, Physical, and Anti-Fungal Properties of Flax Laboratory Papersheets with the Nanoparticles Treatment. Materials 2020, 13, 363. [Google Scholar] [CrossRef]
- Karapanagiotis, I.; Hosseini, M. Superhydrophobic Coatings for the Protection of Natural Stone. In Advanced Materials for the Conservation of Stone, 1st ed.; Karapanagiotis, I., Hosseini, M., Eds.; Springer International: Cham, Switzerland; New York, NY, USA, 2018; pp. 1–25. [Google Scholar] [CrossRef]
- De Matteis, V.; Cascione, M.; Rinaldi, R. Titanium dioxide: Antimicrobial surfaces and toxicity assessment. In Titanium Dioxide (TiO2) and Its Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 373–393. [Google Scholar] [CrossRef]
- Ayorinde, T.; Sayes, C.M. An updated review of industrially relevant titanium dioxide and its environmental health effects. JHM Lett. 2023, 4, 100085. [Google Scholar] [CrossRef]
- Sharma, P.; Kumari, R.; Yadav, M.; Lal, R. Evaluation of TiO2 Nanoparticles Physicochemical Parameters Associated with their Antimicrobial Applications. Indian J. Microbiol. 2022, 62, 338–350. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liang, R.; Hu, A.; Huang, Z.; Zhou, Y.N. Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO2 photocatalysts. RSC Adv. 2014, 4, 36959–36966. [Google Scholar] [CrossRef]
- Mardiansyah, D.; Badloe, T.; Triyana, K.; Mehmood, M.Q.; Raeis-Hosseini, N.; Lee, Y.; Sabarman, H.; Kim, K.; Rho, J. Effect of temperature on the oxidation of Cu nanowires and development of an easy to produce, oxidation-resistant transparent conducting electrode using a PEDOT:PSS coating. Sci. Rep. 2018, 8, 10639. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, X.; Guo, W.; Qiu, J.; Mou, X.; Li, A.; Liu, H. Construction of titanium dioxide nanorod/graphite microfiber hybrid electrodes for a high performance electrochemical glucose biosensor. Nanoscale 2016, 8, 9382–9389. [Google Scholar] [CrossRef] [PubMed]
- Ohsaka, T. Temperature Dependence of the Raman Spectrum in Anatase TiO2. J. Physical. Soc. Jpn. 1980, 48, 1661–1668. [Google Scholar] [CrossRef]
- Choi, H.C.; Jung, Y.M.; Bin Kim, S. Size effects in the Raman spectra of TiO2 nanoparticles. Vib. Spectrosc. 2005, 37, 33–38. [Google Scholar] [CrossRef]
- de Caro, T.; Caschera, D.; Ingo, G.M.; Calandra, P. Micro-Raman innovative methodology to identify Ag–Cu mixed sulphides as tarnishing corrosion products. J. Raman Spectrosc. 2016, 47, 852–859. [Google Scholar] [CrossRef]
- Tasić, N.; Ćirković, J.; Ribić, V.; Žunić, M.; Dapčević, A.; Branković, G.; Branković, Z. Effects of the silver nanodots on the photocatalytic activity of mixed-phase TiO2. J. Am. Ceram. Soc. 2022, 105, 336–347. [Google Scholar] [CrossRef]
- Shatnawi, M.; Alsmadi, A.M.; Bsoul, I.; Salameh, B.; Alna’washi, G.A.; Al-Dweri, F.; El Akkad, F. Magnetic and optical properties of Co-doped ZnO nanocrystalline particles. J. Alloys Compd. 2016, 655, 244–252. [Google Scholar] [CrossRef]
- Kareem, M.A.; Bello, I.T.; Shittu, H.A.; Sivaprakash, P.; Adedokun, O.; Arumugam, S. Synthesis, characterization, and photocatalytic application of silver doped zinc oxide nanoparticles. Clean. Mater. 2022, 3, 100041. [Google Scholar] [CrossRef]
- Chitradevi, T.; Jestin Lenus, A.; Jaya, N.V. Structure, morphology and luminescence properties of sol-gel method synthesized pure and Ag-doped ZnO nanoparticles. Mater. Res. Express 2020, 7, 015011. [Google Scholar] [CrossRef]
- Mondal, A.; Pal, S.; Sarkar, A.; Bhattacharya, T.S.; Pal, S.; Singha, A.; Ray, S.K.; Kumar, P.; Kanjilal, D.; Jana, D. Raman investigation of N-implanted ZnO: Defects, disorder and recovery. J. Raman Spectrosc. 2019, 50, 1926–1937. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, S.; Zhang, C.; Yang, Y.; Lv, K. “Raman Spectra and Microstructure of Zinc Oxide irradiated with Swift Heavy Ion. Crystals 2019, 9, 395. [Google Scholar] [CrossRef]
- Pal, B.; Giri, P.K. Defect Mediated Magnetic Interaction and High Tc Ferromagnetism in Co Doped ZnO Nanoparticles. J. Nanosci. Nanotechnol. 2011, 11, 9167–9174. [Google Scholar] [CrossRef] [PubMed]
- Zeferino, R.S.; Flores, M.B.; Pal, U. Photoluminescence and Raman Scattering in Ag-doped ZnO Nanoparticles. J. Appl. Phys. 2011, 109, 014308. [Google Scholar] [CrossRef]
- Chelouche, A.; Djouadi, D.; Merzouk, H.; Aksas, A. Influence of Ag doping on structural and optical properties of ZnO thin films synthesized by the sol–gel technique. Appl. Phys. A 2014, 115, 613–616. [Google Scholar] [CrossRef]
- Akbarizadeh, M.R.; Sarani, M.; Darijani, S. Study of antibacterial performance of biosynthesized pure and Ag-doped ZnO nanoparticles. Rend. Lincei Sci. Fis. Nat. 2022, 33, 613–621. [Google Scholar] [CrossRef]
- La Russa, M.F.; Macchia, A.; Ruffolo, S.A.; De Leo, F.; Barberio, M.; Barone, P.; Crisci, G.M.; Urzì, C. Testing the antibacterial activity of doped TiO2 for preventing biodeterioration of cultural heritage building materials. Int. Biodeterior. Biodegrad. 2014, 96, 87–96. [Google Scholar] [CrossRef]
- Souza, D.C.; Amorim, S.; Cadamuro, R.; Fongaro, G.; Peralta, R.A.; Peralta, R.M.; Li Puma, G.; Moreira, R.F.P.M. Hydrophobic cellulose-based and non-woven fabrics coated with mesoporous TiO2 and their virucidal properties under indoor light. Carbohydr Polym Technol. Appl. 2022, 3, 100182. [Google Scholar] [CrossRef]
- Schipporeit, S.; Mergel, D. Spectral decomposition of Raman spectra of mixed-phase TiO2 thin films on Si and silicate substrates. J. Raman Spectrosc. 2018, 49, 1217–1229. [Google Scholar] [CrossRef]
- Ibarrondo, I.; Balziskueta, U.; Martínez-Arkarazo, I.; García-Florentino, C.; Arana, G.; Azkarate, A.; Madariaga, J.M. Portable Raman can be the new hammer for architects restoring 20th-century built heritage elements made of reinforced concrete. J. Raman Spectrosc. 2021, 52, 109–122. [Google Scholar] [CrossRef]
- Pigorsch, E. New insights into paper—Chemical paper analysis using Raman microscopy. J. Raman Spectrosc. 2021, 52, 78–84. [Google Scholar] [CrossRef]
- Nie, B.; Zhou, Q.; He, J.; Yang, F. Chromatographic paper embedded with silver nanostructure as a disposable substrate for surface-enhanced Raman spectroscopy and catalytic reactor. J. Raman Spectrosc. 2015, 46, 211–216. [Google Scholar] [CrossRef]
- Dangi, S.B.; Hashmi, S.Z.; Kumar, U.; Choudhary, B.L.; Kuznetsov, A.E.; Dalela, S.; Kumar, S.; Dolia, S.N.; Kumar, S.; Sofi, B.F.; et al. Exploration of spectroscopic, surface morphological, structural, electrical, optical and mechanical properties of biocompatible PVA-GO PNCs. Diam. Relat. Mater. 2022, 127, 109158. [Google Scholar] [CrossRef]
- Yu, J.; Tian, H.; Huang, M.; Xu, X. Facile Synthesis of Ag NP Films via Evaporation-Induced Self-Assembly and the BA-Sensing Properties. Foods 2023, 12, 1285. [Google Scholar] [CrossRef] [PubMed]
- Singh, W.I.; Sinha, S.; Devi, N.A.; Nongthombam, S.; Laha, S.; Swain, B.P. Investigation of chemical bonding and electronic network of rGO/PANI/PVA electrospun nanofiber. Polym. Bull. 2021, 78, 6613–6629. [Google Scholar] [CrossRef]
- Bai, X.; Detalle, V. Time-Gated Pulsed Raman Spectroscopy with NS Laser for Cultural Heritage. Heritage 2023, 6, 1531–1540. [Google Scholar] [CrossRef]
- Luo, C.-Q.; Ho, L.-P.; Ling, F.C.-C. The origin of additional modes in Raman spectra of ZnO:Sb films. Phys. B Condens. Matter 2020, 593, 412256. [Google Scholar] [CrossRef]
- Phan, S.; Padilla-Gamiño, J.L.; Luscombe, C.K. The effect of weathering environments on microplastic chemical identification with Raman and IR spectroscopy: Part, I. polyethylene and polypropylene. Polym. Test. 2022, 116, 107752. [Google Scholar] [CrossRef]
Nanoparticles | TiO2 | |||
---|---|---|---|---|
Undoped | 0.5% Ag | 1% Ag | 3% Ag | |
D (nm) | 12.33 | 13.09 | 12.89 | 12.15 |
Eg (eV) | 3.00 | 2.99 | 2.92 | 2.88 |
Nanoparticles | ZnO | |||
---|---|---|---|---|
Undoped | 0.5% Ag | 1.0% Ag | 3% Ag | |
D (nm) | 22.96 | 20.54 | 18.96 | 21.37 |
Eg (eV) | 3.21 | 3.19 | 3.21 | 3.14 |
Coating | Particles | Paper | Tyvek® |
---|---|---|---|
Paraloid B72 | TiO2 | 2.58 | 3.91 |
TiO2-Ag | 3.44 | 5.60 | |
ZnO | 4.73 | 4.01 | |
ZnO-Ag | 3.75 | 6.61 | |
PVA | TiO2 | 3.23 | 5.39 |
TiO2-Ag | 3.55 | 5.94 | |
ZnO | 2.81 | 4.72 | |
ZnO-Ag | 3.37 | 5.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Caro, T.; Toro, R.G.; Cassone, L.; Barbaccia, F.I.; Zaratti, C.; Colasanti, I.A.; La Russa, M.F.; Macchia, A. Functionalization of Artwork Packaging Materials Utilizing Ag-Doped TiO2 and ZnO Nanoparticles. Molecules 2024, 29, 3712. https://doi.org/10.3390/molecules29153712
de Caro T, Toro RG, Cassone L, Barbaccia FI, Zaratti C, Colasanti IA, La Russa MF, Macchia A. Functionalization of Artwork Packaging Materials Utilizing Ag-Doped TiO2 and ZnO Nanoparticles. Molecules. 2024; 29(15):3712. https://doi.org/10.3390/molecules29153712
Chicago/Turabian Stylede Caro, Tilde, Roberta Grazia Toro, Luminita Cassone, Francesca Irene Barbaccia, Camilla Zaratti, Irene Angela Colasanti, Mauro Francesco La Russa, and Andrea Macchia. 2024. "Functionalization of Artwork Packaging Materials Utilizing Ag-Doped TiO2 and ZnO Nanoparticles" Molecules 29, no. 15: 3712. https://doi.org/10.3390/molecules29153712
APA Stylede Caro, T., Toro, R. G., Cassone, L., Barbaccia, F. I., Zaratti, C., Colasanti, I. A., La Russa, M. F., & Macchia, A. (2024). Functionalization of Artwork Packaging Materials Utilizing Ag-Doped TiO2 and ZnO Nanoparticles. Molecules, 29(15), 3712. https://doi.org/10.3390/molecules29153712