Raman Spectra and Microstructure of Zinc Oxide irradiated with Swift Heavy Ion
<p>Raman spectra of ZnO irradiated and unirradiated by <sup>56</sup>Fe<sup>21+</sup> ions were measured. Direction of the laser was along the axis [0001] of the crystal. The ZnO structure of wurtzite is shown in the figure. The Raman peaks are assigned by corresponding atomic oscillations (the motion of the dominant atom is indicated by the red arrow).</p> "> Figure 2
<p>Raman spectra (incident light is perpendicular to the axis [0001]) of ZnO irradiated by <sup>56</sup>Fe<sup>21+</sup> ion with irradiation does of 1 × 10<sup>14</sup> ions/cm<sup>2</sup>. The incident ions were along [0001] of the crystal. The zinc oxide structure of wurtzite is shown in the image. The Raman peaks are described by corresponding atomic oscillations. (The motion of the dominant atom is indicated by the red arrows).</p> "> Figure 3
<p><b>TEM</b> images and corresponding diffraction patterns of <sup>56</sup>Fe<sup>21+</sup> ion irradiated ZnO at different depths ((<b>a</b>) is 2 μm, (<b>b</b>) is 10 μm, (<b>c</b>) is 25 μm, (<b>d</b>) is 32 μm) along the incident direction of <sup>56</sup>Fe<sup>21+</sup> ions. Irradiation does of heavy ions were 1 × 10<sup>14</sup> ions/cm<sup>2</sup>.</p> "> Figure 4
<p>PL spectra of ZnO irradiated with <sup>56</sup>Fe<sup>21+</sup> ions measured by excited light at 340 nm. The image on the upper right is a panorama of the image.</p> "> Figure 5
<p>PL spectra of ZnO irradiated with 1 × 10<sup>13</sup> ions/cm <sup>256</sup>Fe<sup>21+</sup> ions. Experimental data (black line) were fitted with Voigt peaks, the red curve represents the sum of fitted peaks (green peaks) plus background.</p> "> Figure 6
<p>Phonon dispersion relationship of wurtzite zinc oxide are calculatedat Γ point in the specified direction of the Brillouin zonecenter by using the lattice dynamics equation. Molecular vibration represented by red font (<span class="html-italic">E</span><sub>1</sub>, <span class="html-italic">E</span><sub>2</sub>, <span class="html-italic">A</span><sub>1</sub>) can be observed through Raman scattering, while <span class="html-italic">B</span><sub>1</sub> mode represented by green font can’t be observed through Raman scattering.</p> ">
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. Raman Spectra of 56Fe21+ Ion-Irradiated ZnO
3.2. TEM of ZnO Irradiated with 56Fe21+ Ions
3.3. Photoluminescence Spectra of ZnO Irradiated with 56Fe21+ Ions
3.4. Theoretical Calculation and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Z.L. Zinc oxide nanostructures: Growth, properties and applications. J. Phys. Condens. Matter. 2004, 16, R829–R858. [Google Scholar] [CrossRef]
- Ozgur, U.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Dogan, S.; Avrutin, V.; Cho, S.J.; Morkoçet, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 41301. [Google Scholar] [CrossRef] [Green Version]
- Pearton, S.J.; Norton, D.P.; Tien, L.C.; Guo, J. Modeling and Fabrication of ZnO Nanowire Transistors. IEEE Trans. Electron Devices 2008, 55, 3012–3019. [Google Scholar] [CrossRef]
- Wu, C.L.; Guo, J.H.; Yao, H.B. Study on the photoluminescence properties of ZnOsinglecrystal. Spectrosc. Spectr. Anal. 2016, 6, 1700–1702. [Google Scholar]
- Xu, S.; Qin, Y.; Xu, C.; Wei, Y.; Yang, R.; Wang, Z.L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366–373. [Google Scholar] [CrossRef]
- Leong, E.S.P.; Yu, S.F.; Lau, S.P. Directional edge-emitting UV random laser diodes. Appl. Phys. Lett. 2006, 89, 221109. [Google Scholar] [CrossRef]
- Guo, R.; Nishimura, J.; Matsumoto, M.; Higashihata, M.; Nakamura, D.; Okada, T. Electroluminescence from ZnO nanowire-based p-GaN/n-ZnO heterojunction light-emitting diodes. Appl. Phys. B 2009, 94, 33–38. [Google Scholar] [CrossRef]
- Duta, M.; Perniu, D.; Duta, A. Photocatalytic zinc oxide thin films obtained by surfactant assisted spray pyrolysis deposition. Appl. Surf. Sci. 2014, 306, 80–88. [Google Scholar] [CrossRef]
- Pal, S.; Sarkar, A.; Chattopadhyay, S.; Chakrabarti, M.; Sanyal, D.; Kumar, P.; Kanjilal, D.; Rakshitf, T.; Ray, S.K.; Jana, D. Defects in 700 keV oxygen ion irradiated ZnO. Nucl. Instrum. Methods Phys. Res. B 2013, 311, 20–26. [Google Scholar] [CrossRef]
- Crupi, I.; Boscarino, S.; Strano, V.; Mirabella, S.; Simone, F.; Terrasi, A. Optimization of ZnO:Al/Ag/ZnO:Al structures for ultra-thin high-performance transparent conductive electrodes. Thin Solid Films 2012, 520, 4432–4435. [Google Scholar] [CrossRef]
- Choi, K.H.; Nam, H.J.; Jeong, J.A.; Cho, S.W.; Kim, H.K.; Kang, J.W.; Kim, D.G.; Cho, W.J. Highly flexible and transparent InZnSnOx/Ag/InZnSnOx multilayer electrode for flexible organic light emitting diodes. Appl. Phys. Lett. 2008, 92, 223302–223303. [Google Scholar] [CrossRef]
- Martín-Tovar, E.A.; Castro-Rodríguez, R.; Daza, L.G.; Méndez-Gamboa, J.; Medina-Esquivel, R.; Perez- Quintana, I.; Iribarren, A. Structural and optical properties of ZnO thin films prepared by laser ablation using target of ZnO powder mixture with glue. Bull. Mater. Sci. 2017, 40, 467–471. [Google Scholar] [CrossRef] [Green Version]
- Jaramillo, A.F.; Baez-Cruz, R.; Montoya, L.F. Estimation of the surface interaction mechanism of ZnO nanoparticles modified with organosilane groups by Raman Spectroscopy. Ceram. Int. 2017, 43, 11838–11847. [Google Scholar] [CrossRef]
- Chae, K. Electronic structures of a Zn vacancy on the ZnOsurface: Density functional theory calculations. J. Korean Phys. Soc. 2013, 62, 508–512. [Google Scholar] [CrossRef]
- Yao, Z.R.; Tang, K.; Xu, Z.H.; Ye, J.D.; Zhu, S.M.; Gu, S.L. The luminescent inhomogeneity and the distribution of zinc vacancy-related acceptor-like defects in N-Doped ZnOmicrorods. Nanoscale Res. Lett. 2016, 11, 511. [Google Scholar] [CrossRef]
- Yao, Y.H.; Cao, Q.X. First-principles study on infrared absorptions of transition metal-doped ZnO with oxygen vacancy. Acta. Metall. Sin. (Engl. Lett.) 2013, 26, 467–472. [Google Scholar] [CrossRef] [Green Version]
- Li, W.L.; Hou, Q.Y.; Jia, X.F.; Xu, Z.C. Effects of la doping and Zn or O vacancy on the magnetic property of ZnO. J. Supercond. Nov. Magn. 2018, 31. [Google Scholar] [CrossRef]
- Ding, Y.; Pradel, K.C.; Wang, Z.L. In situ transmission electron microscopy observation of ZnO polar and non-polar surfaces structure evolution under electron beam irradiation. J. Appl. Phys. 2016, 119, 015305. [Google Scholar] [CrossRef]
- Zeng, H.B.; Duan, G.T.; Li, Y.; Yang, S.K.; Xu, X.X.; Cai, W.P. Blue luminescence of ZnO nanoparticles based on non-equilibrium processes defect origins and emission controls. Adv. Funct. Mater. 2010, 20, 561. [Google Scholar] [CrossRef]
- Duan, L.B.; Zhao, X.R.; Wang, Y.J.; Geng, W.C.; Zhang, F.L. Structural and optical properties of (Mg, Al) –codoped ZnO nanoparticles synthesized by the auto combustion method. Ceram. Int. 2015, 41, 6373–6380. [Google Scholar] [CrossRef]
- Serrano, J.; Romero, A.H.; Manjon, F.J.; Lauck, R.; Cardona, M.; Rubio, A. Pressure dependence of the lattice dynamics of ZnO: An ab initio approach. Phys. Rev. B 2004, 69, 094306. [Google Scholar] [CrossRef]
- Loudon, R. The Raman effect in crystals. Adv. Phys. 1964, 13, 423–482. [Google Scholar] [CrossRef]
- Tell, B.; Damen, T.C.; Porto, S.P.S. Raman Effect in cadmium sulfide. Phy. Rev. 1966, 142, 570–576. [Google Scholar] [CrossRef]
- Song, Y.; Gou, J.; Yang, Y.T.; Ding, Z.N.; Zhang, S.X.; Zhang, C.H. Microstructure property study of ZnO single crystal irradiated with 200 MeV Kr ions. Mater. Res. Express 2019, 6, 026203. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Zhang, S.; Zhang, C.; Yang, Y.; Lv, K. Raman Spectra and Microstructure of Zinc Oxide irradiated with Swift Heavy Ion. Crystals 2019, 9, 395. https://doi.org/10.3390/cryst9080395
Song Y, Zhang S, Zhang C, Yang Y, Lv K. Raman Spectra and Microstructure of Zinc Oxide irradiated with Swift Heavy Ion. Crystals. 2019; 9(8):395. https://doi.org/10.3390/cryst9080395
Chicago/Turabian StyleSong, Yin, Shengxia Zhang, Chonghong Zhang, Yitao Yang, and Kangyuan Lv. 2019. "Raman Spectra and Microstructure of Zinc Oxide irradiated with Swift Heavy Ion" Crystals 9, no. 8: 395. https://doi.org/10.3390/cryst9080395
APA StyleSong, Y., Zhang, S., Zhang, C., Yang, Y., & Lv, K. (2019). Raman Spectra and Microstructure of Zinc Oxide irradiated with Swift Heavy Ion. Crystals, 9(8), 395. https://doi.org/10.3390/cryst9080395