Rapid Detection of Six Glucocorticoids Added Illegally to Dietary Supplements by Combining TLC with Spot-Concentrated Raman Scattering
"> Figure 1
<p>Results from TLC analysis of the six reference chemicals and mixture solution. A, B, C, D, E, F: reference substance of prednisone, prednisone acetate, prednisolone, hydrocortisone, hydrocortisone acetate, and dexamethasone; and M: mixture solution.</p> "> Figure 2
<p>The detailed process of spot concentration on TLC plate (<b>I</b>), and micro-Raman imaging map (<b>II</b>).</p> "> Figure 2 Cont.
<p>The detailed process of spot concentration on TLC plate (<b>I</b>), and micro-Raman imaging map (<b>II</b>).</p> "> Figure 3
<p>Raman spectra of prednisone acetate (<b>a</b>: detected by TLC-SERS method without prednisone acetate, <b>b</b>: detected directly on TLC spot without prednisone acetate, <b>c</b>: detected by the TLC-SCRS method, <b>d</b>: detected directly on reference powder, and <b>e</b>: detected by the TLC-SERS method. The deposition amount is 10 μg).</p> "> Figure 4
<p>The common structure of steroids.</p> "> Figure 5
<p>Raman spectra of reference substance solutions by TLC–SCRS (deposition amount of 10 μg). <b>A</b>, <b>B</b>, <b>C</b>, <b>D</b>, <b>E</b>, <b>F</b>: prednisone, prednisone acetate, prednisolone, hydrocortisone, hydrocortisone acetate, and dexamethasone.</p> "> Figure 6
<p>TLC-SCRS of prednisone (A) (<b>a</b>: simulated negative sample; <b>b</b>: simulated positive sample; and <b>c</b>: reference substance of prednisone).</p> "> Figure 7
<p>The Raman spectra of different deposition amount of reference substances on TLC.</p> "> Figure 8
<p>The LOD analysis of six reference substances.</p> "> Figure 9
<p>Five real samples used in TLC-SCRS detection (<b>I</b>), results from TLC analysis of five real samples developed with dichloromethane-acetone-methanol 12:2:0.5 (<span class="html-italic">v</span>/<span class="html-italic">v</span>/<span class="html-italic">v</span>) (<b>II</b>), (A–F: prednisone, prednisone acetate, prednisolone, hydrocortisone, hydrocortisone acetate, and dexamethasone references 1–5: sample 1–5), and the Raman spectra obtained from prednisolone, hydrocortisone, and sample 5 (<b>III</b>).</p> "> Figure 9 Cont.
<p>Five real samples used in TLC-SCRS detection (<b>I</b>), results from TLC analysis of five real samples developed with dichloromethane-acetone-methanol 12:2:0.5 (<span class="html-italic">v</span>/<span class="html-italic">v</span>/<span class="html-italic">v</span>) (<b>II</b>), (A–F: prednisone, prednisone acetate, prednisolone, hydrocortisone, hydrocortisone acetate, and dexamethasone references 1–5: sample 1–5), and the Raman spectra obtained from prednisolone, hydrocortisone, and sample 5 (<b>III</b>).</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Thin-Layer Chromatography Condition
2.2. The TLC-SCRS Method
2.3. Comparation with TLC-SERS Method
2.4. Raman Spectra by TLC–SCRS
2.5. Analysis of Simulated Positive Samples
2.6. Inspection of Limit of Detection (LOD)
2.7. Detection of Real Samples
2.8. HPLC-MS Verification
3. Experimental
3.1. Materials and Reagents
3.2. Apparatus
3.3. Sample Preparation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Knapik, J.J.; Steelman, R.A.; Hoedebecke, S.S.; Austin, K.G.; Farina, E.K.; Lieberman, H.R. Prevalence of Dietary Supplement Use by Athletes: Systematic Review and Meta-Analysis. Sports Med. 2016, 46, 103–123. [Google Scholar] [CrossRef] [PubMed]
- Phattanawasin, P.; Sotanaphun, U.; Sukwattanasinit, T.; Akkarawaranthorn, J.; Kitchaiya, S. Quanitiatative determination of sibutramine in adulterated herbal slimming formulations by TLC-image analysis method. Forensic Sci. Int. 2012, 219, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Ko, R.J. Adulterants in Asian patent medicines. N. Engl. J. Med. 1998, 339, 847. [Google Scholar] [CrossRef] [PubMed]
- Ernst, E. Adulteration of Chinese herbal medicines with synthetic drugs: A systematic review. J. Intern. Med. 2002, 252, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.F.; Wen, K.C.; Hsiao, M.L. Adulteration by synthetic therapeutic substances of traditional Chinese medicines in Taiwan. J. Clin. Pharmacol. 1997, 37, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Qi, Y.; Lu, F.; Yang, L. Highly sensitive on-site detection of drugs adulterated in botanical dietary supplements using thin layer chromatography combined with dynamic surface enhanced Raman spectroscopy. Talanta 2016, 146, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Offerhaus, L.; Dukes, M.N.G.; Smits, H.M. “Herbal” medicines and rheumatoid arthritis. Br. Med. J. 1979, 2, 668. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Riaz, M. Quantification of corticosteroids as common adulterants in local drugs by HPLC. Chromatographia 1991, 31, 67–70. [Google Scholar] [CrossRef]
- Hughes, J.R.; Higgins, E.M.; Pembroke, A.C. Oral dexamethasone masquerading as a Chinese herbal remedy. Br. J. Dermatol. 1992, 127, 543–544. [Google Scholar] [CrossRef]
- Stricht, B.V.; Parvais, O.E.; Vanhaelen-Fastre, R.J.; Vanhaelen, M.H. Remedies may contain cocktail of active drugs. BMJ 1994, 308, 1162. [Google Scholar] [CrossRef]
- Ford, A.C.; Bernstein, C.N.; Khan, K.J.; Abreu, M.T.; Marshall, J.K.; Talley, N.J.; Moayyedi, P. Glucocorticosteroid Therapy in Inflammatory Bowel Disease: Systematic Review and Meta-Analysis. Am. J. Gastroenterol. 2011, 106, 590–599. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Cao, Y.; Cao, Y.; Chai, Y.; Lu, F. Rapid on-site TLC-SERS detection of four antidiabetes drugs used as adulterants in botanical dietary supplements. Anal. Bioanal. Chem. 2014, 406, 1877–1884. [Google Scholar] [CrossRef] [PubMed]
- Joseph, A.M.; Biggs, T.; Garr, M.; Singh, J.; Lederle, F.A. Stealth steroids. N. Engl. J. Med. 1991, 3, 62. [Google Scholar]
- Kaliszewski, P.; Konczak, D.; Cholbinski, P.; Wicka, M.; Michalak, D.; Kwiatkowska, D.; Lewandowska-Pachecka, S.; Namiesnik, J.; Pokrywka, A. Budesonide treatment of professional athletes and anti-doping testing-case studies. Acta Pol. Pharm. 2016, 73, 229–237. [Google Scholar] [PubMed]
- Marchei, E.; Pellegrini, M.; Pacifici, R.; Zuccaro, P.; Pichini, S. A rapid and simple procedure for the determination of ephedrine alkaloids in dietary supplements by gas chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 2006, 41, 1633–1641. [Google Scholar] [CrossRef] [PubMed]
- Marchei, E.; Pichini, S.; Pacifici, R.; Pellegrini, M.; Zuccaro, P. A rapid and simple procedure for the determination of synephrine in dietary supplements by gas chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 2006, 41, 1468–1472. [Google Scholar] [CrossRef] [PubMed]
- Onal, A. Spectrophotometric and HPLC determinations of anti-diabetic drugs, rosiglitazone maleate and metformin hydrochloride, in pure form and in pharmaceutical preparations. Eur. J. Med. Chem. 2009, 44, 4998–5005. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Shi, Y.Q.; Li, Z.R.; Jin, S.H. Development of a RP-HPLC method for screening potentially counterfeit anti-diabetic drugs. J. Chromatogr. B 2007, 853, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Lokhnauth, J.K.; Snow, N.H. Solid phase micro-extraction coupled with ion mobility spectrometry for the analysis of ephedrine in urine. J. Sep. Sci. 2005, 28, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Dillon, J.T.; Aponte, J.C.; Tsai, Y.-J.; Huang, Y. Thin layer chromatography in the separation of unsaturated organic compounds using silver-thiolate chromatographic material. J. Chromatogr. A 2012, 1251, 240–243. [Google Scholar] [CrossRef] [PubMed]
- Jim, S.; Foroughi-Abari, A.; Krause, K.; Li, P.; Kupsta, M.; Taschuk, M.; Cadien, K.; Brett, M. Ultrathin-layerchromatographynanostruc-tures modified by atomic layer deposition. J. Chromatogr. A 2013, 1299, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Vicario, A.; Sergo, V.; Toffoli, G.; Bonifacio, A. Surface-enhanced Raman spectroscopy of the anti-cancer drug irinotecan in presence of human serum albumin. Colloids Surf. B 2015, 127, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.F.; Han, S.Y.; Li, X. Detection of tobacco-related biomarkers in urine samples by surface-enhanced Raman spectroscopy coupled with thin-layer chromatography. Anal. Bioanal. Chem. 2013, 405, 6815–6822. [Google Scholar] [CrossRef] [PubMed]
- Freye, C.E.; Crane, N.A.; Kirchner, T.B.; Sepaniak, M.J. Surface enhanced Raman scattering imaging of developed thin-layer chromatography plates. Anal. Chem. 2013, 85, 3991–3998. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, F.; Shibayama, N.; Leona, M.; Lombardi, J.R. TLC-SERS study of Syrian rue (Peganum harmala) and its main alkaloid constituents. J. Raman Spectrosc. 2013, 44, 102–107. [Google Scholar] [CrossRef]
- Wu, S.M.; Chen, S.H.; Wu, H.L. Thin-layer chromatographic detection of glucocorticoids. Gaoxiong Yi Ke Za Zhi 1991, 7, 545–549. [Google Scholar]
- Lee, P.; Meisel, D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 1982, 86, 3391–3395. [Google Scholar] [CrossRef]
- Dou, W.-H.; Zhou, G.-M.; Kang, Q.-Q. Study of the Epimers of Dexamethasone Sodium Phosphate and Betamethasone Sodium Phosphate by FTIR, FT-Raman and SERS. Spectrosc. Spectr. Anal. 2012, 32, 2664–2668. [Google Scholar]
Sample Availability: Samples of prednisone, prednisone acetate, prednisolone, hydrocortisone, hydrocortisone acetate, and dexamethasone are available from the authors. |
Adulterants | Structure | Raman Shift (cm−1) of Spot on TLC | Raman Shift (cm−1) of Reference Powder | Intensity |
---|---|---|---|---|
Prednisone (A) | | 1657 | 1658 | s |
1602 | 1607 | w | ||
Prednisone acetate (B) | | 1658 | 1660 | s |
1603 | 1606 | w | ||
Prednisolone (C) | | 1655 | 1658 | s |
1605 | 1604 | w | ||
Hydrocortisone (D) | | 1652 | 1645 | s |
1614 | 1613 | s | ||
Hydrocortisone acetate (E) | | 1628 | 1629 | s |
1617 | 1619 | s | ||
Dexamethasone (F) | | 1661 | 1658 | s |
1605 | 1606 | w |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Liang, X.; Xu, T.; Xu, F.; Dong, W. Rapid Detection of Six Glucocorticoids Added Illegally to Dietary Supplements by Combining TLC with Spot-Concentrated Raman Scattering. Molecules 2018, 23, 1504. https://doi.org/10.3390/molecules23071504
Li L, Liang X, Xu T, Xu F, Dong W. Rapid Detection of Six Glucocorticoids Added Illegally to Dietary Supplements by Combining TLC with Spot-Concentrated Raman Scattering. Molecules. 2018; 23(7):1504. https://doi.org/10.3390/molecules23071504
Chicago/Turabian StyleLi, Li, Xin Liang, Tao Xu, Feng Xu, and Wei Dong. 2018. "Rapid Detection of Six Glucocorticoids Added Illegally to Dietary Supplements by Combining TLC with Spot-Concentrated Raman Scattering" Molecules 23, no. 7: 1504. https://doi.org/10.3390/molecules23071504
APA StyleLi, L., Liang, X., Xu, T., Xu, F., & Dong, W. (2018). Rapid Detection of Six Glucocorticoids Added Illegally to Dietary Supplements by Combining TLC with Spot-Concentrated Raman Scattering. Molecules, 23(7), 1504. https://doi.org/10.3390/molecules23071504