One-Dimension Diffusion Preparation of Concentration-Gradient Fe2O3/SiO2 Aerogel
"> Figure 1
<p>The schematic diagram of the 1d diffusion preparation of gradient Fe(II)/SiO<sub>2</sub> gels.</p> "> Figure 2
<p>(<b>a</b>) The diffusion process of Fe<sup>2+</sup> into the MSQ gel before supercritical fluid drying with the 4 × 4 × 1 cm<sup>3</sup> square mold; The composites aerogel (<b>b</b>) after CO<sub>2</sub> supercritical fluid drying and (<b>c</b>) after both supercritical fluid drying and thermal treatment.</p> "> Figure 3
<p>The N<sub>2</sub> adsorption-desorption isotherms of: (<b>a</b>) Pure silica aerogel and (<b>b</b>) Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> aerogel, and (<b>c</b>) the pore size distribution of pure silica aerogel and Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> aerogel; a comparison of microporous distribution of pure silica aerogel and doped aerogel is inset.</p> "> Figure 4
<p>The SEM picture of the: (<b>a</b>) Pure SiO<sub>2</sub> aerogel and composition-gradient Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> composite aerogel at different positions: (<b>b</b>) A; (<b>c</b>) B; (<b>d</b>) C; (<b>e</b>) D; (<b>f</b>) E.</p> "> Figure 5
<p>The TEM images of the: (<b>a</b>) SiO<sub>2</sub> aerogel and composition-gradient Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> composite. Aerogel at different positions: (<b>b</b>) A; (<b>c</b>) B; (<b>d</b>) C; (<b>e</b>) D; (<b>f</b>) E.</p> "> Figure 6
<p>The average pore diameter of composite aerogels at five positions (A: <span class="html-italic">x</span> = 2 mm; B: <span class="html-italic">x</span> = 11 mm; C: <span class="html-italic">x</span> = 20 mm; D: <span class="html-italic">x</span> = 29 mm; E: <span class="html-italic">x</span> = 38 mm) and pure silica aerogel.</p> "> Figure 7
<p>The diffusion process of Fe<sup>2+</sup> into the gel before supercritical drying with the mold of cuvette.</p> "> Figure 8
<p>(<b>a</b>) The original experimental data and (<b>b</b>) the fitted surface according to Equation (3).</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Aerogel Appearance and Composition Distribution
2.2. Analysis of N2 Adsorption-Desorption Isotherm and Pore Size Distribution
2.3. The Microstructure of Aerogel
2.4. One-Dimensional Diffusion Model of Fick's Second Law
3. Experiments and Characterizations
3.1. Materials
3.2. Preparation of Silica Gels
3.3. One Dimensional Diffusion Preparation of Concentration-Gradient Gel
3.4. Preparation of Concentration-Gradient Fe2O3/SiO2 Aerogel
3.5. Characterizations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Du, A.; Zhou, B.; Zhang, Z.H.; Shen, J. A special material or a new state of matter: A review and reconsideration of the aerogel. Materials 2013, 6, 941–968. [Google Scholar] [CrossRef] [PubMed]
- Fricke, J.; Tillotson, T. Aerogels: Production, characterization, and applications. Thin Solid Films 1997, 297, 212–223. [Google Scholar] [CrossRef]
- Raap, M.B.F.V.; Sanchez, F.H.; Leyva, A.G.; Japas, M.L.; Cabanillas, E.; Troiani, H. Synthesis and magnetic properties of iron oxide–silica aerogel nanocomposites. Physics B 2007, 398, 229–234. [Google Scholar] [CrossRef]
- Hüsing, N.; Schubert, U. Aerogels-airy materials: Chemistry, structure, and properties. Angew. Chem. Int. Ed. 1998, 37, 22–45. [Google Scholar] [CrossRef]
- Li, T.M.; Zhou, B.; Du, A.; Xiang, Y.L.; Wu, S.; Liu, M.F.; Ding, W.H.; Shen, J.; Zhang, Z.H. Microstructure control of the silica aerogels via pinhole drying. J. Sol-Gel Sci. Technol. 2017, 84, 1–8. [Google Scholar] [CrossRef]
- Tang, J.; Du, A.; Xu, W.W.; Liu, G.W.; Zhang, Z.H.; Shen, J.; Zhou, B. Fabrication and characterization of composition-gradient CuO/SiO2 composite aerogel. J. Sol-Gel Sci. Technol. 2013, 68, 102–109. [Google Scholar] [CrossRef]
- Steiner, S.A.; Baumann, T.F.; Kong, J.; Satcher, J.H.; Dresselhaus, M.S. Iron-doped carbon aerogels: Novel porous substrates for direct growth of carbon nanotubes. Langmuir 2007, 23, 5161–5166. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Li, X.; Su, D.; Ji, H.; Qiao, Y. High-strength mullite fibers reinforced ZrO2-SiO2 aerogels fabricated by rapid gel method. J. Mater. Sci. 2015, 50, 7488–7494. [Google Scholar] [CrossRef]
- Zhao, Y.; Liang, Y.; Li, F.; Chen, H.; Liu, X.; Guo, H. Preparation of CuO-CoO-MnO/SiO2 Nanocomposite Aerogels and the Effect of Synthesis Conditions on Gelation. Adv. Mater. Res. 2011, 148–149, 920–923. [Google Scholar] [CrossRef]
- Deng, Z.; Wang, J.; Wei, J.; Shen, J.; Zhou, B.; Chen, L. Physical properties of silica aerogels prepared with polyethoxydisiloxanes. J. Sol-Gel Sci. Technol. 2000, 19, 677–680. [Google Scholar] [CrossRef]
- Gui, J.Y.; Zhou, B.; Zhong, Y.H.; Du, A.; Shen, J. Fabrication of gradient density SiO2 aerogel. J. Sol-Gel Sci. Technol. 2011, 58, 470–475. [Google Scholar] [CrossRef]
- Gerlach, R.; Kraus, O.; Fricke, J.; Eccardt, P.C.; Kroemer, N.; Magori, V. Modified SiO2 aerogels as acoustic impedance matching layers in ultrasonic devices. J. Non-Cryst. Solids 1992, 145, 227–232. [Google Scholar] [CrossRef]
- Kashfipour, M.A.; Mehra, N.; Zhu, J. A review on the role of interface in mechanical, thermal, and electrical properties of polymer composites. Adv. Compos. Hybrid Mater. 2018, 1–25. [Google Scholar] [CrossRef]
- Gu, H.; Liu, C.; Zhu, J.; Gu, J.; Wujcik, E.K.; Shao, L.; Wang, N.; Wei, H.; Scaffaro, R. Introducing advanced composites and hybrid materials. Adv. Compos. Hybrid Mater. 2018, 1, 1–5. [Google Scholar] [CrossRef]
- Jones, S.M. Gradient composition sol-gel materials. Sol-Gel Opt. V 2000, 3943, 260–269. [Google Scholar] [Green Version]
- Jones, S.M. A method for producing gradient density aerogel. J. Sol-Gel Sci. Technol. 2007, 44, 255–258. [Google Scholar] [CrossRef]
- Xu, W.W.; Du, A.; Tang, J.; Chen, K.; Zou, L.P.; Zhang, Z.H.; Shen, J.; Zhou, B. Rapid preparation of highly doped CuO/SiO2 composite aerogels. Acta Phys.-Chim. Sin. 2012, 28, 2958–2964. [Google Scholar]
- Qin, G.; Yao, Y.; Wei, W.; Zhang, T. Preparation of hydrophobic granular silica aerogels and adsorption of phenol from water. Appl. Surface Sci. 2013, 280, 806–811. [Google Scholar] [CrossRef]
- Grandi, S.; Mustarelli, P.; Tomasi, C.; Sorarù, G.; Spanò, G. On the relationship between microstructure and densification of silica gels. J. Non-Cryst. Solids 2004, 343, 71–77. [Google Scholar] [CrossRef]
- Mermer, N.K.; Yilmaz, M.S.; Ozdemir, O.D.; Piskin, M.B. The synthesis of silica-based aerogel from gold mine waste for thermal insulation. J. Therm. Anal. Calorim. 2017, 2, 1–6. [Google Scholar]
- Du, A.; Zhou, B.; Xu, W.; Yu, Q.; Shen, Y.; Zhang, Z.; Shen, J.; Wu, G. Reaction-induced microsyneresis in oxide-based gels: The assembly of hierarchical microsphere networks. Langmuir 2013, 29, 11208–11216. [Google Scholar] [CrossRef] [PubMed]
- Bangi, U.K.H.; Jung, I.K.; Park, C.S.; Baek, S.; Park, H.H. Optically transparent silica aerogels based on sodium silicate by a two step sol-gel process and ambient pressure drying. Solid State Sci. 2013, 18, 50–57. [Google Scholar] [CrossRef]
- Shi, S.Q. Diffusion model based on Fick’s second law for the moisture absorption process in wood fiber-based composites: Is it suitable or not? Wood Sci. Technol. 2007, 41, 645–658. [Google Scholar] [CrossRef]
- Guiheneuf, T.M.; Gibbs, S.J.; Hall, L.D. Measurement of the inter-diffusion of sodium ions during pork brining by one-dimensional 23Na magnetic resonance imaging (MRI). J. Food Eng. 1997, 31, 457–471. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Measure Plane | Height from the Bottom (mm) | Molar Ratio of Fe/Si (%) |
---|---|---|
Position A | 2 | 18.48 ± 0.26 |
Position B | 11 | 11.56 ± 0.29 |
Position C | 20 | 5.06 ± 0.76 |
Position D | 29 | 3.61 ± 0.09 |
Position E | 38 | 2.14 ± 0.32 |
Models | D (m2/s) | n0 (mol/L) | R2 |
---|---|---|---|
one-dimensional model | 3.52 × 10−7 | 0.61612 | 0.89447 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Wang, H.; Zhou, B.; Ji, X.; Wang, H.; Du, A. One-Dimension Diffusion Preparation of Concentration-Gradient Fe2O3/SiO2 Aerogel. Molecules 2018, 23, 1502. https://doi.org/10.3390/molecules23071502
Zhang T, Wang H, Zhou B, Ji X, Wang H, Du A. One-Dimension Diffusion Preparation of Concentration-Gradient Fe2O3/SiO2 Aerogel. Molecules. 2018; 23(7):1502. https://doi.org/10.3390/molecules23071502
Chicago/Turabian StyleZhang, Ting, Haoran Wang, Bin Zhou, Xiujie Ji, Hongqiang Wang, and Ai Du. 2018. "One-Dimension Diffusion Preparation of Concentration-Gradient Fe2O3/SiO2 Aerogel" Molecules 23, no. 7: 1502. https://doi.org/10.3390/molecules23071502
APA StyleZhang, T., Wang, H., Zhou, B., Ji, X., Wang, H., & Du, A. (2018). One-Dimension Diffusion Preparation of Concentration-Gradient Fe2O3/SiO2 Aerogel. Molecules, 23(7), 1502. https://doi.org/10.3390/molecules23071502