Strong Coupling of Folded Phonons with Plasmons in 6H-SiC Micro/Nanocrystals
"> Figure 1
<p>Scanning electron microscopy (SEM) images (left side) of the 6H-SiC films with a mean size of (<b>a</b>) 0.55 μm and (<b>b</b>) 1.25 μm. The right side shows the corresponding micro/nanocrystal (MNC) size distributions.</p> "> Figure 2
<p>X-ray diffraction (XRD) patterns acquired from the 6H-SiC films with mean sizes of 1.25 and 0.55 μm. The XRD pattern of the standard 6H-SiC crystal is also presented for comparison.</p> "> Figure 3
<p>(<b>a</b>) Raman spectra of the 6H-SiC films with mean sizes of 1.25 μm (solid lines) and 0.55 μm (dashed lines) but different thicknesses; (<b>b</b>,<b>c</b>) Magnified spectral regions of the folded transverse optic (FTO) and folded longitudinal optic (FLO) bands in which the Lorenzian line-shape is adopted to fit the Raman spectra of the 0.5 μm thick films.</p> "> Figure 4
<p>UV–VIS–NIR absorption of the 6H-SiC films with different thicknesses and MNC sizes. Due to the wide MNC size distribution, the absorption spectra are broad and have large intensities in the range of visible light. The strongest absorption appears in the film with the largest thickness and meantime with the smallest MNC sizes. The smaller the MNC sizes, the larger the specific surface area and thus the stronger the surface plasmons.</p> "> Figure 5
<p>Calculated Raman spectra of the FTO and FLO modes for different values of common coupling strength <span class="html-italic">η</span><sub>0</sub>. The parameters specifying the difference of the modes in coupling with the plasmons are as follows: <math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mrow> <mi>L</mi> <mi>O</mi> </mrow> </msub> <mo>=</mo> <mn>4.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mrow> <mi>T</mi> <mi>O</mi> </mrow> </msub> <mo>=</mo> <mn>2.0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mrow> <mi>L</mi> <mi>O</mi> </mrow> </msub> <mo>=</mo> <mn>0.86</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mrow> <mi>T</mi> <mi>O</mi> </mrow> </msub> <mo>=</mo> <mn>0.31</mn> </mrow> </semantics></math>. The damping rates for the FTO and FLO modes are: <math display="inline"><semantics> <mrow> <msub> <mo mathvariant="sans-serif">Γ</mo> <mrow> <mi>l</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>5</mn> <mtext> </mtext> <msup> <mrow> <mi>cm</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mo mathvariant="sans-serif">Γ</mo> <mrow> <mi>l</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>25</mn> <mtext> </mtext> <msup> <mrow> <mi>cm</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mo mathvariant="sans-serif">Γ</mo> <mrow> <mi>l</mi> <mo>,</mo> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mn>30</mn> <mtext> </mtext> <msup> <mrow> <mi>cm</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mo mathvariant="sans-serif">Γ</mo> <mrow> <mi>l</mi> <mo>,</mo> <mn>4</mn> </mrow> </msub> <mo>=</mo> <mn>35</mn> <mtext> </mtext> <msup> <mrow> <mi>cm</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mo mathvariant="sans-serif">Γ</mo> <mrow> <mi>t</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>15</mn> <mtext> </mtext> <msup> <mrow> <mi>cm</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mo mathvariant="sans-serif">Γ</mo> <mrow> <mi>t</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>20</mn> <mtext> </mtext> <msup> <mrow> <mi>cm</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mo mathvariant="sans-serif">Γ</mo> <mrow> <mi>t</mi> <mo>,</mo> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mn>33</mn> <mtext> </mtext> <msup> <mrow> <mi>cm</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mo mathvariant="sans-serif">Γ</mo> <mrow> <mi>t</mi> <mo>,</mo> <mn>4</mn> </mrow> </msub> <mo>=</mo> <mn>38</mn> <mtext> </mtext> <msup> <mrow> <mi>cm</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>. For the plasmons, the frequency is <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>20</mn> <mtext> </mtext> <msup> <mrow> <mi>cm</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> and the damping rate is <span class="html-italic">γ</span> = 100 cm<sup>−1</sup>.</p> ">
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Liu, Y.; Wang, G.; Wang, S.; Yang, J.; Chen, L.; Qin, X.; Song, B.; Wang, B.; Chen, X. Defect-Induced Magnetism in Neutron Irradiated 6H-SiC Single Crystals. Phys. Rev. Lett. 2011, 106, 087205. [Google Scholar] [CrossRef] [PubMed]
- Itoh, A.; Kimoto, T.; Matsunami, H. High Performance of High-Voltage 4H-SiC Schottky Barrier Diodes. IEEE Electr. Device Lett. 1995, 16, 280–282. [Google Scholar] [CrossRef]
- Casady, J.B.; Johnson, R.W. Status of Silicon Carbide (SiC) as a Wide-Bandgap Semiconductor for High-Temperature Applications: A Review. Solid State Electron. 1996, 39, 1409–1422. [Google Scholar] [CrossRef]
- Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A.A.; Starke, U. Quasi-Free-Standing Epitaxial Graphene on SiC Obtained by Hydrogen Intercalation. Phys. Rev. Lett. 2009, 103, 246804. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.L.; Fan, J.Y.; Qiu, T.; Yang, X.; Siu, G.G.; Chu, P.K. Experimental Evidence for the Quantum Confinement Effect in 3C-SiC Nanocrystallites. Phys. Rev. Lett. 2005, 94, 026102. [Google Scholar] [CrossRef] [PubMed]
- Bracher, D.; Hu, E. Fabrication of High-Q Nanobeam Photonic Crystals in Epitaxially Grown 4H-SiC. Nano Lett. 2015, 15, 6202–6207. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Zheng, J.; Wang, M.; Wei, G.; Yang, W. Piezoresistance Behaviors of p-type 6H-SiC Nanowires. Chem. Commun. 2011, 47, 11993–11995. [Google Scholar] [CrossRef] [PubMed]
- Csóré, A.; Bardeleben, H.J.V.; Cantin, J.L.; Gali, A. Characterization and Formation of NV Centers in 3C, 4H, and 6H SiC: An Ab Initio Study. Phys. Rev. B 2017, 96, 085204. [Google Scholar] [CrossRef]
- Bechstedt, F.; Fissel, A.; Furthmüller, J.; Kaiser, U.; Weissker, H.C.; Wesch, W. Quantum Structures in SiC. Appl. Surf. Sci. 2003, 212, 820–825. [Google Scholar] [CrossRef]
- Perova, T.; Wasyluk, J.; Kukushkin, S.; Osipov, A.; Feoktistov, N.; Grudinkin, S. Micro-Raman Mapping of 3C-SiC Thin Films Grown by Solid-Gas Phase Epitaxy on Si (111). Nanoscale Res. Lett. 2010, 5, 1507–1511. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, K.; Jayalakshmi, G.; Panigrahi, B.; Hübner, R. Strain and Particle Size Analysis in Ion Beam Synthesized SiC Nanoparticles Using Raman Scattering Studies. Cryst. Res. Technol. 2017, 52, 1600391. [Google Scholar] [CrossRef]
- Klein, M.V.; Ganguly, B.N.; Colwell, P.J. Theoretical and Experimental Study of Raman Scattering from Coupled LO-Phonon-Plasmon Modes in Silicon Carbide. Phys. Rev. B 1972, 6, 2380. [Google Scholar] [CrossRef]
- Ulrich, C.; Debernardi, A.; Anastassakis, E.; Syassen, K.; Cardona, M. Raman Linewidths of Phonons in Si, Ge, and SiC under Pressure. Phys. Status Solidi B 1999, 211, 293–300. [Google Scholar] [CrossRef]
- Wan, L.; Zhao, D.; Wang, F.; Xu, G.; Lin, T.; Tin, C.; Feng, Z. Quality Evaluation of Homopetaxial 4H-SiC Thin Films by a Raman Scattering Study of Forbidden Modes. Opt. Mater. Express 2017, 8, 119–127. [Google Scholar] [CrossRef]
- Wasyluk, J.; Perova, T.; Kukushkin, S.; Osipov, A.; Feoktistov, N.; Grudinkin, S. Raman Investigation of Different Polytypes in SiC Thin Films Grown by Solid-Gas Phase Epitaxy on Si (111) and 6H-SiC Substrates. Mater. Sci. Forum 2010, 645, 359–362. [Google Scholar] [CrossRef]
- Feidman, D.W.; Parker, J.H.; Choyke, W.J.; Patrick, L. Raman Scattering in 6H SiC. Phys. Rev. 1968, 170, 698. [Google Scholar] [CrossRef]
- Patrick, L. Infrared Absorption in SiC Polytypes. Phys. Rev. 1968, 167, 809. [Google Scholar] [CrossRef]
- Loudon, R. The Raman Effect in Crystals. Adv. Phys. 1964, 13, 423–482. [Google Scholar] [CrossRef]
- Patrick, L. Inequivalent Sites and Multiple Donor and Acceptor Levels in SiC Polytypes. Phys. Rev. 1962, 127, 1878. [Google Scholar] [CrossRef]
- Liu, L.Z.; Wang, J.; Wu, X.L.; Li, T.H.; Chu, P.K. Longitudinal Optical Phonon-Plasmon Coupling in Luminescent 3C-SiC Nanocrystal Films. Opt. Lett. 2010, 35, 4024–4026. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.Q.; Xiong, S.J.; Wu, X.L.; Liu, L.Z.; Li, T.H.; Chu, P.K. Strong Phonon-Plasmon Coupling at the Interface of 3C-SiC/Metal Oxide Nanoparticles. Acta Mater. 2015, 83, 113–119. [Google Scholar] [CrossRef]
- Zeng, S.; Baillargeat, D.; Ho, H.P.; Yong, K.T. Nanomaterials Enhanced Surface Plasmon Resonance for Biological and Chemical Sensing Applications. Chem. Soc. Rev. 2014, 43, 3426–3452. [Google Scholar] [CrossRef] [PubMed]
- Tótha, S.; Némethc, P.; Rácza, P.; Himicsa, L.; Dombia, P.; Koós, M. Silicon Carbide Nanocrystals Produced by Femtosecond Laser Pulses. Diam. Relat. Mater. 2018, 81, 96–102. [Google Scholar] [CrossRef]
- Lee, C.P.; Luna, L.E.; DelaCruz, S.; Ortaboy, S.; Rossi, F.; Salviati, G.; Carraro, C.; Maboudian, R. Hierarchical Cobalt Oxide-Functionalized Silicon Carbide Nanowire Array for Efficient and Robust Oxygen Evolution Electro-Catalysis. Materialstoday Energy 2018, 7, 37–43. [Google Scholar] [CrossRef]
- Lin, S.; Chen, Z.; Li, L.; Yang, C. Effect of Impurities on the Raman Scattering of 6H-SiC Crystals. Mater. Res. 2012, 15, 833–836. [Google Scholar] [CrossRef]
- Scheerer, U.; Wulff, C. Reduced Dynamics for Momentum Maps with Cocycles Dynamique Réduite Pour Les Applications Moment Avec Des Cocycles. C. R. L’académie Des. Sci. Ser. Math 2001, 333, 999–1004. [Google Scholar]
- Wang, H.C.; He, Y.T.; Sun, H.Y.; Qiu, Z.R.; Xie, D.; Mei, T.; Tin, C.; Feng, Z.C. Temperature Dependence of Raman Scattering in 4H-SiC Films under Different Growth Conditions. Chin. Phys. Lett. 2015, 32, 047801. [Google Scholar] [CrossRef]
- Lin, S.H.; Chen, Z.M.; Li, L.B.; Ba, Y.T.; Liu, S.J.; Yang, M.C. Investigation of Micropipes in 6H-SiC by Raman Scattering. Phys. B Condens. Matter 2012, 407, 670–673. [Google Scholar] [CrossRef]
- Wu, X.L.; Xiong, S.J.; Zhu, J.; Wang, J.; Shen, J.C.; Chu, P.K. Identification of Surface Structures on 3C-SiC Nanocrystals with Hydrogen and Hydroxyl Bonding by Photoluminescence. Nano Lett. 2009, 9, 4053–4060. [Google Scholar] [CrossRef] [PubMed]
- Mutschke, H.; Andersen, A.C.; Clement, D.; Henning, T.; Peiter, G. Infrared Properties of SiC Particles. Astron. Astrophys. 1999, 345, 187. [Google Scholar]
- Feldman, D.W.; Parker, J.H.; Choyke, W.J.; Patrick, L. Phonon Dispersion Curves by Raman Scattering in SiC, Polytypes 3C, 4H, 6H, 15R, and 21R. Phys. Rev. 1968, 173, 787. [Google Scholar] [CrossRef]
- Limmer, W.; Glunk, M.; Mascheck, S.; Koeder, A.; Klarer, D.; Schoch, W.; Thonke, K.; Sauer, R.; Waag, A. Coupled Plasmon-LO-Phonon Modes in Ga1-xMnxAs. Phys. Rev. B 2002, 66, 205209. [Google Scholar] [CrossRef]
- Chafai, M.; Jaouhari, A.; Torres, A.; Antón, R.; Martın, E.; Jiménez, J.; Mitchel, W. Raman Scattering from LO Phonon-Plasmon Coupled Modes and Hall-Effect in n-type Silicon Carbide 4H-SiC. J. Appl. Phys. 2001, 90, 5211–5215. [Google Scholar] [CrossRef]
- Jeganathan, K.; Debnath, R.; Meijers, R.; Stoica, T.; Calarco, R.; Grützmacher, D.; Lüth, H. Raman Scattering of Phonon-Plasmon Coupled Modes in Self-Assembled GaN Nanowires. J. Appl. Phys. 2009, 105, 123707. [Google Scholar] [CrossRef]
- Martin, T.; Genzel, L. Raman Scattering in Small Crystals. Phys. Rev. B 1973, 8, 1630. [Google Scholar] [CrossRef]
- Yamamoto, K.; Kimura, K.; Ueda, M.; Kasahara, H.; Okada, T. Infrared Absorption by Coupled Surface-Phonon-Surface-Plasmon Modes in Small GaAs Crystals. J. Phys. C Solid State Phys. 1985, 18, 2361. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Mean Size | 1.25 μm | 0.55 μm | ||||
---|---|---|---|---|---|---|
Thickness (μm) | 0.5 | 1.5 | 2.6 | 3.6 | 1.5 | 3.6 |
FTO(1) | 765.0 | 760.0 | 756.0 | 750.0 | 757.5 | 747.5 |
FTO(2/3) | 776.0 | 773.5 | 766.0 | 761.5 | 772.0 | 759.5 |
FTO(1/3) | 786.5 | 782.0 | 776.5 | 772.0 | 780.0 | 770.0 |
FTO(0) | 795.5 | 790.0 | 784.0 | 782.5 | 788.0 | 780.5 |
FLO(1) | 881.5 | 882.0 | 883.5 | 885.5 | 880.0 | 881.0 |
FLO(2/3) | 926.5 | 924.5 | 922.5 | 920.0 | 921.0 | 913.5 |
FLO(1/3) | 944.5 | 941.5 | 938.5 | 935.0 | 939.0 | 930.0 |
FLO(0) | 966.5 | 960.5 | 955.5 | 950.5 | 958.0 | 946.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Yang, R.; Xiong, S.; Chen, J.; Wu, X. Strong Coupling of Folded Phonons with Plasmons in 6H-SiC Micro/Nanocrystals. Molecules 2018, 23, 2296. https://doi.org/10.3390/molecules23092296
Huang Y, Yang R, Xiong S, Chen J, Wu X. Strong Coupling of Folded Phonons with Plasmons in 6H-SiC Micro/Nanocrystals. Molecules. 2018; 23(9):2296. https://doi.org/10.3390/molecules23092296
Chicago/Turabian StyleHuang, Yao, Run Yang, Shijie Xiong, Jian Chen, and Xinglong Wu. 2018. "Strong Coupling of Folded Phonons with Plasmons in 6H-SiC Micro/Nanocrystals" Molecules 23, no. 9: 2296. https://doi.org/10.3390/molecules23092296
APA StyleHuang, Y., Yang, R., Xiong, S., Chen, J., & Wu, X. (2018). Strong Coupling of Folded Phonons with Plasmons in 6H-SiC Micro/Nanocrystals. Molecules, 23(9), 2296. https://doi.org/10.3390/molecules23092296