Effect of Land Use and Land Cover Change on Soil Erosion in Erer Sub-Basin, Northeast Wabi Shebelle Basin, Ethiopia
<p>Location of the Erer Sub-Basin, North East Wabi Shebelle Basin, Ethiopia.</p> "> Figure 2
<p>Flowchart for the soil loss estimation using the Revised Universal Soil Loss Equation (RUSLE) model framed in the ArcGIS model-builder interface.</p> "> Figure 3
<p>Rainfall-erosivity (R) factor (<b>a</b>); Soil erodibility (K) factor (<b>b</b>); Slope length (L) factor (<b>c</b>), Slope steepness (S) factor (<b>d</b>); Cover management (C) factor in 2000 (<b>e</b>) and 2018 (<b>f</b>); Support practice (P) factor in 2000 (<b>g</b>) and 2018 (<b>h</b>) in the Erer Sub-Basin, North East Shebelle Basin, Ethiopia.</p> "> Figure 4
<p>Land use and land cover (LULC) map of the Erer Sub-Basin, North East Shebelle Basin, Ethiopia; (<b>a</b>) 2000 and (<b>b</b>) 2018.</p> "> Figure 5
<p>Soil erosion risk in the Erer Sub-Basin, North East Shebelle Basin, Ethiopia; (<b>a</b>) in 2000, (<b>b</b>) 2018.</p> "> Figure 6
<p>Land Cover Changes and their effects on soil erosion risk in the Erer Sub-Basin, North East Shebelle Basin, Ethiopia.</p> "> Figure 7
<p>Conservation Priority levels of the Erer Sub-Basin.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Data Collection
2.3. Methods
2.3.1. Delineation of the Sub-Basin Area
2.3.2. LULC Classification
2.3.3. LULCC Analysis
2.3.4. Determination of the RUSLE Factors
Rainfall and Runoff Erosivity Factor (R)
Soil Erodibility Factor (K)
Slope Length and Steepness (LS) Factor
Cover Management (C) Factor
Support Practice (P) Factor
3. Results and Discussion
3.1. LULC Classfication
3.2. Assessment of LULCC in the Erer Sub-Basin
3.3. Overview of Soil Erosion in the Erer Sub-Basin
3.4. Determination Conservation Priority Levels
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sujatha, E.R.; Sridhar, V. Spatial Prediction of Erosion Risk of a Small Mountainous Watershed Using RUSLE: A case-study of the Palar Sub Watershed in Kodaikanal, South India. Water 2018, 10, 1608. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.R.; Shi, Z.H.; Chongf, C. Soil erosion hazard evaluation: An integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies. Ecol. Model. 2009, 220, 1724–1734. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). The Economics of Land Degradation in Africa; ELD Initiative: Bonn, Germany, 2015. [Google Scholar]
- Borrelli, P.; David, A.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schutt, B.; et al. An assessment of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uddin, K.; Abdul Matin, M.; Maharjan, S. Assessment of Land Cover Change and Its Impact on Changes in Soil Erosion Risk in Nepal. Sustainability 2018, 10, 4715. [Google Scholar] [CrossRef] [Green Version]
- Bergsma, E. Terminology for Soil Erosion and Conservation; International Society for Soil Science: Wageningen, The Netherlands, 1996. [Google Scholar]
- Oldeman, L.R. The global extent of soil degradation. In Soil Resil. Sustain. Land Use; CAB International: Wallingford, CT, USA, 1994; pp. 99–118. [Google Scholar]
- Boardman, J. Soil Erosion in Britain: Updating the Record. Agriculture 2013, 3, 418–442. [Google Scholar] [CrossRef] [Green Version]
- Stavi, I.; Lal, R. Variability of soil physical quality in uneroded, eroded, and depositional cropland sites. Geomorphology 2011, 125, 85–91. [Google Scholar] [CrossRef]
- Benavidez, R.; Jackson, B.; Maxwell, D.; Norton, K. A review of the (Revised) Universal Soil Loss Equation ((R) USLE): With a view to increasing its global applicability and improving soil loss estimates. Hydrol. Earth Syst. Sci. 2018, 22, 6059–6086. [Google Scholar] [CrossRef] [Green Version]
- Haregeweyn, N.; Tsunekawa, A.; Poesen, J.; Tsubo, M.; Meshesha, D.T.; Fenta, A.A.; Nyssen, J.; Adgo, E. Comprehensive assessment of soil erosion risk for better land use planning in river basins: Case study of the Upper Blue Nile River. Sci. Total Environ. 2017, 574, 95–108. [Google Scholar] [CrossRef] [Green Version]
- Bouma, J.; Batjes, N.H. Trends of World-Wide Soil Degradation. Bodenschutz 2000, 32, 33–43. Available online: http://edepot.wur.nl/313069 (accessed on 14 August 2019).
- Global Soil Partnership (GSP). GSP Endorses Guidelines on Sustainable Soil Management. Available online: http://www.fao.org/global-soil-partnership/resources/highlights/detail/en/c/416516/ (accessed on 20 February 2018).
- Food and Agriculture Organization (FAO). Intergovernmental Technical Panel on Soils (ITPS). Status of the World’s Soil Resources (SWSR) Main Report; FAO and ITPS: Rome, Italy, 2015. [Google Scholar]
- Wang, L.; Huang, J.; Du, Y.; Hu, Y.; Han, P. Dynamic Assessment of Soil Erosion Risk Using Landsat TM and HJ Satellite Data in Danjiangkou Reservoir Area, China. Remote Sens. 2013, 5, 3826–3848. [Google Scholar] [CrossRef] [Green Version]
- Karamage, F.; Zhang, C.; Ndayisaba, F.; Shao, H.; Kayiranga, A.; Fang, X.; Nahayo, L.; Nyesheja, E.M.; Tian, G. Extent of Cropland and Related Soil Erosion Risk in Rwanda. Sustainability 2016, 8, 609. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Tiwari, K.N.; Bhadoria, P.B.S. Effect of land use land cover change on soil erosion potential in an agricultural watershed. Environ. Monit. Assess 2011, 173, 789–801. [Google Scholar] [CrossRef] [PubMed]
- Woldemariam, G.W.; Iguala, A.D.; Tekalign, S.; Reddy, R.U. Spatial Modeling of Soil Erosion Risk and Its Implication for Conservation Planning: The Case of the Gobele Watershed, East Hararghe Zone, Ethiopia. Land 2018, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Sutcliffe, J.P. Economic Assessment of Land Degradation in the Ethiopian Highlands: A Case Study; National Conservation Strategy Secretariat, Ministry of Planning and Economic Development, Transitional Government of Ethiopia: Addis Ababa, Ethiopia, 1993.
- Ethiopia Population 2018 (Demographics, Maps, Graphs)-World Population Review). Available online: http://worldpopulationreview.com/countries/ethiopia-population/ (accessed on 24 December 2018).
- Yesuf, M.; Mekonnen, M.; Kassie, M.; Pender, J. Cost of Land Degradation in Ethiopia: A Critical Review of Past Studies; Environment for Development, World Bank: Washington, DC, USA, 2007. [Google Scholar]
- Berry, L. Land Degradation in Ethiopia: Its Extent and Impact; World Bank: Washington, DC, USA, 2003. [Google Scholar]
- United Nations Development program (UNDP). Country Economic Brief; UNDP: New York, NY, USA, 2014. [Google Scholar]
- Central Statistical Agency (CSA). Agricultural Sample Survey 2007/08 Utilization, Volume IV; Statistical Bulletin: Addis Ababa, Ethiopia, 2008. [Google Scholar]
- Ethiopian Economics Association (EEA). Report on the Ethiopian Economy; Ethiopian Economics Association: Addis Ababa, Ethiopia, 2008. [Google Scholar]
- Ethiopia’s Climate-Resilient Green Economy, Green Economy Strategy; Environmental Protection Authority: Addis Ababa, Ethiopia, 2011.
- Muluneh, A.; Stroosnijder, L.; Keesstra, S.; Biazin, B. Adapting to climate change for food security in the Rift Valley dry lands of Ethiopia: Supplemental irrigation, plant density and sowing date. J. Agric. Sci. 2017, 155, 703–724. [Google Scholar] [CrossRef]
- Gadissa, T.; Nyadawa, M.; Behulu, F.; Mutua, B. The Effect of Climate Change on Loss of Lake Volume: Case of Sedimentation in Central Rift Valley Basin, Ethiopia. Hydrology 2018, 5, 67. [Google Scholar] [CrossRef] [Green Version]
- Guide Line for Integrated Watershed Management; Ministry of Agriculture and Rural Development: Addis Ababa, Ethiopia, 2005.
- Food and Agriculture Organization (FAO). Ethiopian Highland Reclamation Study; FAO: Rome, Italy, 1986; pp. 37–46. [Google Scholar]
- Ethiopia-Land Degradation Neutrality National Report (ELDNR); The Federal Democratic Republic of Ethiopia: Addis Ababa, Ethiopia, 2015.
- International Food Policy Research Institute (IFPRI). Poverty and Land Degradation in Ethiopia: How to Reverse the Spiral; IFPRI: Washington, DC, USA, 2005. [Google Scholar]
- Ethiopia’s Agricultural Sector Policy and Investment Framework (PIF); Ministry of Agriculture and Rural Development (MoARD): Addis Ababa, Ethiopia, 2010–2020. Available online: https://r.search.yahoo.com/_ylt=AwrCmmaJy1Ndmz8ABSgPxQt.;_ylu=X3oDMTByOHZyb21tBGNvbG8DYmYxBHBvcwMxBHZ0aWQDBHNlYwNzcg/RV=2/RE=1565801481/RO=10/RU=https%3a%2f%2fwww.agri-learning-ethiopia.org%2fwp-content%2fuploads%2f2015%2f10%2fAgriculture-Policy-MTR_FINAL.pdf/RK=2/RS=GVtxvXmutBKVxIwMsnbzR0USICE- (accessed on 14 August 2019).
- Gashaw, T.; Bantider, A.; G/Silassie, H. Land Degradation in Ethiopia: Causes, Impacts and Rehabilitation Techniques. J. Environ. Earth Sci. 2014, 4, 98–104. [Google Scholar]
- Hurni, K.; Zeleke, G.; Kassie, M.; Tegegne, B.; Kassawmar, T.; Teferi, E.; Moges, A.; Tadesse, D.; Ahmed, M.; Degu, Y.; et al. Economics of Land Degradation (ELD) Ethiopia Case Study. Soil Degradation and Sustainable Land Management in the Rainfed Agricultural Areas of Ethiopia: An Assessment of the Economic Implications; Report for the Economics of Land Degradation Initiative; 2015; p. 94. Available online: https://www.eld-initiative.org/en/publications/eld-case-studies/#c905 (accessed on 20 September 2018).
- Hurni, H. Degradation and Conservation of the Resources in the Ethiopian highlands. Mt. Res. Dev. 1988, 8, 123–130. [Google Scholar] [CrossRef]
- Kidane, D.; Alemu, B. The Effect of Upstream Land Use Practices on Soil Erosion and Sedimentation in the Upper Blue Nile Basin, Ethiopia. Res. J. Agric. Environ. Manage. 2015, 4, 55–68. [Google Scholar]
- Akale, T.A.; Dagnew, D.C.; Belete, M.A.; Tilahun, S.A.; Mekuria, W.; Steenhuis, T.S. Impact of Soil Depth and Topography on the Effectiveness of Conservation Practices on Discharge and Soil Loss in the Ethiopian Highlands. Land 2017, 6, 78. [Google Scholar] [CrossRef] [Green Version]
- Soil Conservation Research Programme (SCRP). Soil Conservation Research Project Database Report 1982–1993; Ministry of Agriculture and University of Berne, Series Report III; Hundelafto Research Unit, Institute of Geography, University of Berne: Bern, Switzerland, 1996. [Google Scholar]
- FAO. Ethiopian Highland Reclamation Study (EHRS); Final Report; FAO: Rome, Italy, 1984; Volume 1, pp. 37–46. [Google Scholar]
- Bhattacharyya, R.; Ghosh, B.N.; Dogra, P.; Mishra, P.K.; Santra, P.; Kumar, S.; Fullen, M.A.; Mandal, U.K.; Anil, K.S.; Lalitha, M.; et al. Soil Conservation Issues in India. Sustainability 2016, 8, 565. [Google Scholar] [CrossRef] [Green Version]
- Cerdàa, A.; Rodrigo-Comino, J.; Giménez-Morera, A.; Keesstra, S.D. An economic, perception and biophysical approach to the use of oat straw as mulch in Mediterranean rainfed agriculture land. Ecol. Eng. 2017, 108, 162–171. [Google Scholar] [CrossRef] [Green Version]
- Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 2018, 610, 997–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bewket, W. Land Degradation and Farmers’ Acceptance and Adoption of Soil Conservation Technologies in the Dingil Watershed, Northwestern Highlands, Addis Ababa, Ethiopia. 2003. Available online: http://library.wur.nl/WebQuery/wurpubs/326000 (accessed on 26 December 2018).
- Van der Knijff, J.M.; Jones, R.J.A.; Montanarella, L. Soil Erosion Risk Assessment in Europe. Available online: https://www.researchgate.net/publication/237727657_Soil_Erosion_Risk_Assessment_in_Europe/link/55d1c0f208ae2496ee6580ca/download (accessed on 20 January 2018).
- Bagherzadeh, A. Estimation of soil losses by USLE model using GIS at Mashhad plain, Northeast of Iran. Arab. J. Geosci. 2014, 7, 211–220. [Google Scholar] [CrossRef]
- Efe, R.; Ekinci, D.; Cürebal, I. Erosion Analysis of Fındıkli Creek catchment (Northwest of Turkey) using GIS based on RUSLE (3D) Method. Fresenius Environ. Bull. 2008, 17, 576–586. [Google Scholar]
- López-Vicnte, M.; Quijano, L.; Palazon, L.; Gaspar, L.; Navas, A. Assessment of soil redistribution at catchment scale by coupling a soil erosion model and a sediment connectivity index (Central Spanish Pe-Pyrenees). CIG 2015, 41, 127–147. [Google Scholar] [CrossRef] [Green Version]
- Molla, T.; Sisheber, B. Estimating soil erosion risk and evaluating erosion control measures for soil conservation planning at Koga watershed in the highlands of Ethiopia. Solid Earth 2017, 8, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Merritt, W.S.; Letcher, R.A.; Jakeman, A.J. A review of erosion and sediment transport models. Environ. Model Softw. 2003, 18, 761–799. [Google Scholar] [CrossRef]
- Rabia, A.H. Mapping Soil Erosion Risk Using RUSLE, GIS and Remote Sensing. In Proceedings of the 4th International Congress of ECSSS, EUROSOIL, Soil Science for the Benefit of Mankind and Environment, Bari, Italy, 2–6 June 2012; p. 1082. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses—A Guide to Conservation Planning; Agriculture Handbook No. 537; US Department of Agriculture Science and Education Administration: Washington, DC, USA, 1978; p. 168.
- Williams, J.R. Sediment routing for Agricultural Watersheds. Water Resour. Bull. 1975, 11, 965–974. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); Agriculture Handbook; USDA: Washington, DC, USA, 1997; Volume 703, pp. 1–251.
- Elwell, H.A.; Stocking, M.A. Developing a simple yet practical method of soil loss estimation. Trop. Agric. 1982, 59, 43–48. [Google Scholar]
- Knisel, W.G. CREAMS: A Field-Scale Model for Chemicals, Runoff and Erosion from Agricultural Management Systems; U.S. Department of Agriculture: Washington, DC, USA, 1980.
- Young, R.A.; Onstad, C.; Bosch, D.; Anderson, W. AGNPS: A nonpoint-source pollution model for evaluating agricultural watersheds. J. Soil Water Conserv. 1989, 44, 168–173. [Google Scholar]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling, and assessment part I: Model Development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Beasley, D.B.; Huggins, L.F.; Monke, E.J. ANSWERS: A model for watershed planning. Trans. Am. Soc. Agric. Eng. 1980, 23, 938–944. [Google Scholar] [CrossRef]
- Laen, J.M.; Lane, L.J.; Foster, G.R. WEPP: A new generation of erosion prediction technology. J. Soil Water Conserv. 1991, 46, 8. [Google Scholar]
- Morgan, R.P.C.; Quinton, J.N.; Smith, R.E.; Govers, G.; Poesen, J.W.A.; Auerswald, K.; Chisci, G.; Torri, D.; Styczen, M.E. The European Soil Erosion Model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surf. Process. Landf. 1998, 23, 527–544. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Williams, J.R. EPIC Erosion/Productivity Impact Calculator: 1. Model Documentation; USA Department of Agriculture Technical Bulletin No. 1768; USA Government Printing Office: Washington, DC, USA, 1990.
- Morgan, R.P.C.; Morgan, D.D.V.; Finney, H.J. A predictive model for the assessment of soil erosion risk. J. Agric. Eng. Res. 1984, 30, 245–253. [Google Scholar] [CrossRef]
- Koirala, P.; Thakuri, S.; Joshi, S.; Chauhan, R. Estimation of Soil Erosion in Nepal Using a RUSLE Modeling and Geospatial Tool. Geosciences 2019, 9, 147. [Google Scholar] [CrossRef] [Green Version]
- Milward, A.A.; Mersy, J.E. Adapting RULSE to model soil erosion potential in a mountainous tropica watershed. Catena 1999, 38, 109–129. [Google Scholar] [CrossRef]
- Alemayehu, T.; Furi, W.; Legesse, D. Impact of water overexploitation on highland lakes of eastern Ethiopia. Environ. Geol. 2007, 52, 147–154. [Google Scholar] [CrossRef]
- Assen, M. Land use/cover dynamics and its implications in the dried Lake Alemaya watershed, Eastern Ethiopia. J. Sustain. Dev. Afr. 2011, 13, 267–284. [Google Scholar]
- Ayala, G.; Berhanu, S.; Tolesa, O. Assessing the Effect of Soil and Water Conservation Practices on Runoff and Sediment Yield on Hunde Lafto watershed of Upper Wabi Shebelle Basin. Civ. Environ. Res. 2017, 9, 36–49. [Google Scholar]
- Megersa, S.L. Prediction of Runoff and Sediment Yield Using AnnAGNPS Model: Case of Erer-Guda Catchment, East Hararghe, Ethiopia. ARPN J. Sci. Technol. 2014, 4, 575–595. [Google Scholar]
- Setegn, S.G.; Yohannes, F.; Quraishi, S.; Chowdary, V.M.; Mal, B.C. Impact of Land Use/Land Cover Transformations on Alemaya Lake, Ethiopia. J. Indian Water Resour. Soc. 2009, 29, 40–45. [Google Scholar]
- Senti, E.T.; Tufa, B.W.; Gebrehiwot, K.A. Soil erosion, sediment yield and conservation practices assessment on Lake Haramaya Catchment. World J. Agric. Sci. 2014, 2, 186–193. [Google Scholar]
- Setegn, S.; Chowdary, V.M.; Mal, B.C.; Yohannes, F.; Kono, Y. Water Balance Study and Irrigation Strategies for Sustainable Management of a Tropical Ethiopian Lake: A Case Study of Lake Alemaya. Water Resour. Manag. 2011, 25, 2081–2107. [Google Scholar] [CrossRef]
- Solomon, M. Soil Erosion and Sedimentation Analysis of Lake Alemaya Catchments. Master’s Thesis, Alemaya University, Alemaya, Ethiopia, 2002. [Google Scholar]
- Muleta, S.; Yohannes, F.; Rashid, S.M. Soil erosion assessment of Lake Alemaya catchment, Ethiopia. Land Degrad. Dev. 2006, 17, 333–341. [Google Scholar] [CrossRef]
- Gebere, S.B.; Alamirew, T.; Merkel, B.J.; Melesse, A.M. Land Use and Land Cover Change Impact on Groundwater Recharge: The Case of Lake Haramaya Watershed, Ethiopia. In Landscape Dynamics, Soils and Hydrological Processes in Varied Climates; Melesse, A.M., Wossenu, A., Eds.; Springer Geography: Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2016; Volume 1, pp. 93–110. [Google Scholar]
- Ministry of Agriculture (MOA). Agroecological Zones of Ethiopia; MoA: Addis Ababa, Ethiopia, 2000.
- National Meteorological Agency (NMA). Mean Monthly Rainfall Data; NMA: Addis Ababa, Ethiopia, 2015. [Google Scholar]
- Food and Agriculture Organization (FAO). The Digital Soil Map of the World, Land and Water Development Division; FAO: Rome, Italy, 1995; Available online: http://www.fao.org/geonetwork/ (accessed on 20 March 2017).
- Landsat Look Viewer. Available online: http://landsatlook.usgs.gov (accessed on 25 January 2018).
- National Aeronautics and Space Administration (NASA); Land Processes Distributed Active Archive Center (LPDAAC). ASTER L1B; The United States Geological Survey (USGS)/Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2016. Available online: http://www.gdem.aster.ersdac.or.jp/ (accessed on 28 November 2017).
- ERDAS Field Guide™, 5th ed.; ERDAS, Inc.: Norcross, GA, USA, 2009.
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation, 5th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; p. 763. [Google Scholar]
- Department of the Interior U.S. Geological Survey. Landsat 8 (L8) Data Users Handbook; Department of the Interior U.S. Geological Survey: EROS Sioux Falls, SD, USA, 2016; p. 106.
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; U.S. Government Printing Office: Washington, DC, USA, 1976.
- Pontius, R.G.; Shusas, E.; McEachern, M. Detecting important categorical land changes while accounting for persistence. Agric. Ecosyst. Environ. 2004, 101, 251–268. [Google Scholar] [CrossRef]
- Braimoh, A.K. Random and systematic land-cover transitions in northern Ghana. Agric. Ecosyst. Environ. 2006, 113, 254–263. [Google Scholar] [CrossRef]
- Ouedraogo, I.; Barron, J.; Tumbo, S.D.; Kahimba, F.C. Land-cover transition in northern Tanzania. Land Degrad. Dev. 2015, 27, 682–692. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, B.; Ling, F.; Zeng, Y.; Yan, N.; Yuan, C. Identification of priority areas for controlling soil erosion. Catena 2010, 83, 76–86. [Google Scholar] [CrossRef]
- Yu, B.; Rosewell, C. A robust estimator of the R-reaction for the universal soil loss eequation. Trans. ASAE 1996, 39, 559–561. [Google Scholar] [CrossRef]
- Renard, K.G.; Freimund, J.R. Using monthly precipitation data to estimate the R-factor in the revised USLE. J. Hydrol. 1994, 157, 287–306. [Google Scholar] [CrossRef]
- Han, X.; Lv, P.; Zhao, S.; Sun, Y.; Yan, S.; Wang, M.; Han, X.; Wang, X. The Effect of the Gully Land Consolidation Project on Soil Erosion and Crop Production on a Typical Watershed in the Loess Plateau. Land 2018, 7, 113. [Google Scholar] [CrossRef] [Green Version]
- Lo, A.; El-Swaify, S.; Dangler, E.; Shinshiro, L. Effectiveness of EI 30 as an Erosivity Index in Hawaii. Available online: http://agris.fao.org/agris-search/search.do?recordID=US8639059 (accessed on 20 August 2017).
- Alexakis, D.D.; Tapoglou, E.; Vozinaki, A.K.; Tsanis, I.K. Integrated Use of Satellite Remote Sensing, Artificial Neural Networks, Field Spectroscopy, and GIS in Estimating Crucial Soil Parameters in Terms of Soil Erosion. Remote Sens. 2019, 11, 1106. [Google Scholar] [CrossRef] [Green Version]
- Chang, T.J.; Asce, M.; Zhou, H.; Asce, S.M.; Guan, Y. Applications of Erosion Hotspots for Watershed Investigation in the Appalachian Hills of the United States. J. Irrig. Drain Eng. 2016, 142. [Google Scholar] [CrossRef]
- McCool, D.K.; Foster, G.R.; Mutchler, C.K.; Meyer, L.D. Revised slope length factor for the Universal Soil Loss Equation. Trans. ASAE 1989, 32, 1571–1576. [Google Scholar] [CrossRef]
- McCool, D.K.; Brown, L.; Foster, G.R.; Mutchler, C.K.; Meyer, L.D. Revised slope steepness factor for the Universal Soil Loss Equation. Trans. ASAE 1987, 30, 1387–1396. [Google Scholar] [CrossRef]
- Foster, G.R.; Wischmeier, W. Evaluating Irregular Slopes for Soil loss prediction. Trans. Am. Soc. Agric. Eng. 1974, 17, 305–309. [Google Scholar] [CrossRef]
- Desmet, P.; Govers, G. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. J. Soil Water Conserv. 1996, 51, 427–433. [Google Scholar]
- Anache, J.A.A.; Bacchi, C.G.V.; Panachuki, E.; Sobrinho, T.A. Assessment of Methods for Predicting Soil erodibility in Soil Loss Modeling. São Paulo, UNESP. Geociências 2015, 34, 32–40. [Google Scholar]
- McCool, D.K.; George, G.O.; Freckleton, M.; Douglas, C.L.; Papendick, R.I. Topographic effect on erosion from cropland in the northwestern wheat region. T. Asabe 1993, 36, 771–775. [Google Scholar] [CrossRef]
- Panagosa, P.; Borrelli, P.; Meusburgerb, K.; Alewellb, C.; Lugatoa, E.; Montanarella, L. Estimating the soil erosion cover-management factor at the Europeanscale. Land Use Policy 2015, 48, 38–50. [Google Scholar] [CrossRef]
- De Jong, S.M. Derivation of vegetative variables from a Landsat TM image for modelling soil erosion. Earth Surface Proc. Landf. 1994, 19, 165–178. [Google Scholar] [CrossRef]
- Yahya, F.; Zregat, D.; Farhan, I. Spatial Estimation of Soil Erosion Risk Using RUSLE Approach, RS, and GIS Techniques: A Case Study of Kufranja Watershed, Northern Jordan. J. Water Resour. Prot. 2013, 5, 1247–1261. [Google Scholar]
- Arekhi, S.; Shabani, A.; Rostamizad, G. Application of the modified universal soil loss equation (MUSLE) in prediction of sediment yield (Case study: Kengir Watershed, Iran). Arab. J. Geosci. 2012, 5, 1259–1267. [Google Scholar] [CrossRef]
- Xu, L.; Xu, X.; Meng, X. Risk assessment of soil erosion in different rainfall scenarios by RUSLE model coupled with information diffusion model: A case study of Bohai Rim, China. Catena 2013, 100, 74–82. [Google Scholar] [CrossRef]
- Li, X.S.; Wu, B.F.; Wang, H.; Zhang, J. Regional soil erosion risk assessment in Hai Basin. J. Remote Sens. 2011, 15, 372–387. [Google Scholar]
- Troeh, F.R.; Hobbs, A.J.; Donahue, R.L. Soil and Water Conservation, 2nd ed.; Prentice-Hall Incorporation: Needham, MA, USA, 1991; pp. 81–86. [Google Scholar]
- Ariti, A.T.; Vliet, J.V.; Verburg, P.H. Land-use and land-cover changes in the Central Rift Valley of Ethiopia: Assessment of perception and adaptation of stakeholders. Appl. Geogr. 2015, 65, 28–37. [Google Scholar] [CrossRef]
- Meshesha, D.T.; Tsunekawa, A.; Tsubo, M.; Ali, S.A.; Haregeweyn, N. Land-use change and its socio- environmental impact in Eastern Ethiopia’s highland. Reg. Environ. Chang. 2014, 14, 757–768. [Google Scholar] [CrossRef]
- Bewket, W. Land cover dynamics since the 1950s in Chemoga watershed, Blue Nile Basin, Ethiopia. Mt. Res. Dev. 2002, 22, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Kindu, M.; Schneider, T.; Demel, T.; Knoke, T. Land Use/Land Cover Change Analysis Using Object-Based Classification Approach in Munessa-Shashemene Landscape of the Ethiopian Highlands. Remote Sens. 2013, 5, 2411–2435. [Google Scholar] [CrossRef] [Green Version]
- Kibret, K.F.; Marohn, C.; Cadisch, G. Assessment of land use and land cover change in South Central Ethiopia during four decades based on integrated analysis of multi-temporal images and geospatial vector data. Remote Sens. Appl. Soc. Environ. 2016, 3, 1–19. [Google Scholar] [CrossRef]
- Mengistu, D.A. Remote Sensing and GIS-based Land Use and Land Cover Change Detection in the Upper Dijo river Catchment, Silte zone, Southern Ethiopia; Working papers on population and land use change in central Ethiopia; Addis Ababa University: Addis Ababa, Ethiopia, 2008. [Google Scholar]
- Tesfaye, S.; Guyassa, E.; Raj, A.J.; Birhane, E.; Wondim, G.T. Land Use and Land Cover Change, and Woody Vegetation Diversity in Human Driven Landscape of Gilgel Tekeze Catchment, Northern Ethiopia. Int. J. For. Res. 2014. [Google Scholar] [CrossRef] [Green Version]
- Fetene, A.; Hilker, T.; Yeshitela, K.; Prasse, R.; Cohen, W.; Yang, Z. Detecting Trends in Land use and Land Cover Change of Nech Sar National Park, Ethiopia. Environ. Manag. 2016, 57, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Belay, S.; Amsalu, A.; Abebe, E. Land Use and Land Cover Changes in Awash National Park, Ethiopia: Impact of Decentralization on the Use and Management of Resources. Open J. Ecol. 2014, 4, 950–960. [Google Scholar] [CrossRef] [Green Version]
- Hailemariam, S.N.; Soromessa, T.; Teketay, D. Land Use and Land Cover Change in the Bale Mountain Eco-Region of Ethiopia during 1985 to 2015. Land 2016, 5, 41. [Google Scholar] [CrossRef] [Green Version]
- Haregeweyn, N.; Tesfaye, S.; Tsunekawa, A.; Tsubo, M.; Tsegaye, D.M.; Adgo, E.; Elias, A. Dynamics of land use and land cover and its effects on hydrologic responses: Case study of the Gilgel Tekeze catchment in the highlands of Northern Ethiopia. Environ. Monit. Assess. 2015, 187, 4090. [Google Scholar] [CrossRef]
- Tadesse, L.; Suryabhagavan, K.V.; Sridhar, G.; Legesse, G. Land use and land cover changes and Soil erosion in Yezat Watershed, North Western Ethiopia. Int. Soil Water Conserv. Res. 2017, 5, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Belayneh, M.; Yirgu, T.; Tsegaye, D. Potential soil erosion estimation and area prioritization for better conservation planning in Gumara watershed using RUSLE and GIS techniques’. Environ. Syst. Res. 2019, 8, 1–17. [Google Scholar] [CrossRef]
- Karamage, F.; Zhang, C.; Kayiranga, A.; Shao, H.; Fang, X.; Ndayisaba, F.; Nahayo, L.; Mupenzi, C.; Tian, G. USLE-Based Assessment of Soil Erosion byWater in the Nyabarongo River Catchment, Rwanda. Int. J. Environ. Res. Public Health 2016, 13, 835. [Google Scholar] [CrossRef] [Green Version]
- Abate, S. Estimating soil loss rates for soil conservation planning in the Borena Woreda of South Wollo Highlands, Ethiopia. J. Sustain. Dev. Afr. 2011, 13, 87–106. [Google Scholar]
- Paiboonvorachat, C.; Oyan, T.J. Land-cover changes and potential impacts on soil erosion in the Nan watershed, Thailand. Int. J. Remote Sens. 2011, 32, 6587–6609. [Google Scholar] [CrossRef]
- Hurni, H. Guidelines for Development Agents on Soil Conservation in Ethiopia Soil Conservation Research Project; Community Forests and Soil Conservation Development Department, Ministry of Agriculture: Addis Ababa, Ethiopia, 1986.
- Hurni, H. Soil formation rates in Ethiopia. Ethiopian highlands reclamation study; Soil Conservation Research Project, FAO, UTF/ETH/037/ETH Working Paper 2; FAO: Rome, Italy, 1983. [Google Scholar]
- Yohannes, G.G. Soil Erosion Hazard in Errer Dembel Sub-Basin, in Shinille Zone of the Ethiopia Somali Regional State. Int. J. Environ. Sci. Nat. Res. 2019, 17, 555951. [Google Scholar] [CrossRef]
- Tesfaye, G.; Debebe, Y.; Fikirie, K. Soil Erosion Risk Assessment Using GIS Based USLE Model for Soil and Water Conservation Planning in Somodo Watershed, South West Ethiopia. IJOEAR 2018, 4, 35–43. [Google Scholar]
- Yesuph, A.Y.; Dagnew, A.B. Soil erosion mapping and severity analysis based on RUSLE model and local perception in the Beshillo Catchment of the Blue Nile Basin, Ethiopia. Environ. Syst. Res. 2019, 8, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Gete, Z. Landscape Dynamics and Soil Erosion Process Modeling in the Northwestern Ethiopia Highlands; African Studies Series; University of Bern: Bern, Switzerland, 2000. [Google Scholar]
- Amare, B. Landscape transformation and opportunities for sustainable land management along the eastern escarpment of Wollo (EEW), Ethiopia. Ph.D. Dissertation, University of Bern, Bern, Switzerland, 2007. [Google Scholar]
- Jiu, J.; Wu, H.; Sen Li, S. The Implication of Land-Use/Land-Cover Change for the Declining Soil Erosion Risk in the Three Gorges Reservoir Region, China. Int. J. Environ. Res. Public Health 2019, 16, 1856. [Google Scholar] [CrossRef] [Green Version]
Land Use Type | Slope (%) | p Values |
---|---|---|
Agricultural land use | 0–5 | 0.1 |
5–10 | 0.12 | |
10–20 | 0.14 | |
20–30 | 0.19 | |
30–50 | 0.25 | |
50–100 | 0.33 | |
Nonagricultural land use | 0–100 | 1.00 |
LULC Class | 2000 | 2018 | ||
---|---|---|---|---|
Area (km2) | % | Area (km2) | % | |
Bare land | 310.00 | 8.03 | 374.81 | 9.71 |
Cropland | 1849.70 | 47.92 | 2484.33 | 64.36 |
Forestland | 115.42 | 2.99 | 54.81 | 1.42 |
Settlement | 7.72 | 0.20 | 23.55 | 0.61 |
Shrubland | 1569.88 | 40.67 | 921.39 | 23.87 |
Water body | 7.33 | 0.18 | 1.16 | 0.03 |
Total | 3860.05 | 100 | 3860.05 | 100 |
Years/ Class Name | Classification Accuracy | ||||||||
---|---|---|---|---|---|---|---|---|---|
Bare Land | Cropland | Forestland | Settlement | Shrub Land | Water Body | Raw Total | User’s Accuracy | Commission Error | |
2000 | |||||||||
Bare land | 44 | 0 | 0 | 7 | 0 | 0 | 51 | 86.27 | 13.73 |
Cropland | 0 | 80 | 0 | 0 | 0 | 0 | 80 | 100 | 0 |
Forestland | 0 | 0 | 45 | 0 | 5 | 0 | 50 | 90.00 | 10.00 |
Settlement | 0 | 0 | 0 | 28 | 0 | 0 | 28 | 100 | 0 |
Shrubland | 6 | 0 | 0 | 0 | 65 | 0 | 71 | 91.55 | 8.45 |
Water body | 0 | 0 | 0 | 0 | 0 | 20 | 20 | 100 | 0 |
Colum Total | 50 | 80 | 45 | 35 | 70 | 20 | 300 | ||
K^ statistics | 0.84 | 1.00 | 0.88 | 1.00 | 0.89 | 1 | |||
Producer’s Accuracy | 88 | 100 | 100 | 80 | 92.86 | 100 | Overall Accuracy = 94 Overall K^ = 0.93 | ||
Omission Error | 12.00 | 0 | 0 | 20 | 7.14 | 0 | |||
2018 | |||||||||
Bare land | 48 | 2 | 0 | 2 | 0 | 0 | 52 | 92.31 | 7.69 |
Cropland | 3 | 74 | 0 | 1 | 0 | 0 | 81 | 96.30 | 3.70 |
Forestland | 0 | 0 | 43 | 0 | 0 | 0 | 43 | 100 | 0 |
Settlement | 0 | 0 | 0 | 32 | 0 | 0 | 32 | 100 | 0 |
Shrubland | 0 | 0 | 2 | 0 | 70 | 2 | 74 | 94.59 | 5.41 |
Water body | 0 | 0 | 0 | 0 | 0 | 18 | 18 | 100 | 0 |
Colum Total | 51 | 76 | 45 | 35 | 70 | 1 | 300 | ||
K^ statistics | 0.91 | 0.95 | 1.00 | 1.00 | 0.93 | 1 | |||
Producer’s Accuracy | 96 | 97.5 | 95.56 | 91.43 | 100 | 90 | Overall Accuracy = 96.33 Overall K^ = 0.95 | ||
Omission Error | 4 | 2.50 | 4.44 | 8.57 | 0 | 10 |
LULC Class | Rate of Changes (2000–2018) | |
---|---|---|
Area (km2) | % | |
Bare land | 64.81 | 20.91 |
Cropland | 634.63 | 34.31 |
Forestland | −60.60 | −52.51 |
Settlement | 15.83 | 205.00 |
Shrubland | −648.49 | −41.31 |
Water body | −6.18 | −84.21 |
LULC Class | Bare land | Cropland | Forestland | Settlement | Shrubland | Water Body | 2000 |
---|---|---|---|---|---|---|---|
Bare land | 3.33 | 3.48 | 0.01 | 0.14 | 1.07 | 0.00 | 8.03 |
Cropland | 1.55 | 39.04 | 0.18 | 0.16 | 6.99 | 0.01 | 47.92 |
Forestland | 0.05 | 0.53 | 0.33 | 0.01 | 2.07 | 0.00 | 2.99 |
Settlement | 0.03 | 0.04 | 0.00 | 0.07 | 0.06 | 0.00 | 0.20 |
Shrubland | 4.74 | 21.26 | 0.80 | 0.22 | 13.65 | 0.00 | 40.67 |
Water body | 0.01 | 0.01 | 0.10 | 0.01 | 0.03 | 0.02 | 0.19 |
Summary | 56.52 | ||||||
2018 | 9.71 | 64.36 | 1.42 | 0.61 | 23.87 | 0.03 |
LULC Class | Persistence | Gain | Loss | Total Change | SWAP | Absolute Value of Net Change | Gain to Persistence | Loss to Persistence | Net Change to Persistence |
---|---|---|---|---|---|---|---|---|---|
Bare land | 3.34 | 6.38 | 4.7 | 11.08 | 9.4 | 1.68 | 1.92 | 1.41 | 0.50 |
Cropland | 39.04 | 25.32 | 8.88 | 34.2 | 17.76 | 16.44 | 0.65 | 0.23 | 0.42 |
Forestland | 0.33 | 1.09 | 2.66 | 3.75 | 2.18 | 1.57 | 3.30 | 8.06 | −4.76 |
Settlement | 0.07 | 0.54 | 0.13 | 0.67 | 0.26 | 0.41 | 7.71 | 1.86 | 5.86 |
Shrubland | 13.65 | 10.22 | 27.02 | 37.24 | 20.44 | 16.8 | 0.75 | 1.98 | −1.23 |
Water body | 0.02 | 0.01 | 0.16 | 0.16 | 0.00 | 0.15 | 0.50 | 8.00 | −7.50 |
Total | 56.45 | 43.55 | 43.55 | 43.55 | 6.49 | 37.06 |
Erosion Risk Class | Soil Loss (t ha−1 y−1) | 2000 | 2018 | Rate of Changes (2000–2018) | |||
---|---|---|---|---|---|---|---|
Area (km2) | % | Area (km2) | % | Area (km2) | % | ||
Very low | <5 | 1883.49 | 48.87 | 1783.50 | 46.22 | −99.99 | −5.31 |
Low | 5–10 | 1078.90 | 27.99 | 1149.43 | 29.79 | 70.53 | 6.54 |
Low medium | 10–15 | 399.01 | 10.35 | 405.46 | 10.51 | 6.45 | 1.62 |
Medium | 15–20 | 190.96 | 4.95 | 196.45 | 5.09 | 5.49 | 2.87 |
High medium | 20–25 | 104.22 | 2.70 | 115.43 | 2.99 | 11.21 | 10.76 |
High | 25–35 | 63.98 | 1.66 | 74.57 | 1.93 | 10.59 | 16.55 |
Very high | 35–50 | 42.51 | 1.10 | 50.98 | 1.32 | 8.47 | 19.92 |
Extremely high | >50 | 90.97 | 2.36 | 82.60 | 2.14 | −8.37 | −9.20 |
LULC Class | 2000 | 2018 |
---|---|---|
Mean Soil Loss (t ha−1 yr−1) | Mean Soil Loss (t ha−1 yr−1) | |
Bare land | 8.98 | 15.78 |
Cropland | 25.73 | 37.60 |
Forestland | 0.02 | 2.47 |
Settlement | 0.18 | 0.55 |
Shrubland | 10.19 | 11.62 |
Water body | 0.02 | 0.26 |
Soil Erosion Risk Class | Very Low | Low | Low Medium | Medium | High Medium | High | Very High | Extremely High | Total 2000 | Loss |
---|---|---|---|---|---|---|---|---|---|---|
Very low | 40.55 | 7.99 | 0.16 | 0.07 | 0.06 | 0.04 | 0.00 | 0.00 | 48.87 | 8.32 |
Low | 4.50 | 17.1 | 4.05 | 2.08 | 0.12 | 0.01 | 0.03 | 0.05 | 27.99 | 10.84 |
Low-medium | 0.61 | 3.14 | 4.31 | 0.18 | 1.21 | 0.79 | 0.11 | 0.00 | 10.35 | 6.04 |
Medium | 0.22 | 0.93 | 1.38 | 1.52 | 0.02 | 0.04 | 0.43 | 0.42 | 4.95 | 3.43 |
High-medium | 0.14 | 0.48 | 0.09 | 1.06 | 0.62 | 0.01 | 0.00 | 0.30 | 2.70 | 2.08 |
High | 0.09 | 0.05 | 0.26 | 0.05 | 0.85 | 0.27 | 0.00 | 0.08 | 1.66 | 1.39 |
Very high | 0.05 | 0.00 | 0.17 | 0.01 | 0.07 | 0.65 | 0.11 | 0.02 | 1.10 | 0.99 |
Extremely high | 0.03 | 0.06 | 0.09 | 0.12 | 0.04 | 0.13 | 0.63 | 1.27 | 2.36 | 1.09 |
Summary | 65.80 | |||||||||
Total 2018 | 46.20 | 29.79 | 10.52 | 5.10 | 2.99 | 1.93 | 1.32 | 2.15 | ||
Gain | 5.65 | 12.64 | 6.20 | 3.58 | 2.38 | 1.67 | 1.21 | 0.88 | ||
Net change | −2.67 | 1.80 | 0.17 | 0.14 | 0.28 | 0.28 | 0.22 | −0.21 | ||
NP | −0.07 | 0.10 | 0.04 | 0.09 | 0.45 | 1.04 | 2.00 | −0.17 |
Priority Level | Area (km2) | Percentage (%) |
---|---|---|
1st priority level | 96.55 | 2.50 |
2nd priority level | 92.00 | 2.38 |
3rd priority level | 82.73 | 2.14 |
4th priority level | 139.87 | 3.62 |
5th priority level | 209.84 | 5.44 |
6th priority level | 444.13 | 11.51 |
7th priority level | 903.31 | 23.40 |
8th priority level | 1891.63 | 49.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weldu Woldemariam, G.; Edo Harka, A. Effect of Land Use and Land Cover Change on Soil Erosion in Erer Sub-Basin, Northeast Wabi Shebelle Basin, Ethiopia. Land 2020, 9, 111. https://doi.org/10.3390/land9040111
Weldu Woldemariam G, Edo Harka A. Effect of Land Use and Land Cover Change on Soil Erosion in Erer Sub-Basin, Northeast Wabi Shebelle Basin, Ethiopia. Land. 2020; 9(4):111. https://doi.org/10.3390/land9040111
Chicago/Turabian StyleWeldu Woldemariam, Gezahegn, and Arus Edo Harka. 2020. "Effect of Land Use and Land Cover Change on Soil Erosion in Erer Sub-Basin, Northeast Wabi Shebelle Basin, Ethiopia" Land 9, no. 4: 111. https://doi.org/10.3390/land9040111
APA StyleWeldu Woldemariam, G., & Edo Harka, A. (2020). Effect of Land Use and Land Cover Change on Soil Erosion in Erer Sub-Basin, Northeast Wabi Shebelle Basin, Ethiopia. Land, 9(4), 111. https://doi.org/10.3390/land9040111