USLE-Based Assessment of Soil Erosion by Water in the Nyabarongo River Catchment, Rwanda
"> Graphical abstract
"> Figure 1
<p>(<b>a</b>) Location map of the Nyabarongo River Catchment; and (<b>b</b>) an aerial view of the Nyabarongo River, with the water looking muddy brown due to pollution [<a href="#B26-ijerph-13-00835" class="html-bibr">26</a>].</p> "> Figure 2
<p>Land Cover and Land Use (LCLU) for the Nyabarongo River Catchment in 2015.</p> "> Figure 3
<p>Maps of the Universal Soil Loss Equation (USLE) factors for the Nyabarongo River Catchment: (<b>a</b>) rainfall erosivity; (<b>b</b>) soil erodibility; (<b>c</b>) slope length and slope steepness; (<b>d</b>) the Slope angle; (<b>e</b>) land cover management; (<b>f</b>) conservation support practice.</p> "> Figure 4
<p>Maps of the Nyabarongo River Catchment: (<b>a</b>) potential soil erosion; and (<b>b</b>) actual soil erosion, 2015.</p> "> Figure 5
<p>Maps of the agricultural land use suitability for the 2015 cropland; (<b>a</b>) agricultural land use suitability without terraces or with minor support practice (P = 0.75); and (<b>b</b>) agricultural land use suitability if terraces were applied on the cropland area.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Delineation of the Catchment
2.3. Preparation of LCLU Map for the Nyabarongo River Catchment
2.4. Development of the USLE Factors
2.4.1. Rainfall Erosivity Factor (R)
2.4.2. Soil Erodibility Factor (K)
2.4.3. Slope Length and Steepness Factor (LS)
2.4.4. Cover Management Factor (C)
2.4.5. Support Practice Factor (P)
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
MJ | Megajoule |
milliequivalents | meq |
US$ | U.S. dollar |
RWF | Rwandan Franc |
References
- Gleick, P.H. Water in Crisis: A Guide to the World's Fresh Water Resources; Oxford University Press: New York, NY, USA, 1993. [Google Scholar]
- World Water Assessment Programme. The United Nations World Water Development Report: Water for People, Water for Life; UNESCO: Paris, France, 2003. [Google Scholar]
- Syvitski, J.P.; Vörösmarty, C.J.; Kettner, A.J.; Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 2005, 308, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Fry, A.; Martin, R. Water Facts and Trends. Available online: http://www.unwater.org/downloads/Water_facts_and_trends.pdf (accessed on 15 May 2016).
- Musy, A. Hydrologie Générale. Available online: http://echo2.epfl.ch/e-drologie/ (accessed on 12 July 2016).
- Food and Agriculture Organization; Joint Research Centre. Global Forest Land-Use Change 1990–2005; Lindquist, E.J., D’annunzio, R., Gerrand, A., Macdicken, K., Achard, F., Beuchle, R., Brink, A., Eva, H.D., Mayaux, P., San-Miguel-Ayanz, J., et al., Eds.; FAO: Rome, Italy, 2012. [Google Scholar]
- Van Straaten, P. Rocks for Crops: Agrominerals of Sub-Saharan Africa; Icraf: Nairobi, Kenya, 2002. [Google Scholar]
- Karamage, F.; Zhang, C.; Ndayisaba, F.; Shao, H.; Kayiranga, A.; Fang, X.; Nahayo, L.; Muhire Nyesheja, E.; Tian, G. Extent of cropland and related soil erosion risk in Rwanda. Sustainability 2016, 8, 609. [Google Scholar] [CrossRef]
- Nezlin, N.P.; DiGiacomo, P.M.; Stein, E.D.; Ackerman, D. Stormwater runoff plumes observed by seawifs radiometer in the Southern California Bight. Remote Sens. Environ. 2005, 98, 494–510. [Google Scholar] [CrossRef]
- Korkmaz, N.; Avci, M. Evaluation of water delivery and irrigation performances at field level: The case of the menemen left bank irrigation district in Turkey. Indian J. Sci. Technol. 2012, 5, 2079–2089. [Google Scholar]
- Grinning Planet. Polluted Seas: Major Bodies of Water/Areas with Serious Water Pollution Problems. Available online: http://grinningplanet.com/2005/07-26/polluted-seas.htm (accessed on 20 January 2015).
- Nhapi, I.; Wali, U.; Usanzineza, D.; Banadda, N.; Kashaigili, J.; Kimwaga, R.; Gumindoga, W.; Sendagi, S. Heavy metals inflow into Lake Muhazi, Rwanda. Open Environ. Eng. J. 2012, 5, 56–65. [Google Scholar] [CrossRef]
- Williams, A.E.; Hecky, R.E. Invasive aquatic weeds and eutrophication: The case of water hyacinth in Lake Victoria. In Restoration and Management of Tropical Eutrophic Lakes; Reddy, M.V., Ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Albright, T.; Moorhouse, T.; McNabb, T. The Abundance and Distribution of Water Hyacinth in Lake Victoria and the Kagera River Basin, 1989–2001. Available online: http://nilerak.hatfieldgroup.com/english/nrak/EO/USGS_CLI_WH_LakeVictoria.pdf (accessed on 12 July 2016).
- De la Paix, M.J.; Lanhai, L.; Jiwen, G.; de Dieu, H.J.; Gabriel, H.; Jean, N.; Innocent, B. Radical terraces in Rwanda. East Afr. J. Sci. Technol. 2012, 1, 53–58. [Google Scholar]
- Murekatete, E. Controls of Denitrification in Agricultural Soils, Wetlands, and Fish Ponds in the Migina Catchment, Rwanda; Unesco-IHE: Delft, The Netherlands, 2013. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Rwanda: Ressources En Eau. Available online: http://www.fao.org/nr/water/aquastat/countries_regions/Profile_segments/RWA-WR_eng.stm (accessed on 20 April 2015).
- UNEP. Rwanda State of Environment and Outlook: Our Environment for Economic Development. Available online: http://www.unep.org/publications/contents/pub_details_search.asp?ID=4089 (accessed on 20 October 2015).
- Sylvie, N. An Assessment of Farmers’ Willingness to Pay for the Protection of Nyabarongo River System, Rwanda. Master’s Thesis, University of Nairobi, Nairobi, Kenya, 2012. [Google Scholar]
- Nhapi, I.; Wali, U.; Uwonkunda, B.; Nsengimana, H.; Banadda, N.; Kimwaga, R. Assessment of water pollution levels in the Nyabugogo Catchment, Rwanda. Open Environ. Eng. J. 2011, 4, 40–53. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses—A Guide to Conservation Planning; United State Department of Agriculture: Washington, DC, USA, 1978. [Google Scholar]
- Van Engelen, V.; Verdoodt, A.; Dijkshoorn, K.; Van Ranst, E. Soil and Terrain Database of Central Africa—DR of Congo, Burundi and Rwanda; ISRIC Report; World Soil Information: Wageningen, The Netherlands, 2006. [Google Scholar]
- Ntwali, D.; Ogwang, B.A.; Ongoma, V. The impacts of topography on spatial and temporal rainfall distribution over rwanda based on wrf model. Atmos. Clim. Sci. 2016, 6, 145. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Clim. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Bosnjakovic, B. UN/ECE strategies for protecting the environment with respect to international watercourses: The Helsinki and Espoo conventions. World Bank Tech. Paper 1998, 47–64. [Google Scholar]
- NewTimes. Govt, Private Sector Pledge to Conserve R. Nyabarongo. Available online: http://www.newtimes.co.rw/section/article/2015-12-24/195536/ (accessed on 25 January 2016).
- U.S. Geological Survey (USGS). U.S. Geological Survey Earthexplorer. Available online: http://earthexplorer.usgs.gov/ (accessed on 20 September 2015).
- U.S. Geological Survey (USGS). USGS Global Visualization Viewer: Earth Resources Observation and Science Center (EROS). Available online: http://glovis.usgs.gov/index.shtml (accessed on 20 September 2015).
- Basnet, B.; Vodacek, A. Tracking land use/land cover dynamics in cloud prone areas using moderate resolution satellite data: A case study in Central Africa. Remote Sens. 2015, 7, 6683–6709. [Google Scholar] [CrossRef]
- Otukei, J.R.; Blaschke, T. Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. Int. J. Appl. Earth Obs. Geoinf. 2010, 12 (Suppl. S1), 27–31. [Google Scholar] [CrossRef]
- Akgün, A.; Eronat, A.H.; Türk, N. Comparing different satellite image classification methods: An application in Ayvalik District, Western Turkey. In Proceedings of the 4th International Congress for Photogrammetry and Remote Sensing, Istanbul, Turkey; 2004. Available online: http://cartesia.org/geodoc/isprs2004/ comm4/papers/505.pdf (accessed on 12 July 2016). [Google Scholar]
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; U.S. Government Printing Office: Washington, DC, USA, 1976; Volume 964.
- Mather, P.M. Computer Processing of Remotely-Sensed Images, 3rd ed.; Wiley: Chichester, UK, 2004. [Google Scholar]
- Long, J.B.; Giri, C. Mapping the philippines’ mangrove forests using landsat imagery. Sensors 2011, 11, 2972–2981. [Google Scholar] [CrossRef] [PubMed]
- Bishop, Y.M.; Fienberg, S.E.; Holland, P.W. Discrete Multivariate Analysis: Theory and Practice; Springer Science & Business Media: New York, NY, USA, 2007. [Google Scholar]
- Thomlinson, J.R.; Bolstad, P.V.; Cohen, W.B. Coordinating methodologies for scaling landcover classifications from site-specific to global: Steps toward validating global map products. Remote Sens. Environ. 1999, 70, 16–28. [Google Scholar] [CrossRef]
- Manandhar, R.; Odeh, I.O.; Ancev, T. Improving the accuracy of land use and land cover classification of landsat data using post-classification enhancement. Remote Sens. 2009, 1, 330–344. [Google Scholar] [CrossRef]
- Angima, S.; Stott, D.; O’neill, M.; Ong, C.; Weesies, G. Soil erosion prediction using RUSLE for central kenyan highland conditions. Agric. Ecosyst. Environ. 2003, 97, 295–308. [Google Scholar] [CrossRef]
- Lu, D.; Li, G.; Valladares, G.; Batistella, M. Mapping soil erosion risk in Rondonia, Brazilian Amazonia: Using RUSLE, remote sensing and GIS. Land Degrad. Dev. 2004, 15, 499–512. [Google Scholar] [CrossRef] [Green Version]
- Nam, P.T.; Yang, D.; Kanae, S.; OKI, T.; MUSIAKE, K. Global soil loss estimate using RUSLE model: The use of global spatial datasets on estimating erosive parameters. Geol. Data Process 2003, 14, 49–53. [Google Scholar] [CrossRef]
- Fathizad, H.; Karimi, H.; Alibakhshi, S.M. The estimation of erosion and sediment by using the RUSLE model and RS and GIS techniques (Case study: Arid and semi-arid regions of Doviraj, Ilam province, Iran). Int. J. Agric. Crop Sci. 2014, 7, 303. [Google Scholar]
- Claessens, L.; Van Breugel, P.; Notenbaert, A.; Herrero, M.; Van De Steeg, J. Mapping potential soil erosion in East Africa using the Universal Soil Loss Equation and secondary data. IAHS Publ. 2008, 325, 398–407. [Google Scholar]
- Grimm, M.; Jones, R.; Montanarella, L. Soil Erosion Risk in Europe; European Communities: Napoli, Italy, 2001. [Google Scholar]
- Biswas, S.S.; Pani, P. Estimation of soil erosion using RUSLE and GIS techniques: A case study of Barakar River Basin, Jharkhand, India. Model. Earth Syst. Environ. 2015, 1, 1–13. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.; Weesies, G.; McCool, D.; Yoder, D. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); U.S. Department of Agriculture: Washington, DC, USA, 1997; Volume 703. [Google Scholar]
- Renard, K.G.; Freimund, J.R. Using monthly precipitation data to estimate the R-factor in the revised USLE. J. hydrol. 1994, 157, 287–306. [Google Scholar] [CrossRef]
- Yu, B.; Rosewell, C. A robust estimators of the R-reaction for the universal soil loss eequation. Trans. ASAE 1996, 39, 559–561. [Google Scholar] [CrossRef]
- Lo, A.; El-Swaify, S.; Dangler, E.; Shinshiro, L. Effectiveness of EI 30 as an Erosivity Index in Hawaii. Available online: http://agris.fao.org/agris-search/search.do?recordID=US8639059 (accessed on 12 July 2016).
- Land Degradation Assessment in Drylands. Global Land Degradation Information System (GLADIS) Database. Available online: http://www.fao.org/nr/lada/gladis/gladis_db/ (accessed on 10 December 2015).
- Land Degradation Assessment in Drylands. Global Land Degradation Information System—Beta Version. Available online: http://www.fao.org/nr/lada/index.php?option=com_content&view=article&id=161&Itemid=113&lang=en (accessed on 10 December 2015).
- Martínez-Graña, A.; Goy, J.L.; Zazo, C. Cartographic procedure for the analysis of aeolian erosion hazard in natural parks (central system, Spain). Land Degrad. Dev. 2015, 26, 110–117. [Google Scholar] [CrossRef]
- Ganasri, B.; Ramesh, H. Assessment of soil erosion by RUSLE model using remote sensing and GIS—A case study of Nethravathi Basin. Geosci. Front. 2015. [Google Scholar] [CrossRef]
- Meigh, J.; McKenzie, A.; Sene, K. A grid-based approach to water scarcity estimates for Eastern and Southern Africa. Water Resour. Manag. 1999, 13, 85–115. [Google Scholar] [CrossRef]
- Tachikawa, T.; Kaku, M.; Iwasaki, A.; Gesch, D.B.; Oimoen, M.J.; Zhang, Z.; Danielson, J.J.; Krieger, T.; Curtis, B.; Haase, J.; et al. Aster Global Digital Elevation Model Version 2—Summary of Validation Results; NASA: Washington, DC, USA, 2011.
- ESRI. ArcGIS Desktop 9.3 Help. Available online: http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=slope (accessed on 15 January 2016).
- Alexandridis, T.K.; Sotiropoulou, A.M.; Bilas, G.; Karapetsas, N.; Silleos, N.G. The effects of seasonality in estimating the c-factor of soil erosion studies. Land Degrad. Dev. 2015, 26, 596–603. [Google Scholar] [CrossRef]
- Martínez-Graña, A.; Goy, J.; Zazo, C. Water and wind erosion risk in natural parks—A case study in “las batuecas–sierra de francia” and “quilamas” protected parks (central system, Spain). Int. J. Environ. Res. 2014, 8, 61–68. [Google Scholar]
- Kim, J.B.; Saunders, P.; Finn, J.T. Rapid assessment of soil erosion in the Rio Lempa Basin, Central America, using the Universal Soil Loss Equation and Geographic Information Systems. Environ. Manag. 2005, 36, 872–885. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency. CORINE Soil Erosion Risk and Important Land Resources in the Southern Regions of the European Community. Available online: http://www.eea.europa.eu/publications/COR0-soil (accessed on 31 December 1994).
- Kim, H.S. Soil Erosion Modeling Using RUSLE and GIS on the Imha Watershed, South Korea. Master’s Thesis, Colorado State University, Fort Collins, CO, USA, 20 April 2006. [Google Scholar]
- Roose, E. Land Husbandry: Components and Strategy; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1996; Volume 70. [Google Scholar]
- Habiyaremye, G.; Jiwen, G.; de la Paix Mupenzi, J.; Balogun, W.O. Demographic pressure impacts on forests in Rwanda. Afr. J. Agric. Res. 2011, 6, 4533–4538. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Rwanda: Géographie, Climat et Population. Available online: http://www.fao.org/nr/water/aquastat/countries_regions/RWA/index.stm (accessed on 10 June 2015).
- Nahayo, L.; Li, L.; Kayiranga, A.; Karamage, F.; Mupenzi, C.; Ndayisaba, F.; Nyesheja, E.M. Agricultural impact on environment and counter measures in Rwanda. Afr. J. Agric. Res. 2016, 11, 2205–2212. [Google Scholar]
- Carcamo, J.A.; Alwang, J.; Norton, G.W. On-site economic evaluation of soil conservation practices in Honduras. Agric. Econ. 1994, 11, 257–269. [Google Scholar] [CrossRef]
- Atta-Krah, K.; Sanginga, N. The Afneta Alley Farming Training Manual: Source Book for Alley Farming Research; Tripathi, B.R., Psychas, P.J., Eds.; Alley Farming Network for Tropical Africa: Ibadan, Nigeria, 1992; Volume 2. [Google Scholar]
- Juo, A.; Adams, F. Chemistry of LAC soils. Low Act. Clay (LAC) Soils 1984, 37, 14. [Google Scholar]
- Twagiramungu, F. Environmental Profile of Rwanda; European Commission: Kigali, Rwanda, 2006. [Google Scholar]
- Ndayisaba, F.; Guo, H.; Bao, A.; Guo, H.; Karamage, F.; Kayiranga, A. Understanding the spatial temporal vegetation dynamics in Rwanda. Remote Sens. 2016, 8, 129. [Google Scholar] [CrossRef]
- Zhao, G.; Mu, X.; Wen, Z.; Wang, F.; Gao, P. Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degrad. Dev. 2013, 24, 499–510. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall-Erosion Losses from Cropland East of the Rocky Mountains: Guide for Selection of Practices for Soil and Water Conservation; U.S. Government Printing Office: Washington, DC, USA, 1965.
- Farhan, Y.; Nawaiseh, S. Spatial assessment of soil erosion risk using RUSLE and GIS techniques. Environ. Earth Sci. 2015, 74, 4649–4669. [Google Scholar] [CrossRef]
- Jones, R.J.; Le Bissonnais, Y.; Bazzoffi, P.; Sanchez Diaz, J.; Düwel, O.; Loj, G.; Øygarden, L.; Prasuhn, V.; Rydell, B.; Strauss, P. Nature and Extent of Soil Erosion in Europe. Available online: http://eusoils.jrc.ec.europa.eu/ESDB_Archive/pesera/pesera_cd/sect_h1.htm (accessed on 12 July 2016).
1 | 2 | 3 | 4 | 5 | 6 | ∑ | User Accuracy | Commission Error | |
---|---|---|---|---|---|---|---|---|---|
1.Settlement | 53 | 5 | 0 | 0 | 0 | 0 | 58 | 91% | 9% |
2.Cropland | 7 | 53 | 0 | 3 | 0 | 0 | 63 | 84% | 16% |
3.Forestland | 0 | 0 | 53 | 2 | 1 | 0 | 56 | 95% | 5% |
4.Grassland | 0 | 2 | 7 | 52 | 2 | 0 | 63 | 83% | 17% |
5.Wetland | 0 | 0 | 0 | 2 | 57 | 0 | 59 | 97% | 3% |
6.Water Bodies | 0 | 0 | 0 | 0 | 1 | 60 | 61 | 98% | 2% |
∑ | 60 | 60 | 60 | 59 | 61 | 60 | 360 | – | – |
Producer Accuracy | 88% | 88% | 88% | 88% | 93% | 100% | – | – | – |
Omission Error | 12% | 12% | 12% | 12% | 7% | 0% | – | – | – |
Overall Accuracy | 91% | – | – | – | – | – | – | – | – |
Kappa | 89% | – | – | – | – | – | – | – | – |
Slope (%) | 0–7 | 7–11.3 | 11.3–17.6 | 17.6–26.8 | >26.8 |
---|---|---|---|---|---|
P Factor | 0.1 | 0.12 | 0.16 | 0.18 | 0.2 |
Soil Erosion Class (t·ha−1·y−1) | Area (ha) | Area (%) | Mean Erosion (t·ha−1·y−1) | Annual Soil Loss (t) | Annual Soil Loss (%) |
---|---|---|---|---|---|
Moderate (0–100) | 551,114 | 66 | 0.6 ± 7 | 350,050 | 0.03 |
High (100–300) | 25,051 | 3 | 200 ± 57 | 5,017,380 | 0.43 |
Extreme (≥300) | 258,857 | 31 | 4487 ± 5310 | 1,161,465,050 | 99.54 |
Entire Catchment | 835,022 | 100 | 1397 ± 3611 | 1,166,832,480 | 100 |
Soil Erosion Class (t·ha−1·y−1) | Area (ha) | Area (%) | Mean Erosion (t·ha−1·y−1) | Annual Soil Loss (t) | Annual Soil Loss (%) |
---|---|---|---|---|---|
Moderate (0–100) | 609,566 | 73 | 2 ± 12 | 1,227,482 | 0.3 |
High (100–300) | 41,751 | 5 | 186 ± 58 | 7,774,055 | 1.9 |
Extreme (≥300) | 183,705 | 22 | 2178 ± 2327 | 400,159,243 | 97.8 |
Entire Catchment | 835,022 | 100 | 490 ± 1413 | 409,160,780 | 100 |
LCLU Class | Area (ha) | Area (%) | Mean Erosion (t·ha−1·y−1) | Annual Soil Loss (t) | Annual Soil Loss (%) |
---|---|---|---|---|---|
Settlement | 23,400 | 2.8 | 105 ± 493 | 2,454,965 | 0.6 |
Cropland | 634,596 | 76.0 | 618 ± 1569 | 391,976,027 | 95.8 |
Forestland | 124,630 | 14.9 | 49 ± 508 | 6,137,412 | 1.5 |
Grassland | 42,561 | 5.1 | 202 ± 744 | 8,592,376 | 2.1 |
Wetland | 9835 | 1.2 | 0 | 0 | 0 |
Entire Catchment | 835,022 | 100 | 490 ± 1413 | 409,160,780 | 100 |
LCLU Category | Area (ha) | Area (%) | Mean Erosion (t·ha−1·y−1) | Annual Soil Loss (t) | Annual Soil Loss (%) |
---|---|---|---|---|---|
Settlement | 1722 | 0.9 | 1162 ± 1445 | 2,000,796 | 0.5 |
Cropland | 173,244 | 94.3 | 2222 ± 2340 | 384,953,192 | 96.2 |
Forestland | 2066 | 1.1 | 2717 ± 2820 | 5,602,229 | 1.4 |
Grassland | 6673 | 3.6 | 1139 ± 1556 | 7,603,026 | 1.9 |
Wetland | 0 | 0 | 0 | 0 | 0 |
Extreme Erosion | 183,705 | 100 | 2178 ± 2327 | 400,159,243 | 100 |
Description | Slope Angle (%) | Area (ha) | Area (%) | Mean Erosion (t·ha−1·y−1) | Annual Soil Loss (t) | Annual Soil Loss (%) |
---|---|---|---|---|---|---|
Very Gentle to Flat | <5 | 41,751 | 5 | 49 ± 39 | 2,045,804 | 0.5 |
Gentle | 5–15 | 167,004 | 20 | 113 ± 169 | 18,821,396 | 4.6 |
Steep | >15–30 | 258,857 | 31 | 338 ± 563 | 87,560,407 | 21.4 |
Very Steep | >30 | 367,410 | 44 | 819 ± 2015 | 300,733,173 | 73.5 |
Entire Catchment | 0–205.5 | 835,022 | 100 | 490 ± 1413 | 409,160,780 | 100 |
Agricultural Land Use Suitability | Erosion Rates (t·ha−1·y−1) | Area (ha) | Area (%) | Mean Erosion (t·ha−1·y−1) | Annual Soil Loss (t) | Annual Soil Loss (%) | Mean Slope (%) |
---|---|---|---|---|---|---|---|
Suitable | <300 | 463,255 | 73 | 15 ± 53 | 7,022,835 | 2 | 28 ± 19 |
Unsuitable | ≥300 | 173,244 | 27 | 2222 ± 2340 | 384,953,192 | 98 | 29 ± 15 |
Cropland Cell | – | 634,596 | 100 | 618 ± 1569 | 391,976,027 | 100 | 29 ± 18 |
Agricultural Land Use Suitability | Erosion Rates (t·ha−1·y−1) | Area (ha) | Area (%) | Mean Erosion (t·ha−1·y−1) | Annual Erosion (t) | Annual Erosion (%) | Mean Slope (%) |
---|---|---|---|---|---|---|---|
Suitable | <300 | 545,753 | 86 | 12 ± 59 | 6,549,036 | 8 | 27 ± 18 |
Unsuitable | ≥300 | 88,843 | 14 | 885 ± 746 | 78,588,369 | 92 | 40 ± 13 |
Cropland Cell | – | 634,596 | 100 | 134 ± 411 | 85,137,405 | 100 | 29 ± 18 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karamage, F.; Zhang, C.; Kayiranga, A.; Shao, H.; Fang, X.; Ndayisaba, F.; Nahayo, L.; Mupenzi, C.; Tian, G. USLE-Based Assessment of Soil Erosion by Water in the Nyabarongo River Catchment, Rwanda. Int. J. Environ. Res. Public Health 2016, 13, 835. https://doi.org/10.3390/ijerph13080835
Karamage F, Zhang C, Kayiranga A, Shao H, Fang X, Ndayisaba F, Nahayo L, Mupenzi C, Tian G. USLE-Based Assessment of Soil Erosion by Water in the Nyabarongo River Catchment, Rwanda. International Journal of Environmental Research and Public Health. 2016; 13(8):835. https://doi.org/10.3390/ijerph13080835
Chicago/Turabian StyleKaramage, Fidele, Chi Zhang, Alphonse Kayiranga, Hua Shao, Xia Fang, Felix Ndayisaba, Lamek Nahayo, Christophe Mupenzi, and Guangjin Tian. 2016. "USLE-Based Assessment of Soil Erosion by Water in the Nyabarongo River Catchment, Rwanda" International Journal of Environmental Research and Public Health 13, no. 8: 835. https://doi.org/10.3390/ijerph13080835
APA StyleKaramage, F., Zhang, C., Kayiranga, A., Shao, H., Fang, X., Ndayisaba, F., Nahayo, L., Mupenzi, C., & Tian, G. (2016). USLE-Based Assessment of Soil Erosion by Water in the Nyabarongo River Catchment, Rwanda. International Journal of Environmental Research and Public Health, 13(8), 835. https://doi.org/10.3390/ijerph13080835