The Role of BH3-Mimetic Drugs in the Treatment of Pediatric Hepatoblastoma
Abstract
:1. Introduction
2. Established Treatment Strategies against HB
Risk Group | COG | SIOPEL | JPLT | GPOH |
---|---|---|---|---|
Very low risk | PRETEXT I or II, pure fetal histology and primary resection | – | – | – |
Low risk/ Standard risk | PRETEXT I or II, any histology primary resection | PRETEXT I, II, III | PRETEXT I, II, III | PRETEXT I, II, III |
Intermediate risk | PRETEXT II, III, IV unresectable at diagnosis V+, P+, E+ SCU | – | PRETEXT IV, any tumor with rupture, N1,P2,P2a,V3, And V3a multifocal | – |
High risk | Any PRETEXT, M+, AFP < 100ng/mL | Any PRETEXT, V+, P+, E+, M+, SCU, AFP < 100 ng/mL, tumor rupture | Any PRETEXT, M1, N2, AFP < 100 ng/mL | Any PRETEXT, V+, P+, E+, M+, multifocal |
3. Specific Treatment Strategies against HB
Option | Substance | Pathway | Reference |
---|---|---|---|
Gene-directed therapy with prodrugs | 5-fluorocytosine | Converting non-toxic drugs into antiproliferative drugs | [26] |
Kinase inhibitors | sorafenib, rapamycin | – | [27,28] |
Control of gene expression | Epigenetic modulators | DNA methylation and histone acetylation | [29] |
Protein homeostasis | Proteasome inhibitors | Degradation of proteins | [30] |
Modulation of apoptosis | TNF-α, TRAIL | Induction of apoptosis, signal transduction | [31] |
– | Downregulation of Bcl-2 using siRNA | [32] | |
Toxification | High dose acetaminophen with N-acetylcysteine | – | [33] |
Immunotherapy | Allogeneic graft-versus-HB effect. | Hematopoietic stem cell transplantation | [34] |
Natural killer cell-mediated lysis of hepatoma cells | Antitumor immune responses | [35,36] | |
Oncolytic virotherapy | Modified Adeno and Sendai viruses | Cancer-specific replication of viruses | [37,38] |
4. Resistance Mechanisms in HB Cells
5. Modulation of Apoptosis as a Concept of Anti-Tumor Therapy
6. BH3-Mimetic Drugs as Sensitizers of Chemotherapy in HB
7. BH3-Mimetic Drugs as Sensitizers of the Immune System in HB
8. BH3-Mimetic Drugs as Inhibitors of Tumor Cell Migration
9. Therapeutic Contribution of BH3-Mimetic Drugs in HB
10. Conclusions
Author Contributions
Conflicts of Interest
References
- Stiller, C.A.; Pritchard, J.; Steliarova-Foucher, E. Liver cancer in european children: Incidence and survival, 1978–1997. Report from the automated childhood cancer information system project. Eur. J. Cancer 2006, 42, 2115–2123. [Google Scholar] [CrossRef] [PubMed]
- Litten, J.B.; Tomlinson, G.E. Liver tumors in children. Oncologist 2008, 13, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Pietsch, T.; Fonatsch, C.; Albrecht, S.; Maschek, H.; Wolf, H.K.; von Schweinitz, D. Characterization of the continuous cell line HepT1 derived from a human hepatoblastoma. Lab. Investig. 1996, 74, 809–818. [Google Scholar] [PubMed]
- Doi, I. Establishment of a cell line and its clonal sublines from a patient with hepatoblastoma. Gann 1976, 67, 1–10. [Google Scholar] [PubMed]
- Katzenstein, H.M.; London, W.B.; Douglass, E.C.; Reynolds, M.; Plaschkes, J.; Finegold, M.J.; Bowman, L.C. Treatment of unresectable and metastatic hepatoblastoma: A pediatric oncology group phase II study. J. Clin. Oncol. 2002, 20, 3438–3444. [Google Scholar] [CrossRef] [PubMed]
- Perilongo, G.; Shafford, E.; Maibach, R.; Aronson, D.; Brugieres, L.; Brock, P.; Childs, M.; Czauderna, P.; MacKinlay, G.; Otte, J.B.; et al. Risk-adapted treatment for childhood hepatoblastoma. Final report of the second study of the international society of paediatric oncology—SIOPEL 2. Eur. J. Cancer 2004, 40, 411–421. [Google Scholar] [CrossRef]
- Venkatramani, R.; Furman, W.L.; Fuchs, J.; Warmann, S.W.; Malogolowkin, M.H. Current and future management strategies for relapsed or progressive hepatoblastoma. Paediatr. Drugs 2012, 14, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Von Schweinitz, D. Management of liver tumors in childhood. Semin. Pediatr. Surg. 2006, 15, 17–24. [Google Scholar]
- Douglass, E.C.; Green, A.A.; Wrenn, E.; Champion, J.; Shipp, M.; Pratt, C.B. Effective cisplatin (DDP) based chemotherapy in the treatment of hepatoblastoma. Med. Pediatr. Oncol. 1985, 13, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Perilongo, G.; Shafford, E.A. Liver tumours. Eur. J. Cancer 1999, 35, 953–958. [Google Scholar] [CrossRef] [PubMed]
- Aronson, D.C.; Schnater, J.M.; Staalman, C.R.; Weverling, G.J.; Plaschkes, J.; Perilongo, G.; Brown, J.; Phillips, A.; Otte, J.B.; Czauderna, P.; et al. Predictive value of the pretreatment extent of disease system in hepatoblastoma: Results from the international society of pediatric oncology liver tumor study group SIOPEL-1 study. J. Clin. Oncol. 2005, 23, 1245–1252. [Google Scholar] [CrossRef]
- Meyers, R.L.; Tiao, G.; de Ville de Goyet, J.; Superina, R.; Aronson, D.C. Hepatoblastoma state of the art: Pre-treatment extent of disease, surgical resection guidelines and the role of liver transplantation. Curr. Opin. Pediatr. 2014, 26, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.; Perilongo, G.; Shafford, E.; Keeling, J.; Pritchard, J.; Brock, P.; Dicks-Mireaux, C.; Phillips, A.; Vos, A.; Plaschkes, J. Pretreatment prognostic factors for children with hepatoblastoma—Results from the international society of paediatric oncology (SIOP) study SIOPEL 1. Eur. J. Cancer 2000, 36, 1418–1425. [Google Scholar] [CrossRef] [PubMed]
- Perilongo, G.; Maibach, R.; Shafford, E.; Brugieres, L.; Brock, P.; Morland, B.; de Camargo, B.; Zsiros, J.; Roebuck, D.; Zimmermann, A.; et al. Cisplatin versus cisplatin plus doxorubicin for standard-risk hepatoblastoma. N. Engl. J. Med. 2009, 361, 1662–1670. [Google Scholar] [CrossRef]
- Zsiros, J.; Maibach, R.; Shafford, E.; Brugieres, L.; Brock, P.; Czauderna, P.; Roebuck, D.; Childs, M.; Zimmermann, A.; Laithier, V.; et al. Successful treatment of childhood high-risk hepatoblastoma with dose-intensive multiagent chemotherapy and surgery: Final results of the SIOPEL-3HR study. J. Clin. Oncol. 2009, 28, 2584–2590. [Google Scholar] [CrossRef]
- Fuchs, J.; Rydzynski, J.; von Schweinitz, D.; Bode, U.; Hecker, H.; Weinel, P.; Burger, D.; Harms, D.; Erttmann, R.; Oldhafer, K.; et al. Pretreatment prognostic factors and treatment results in children with hepatoblastoma: A report from the german cooperative pediatric liver tumor study HB 94. Cancer 2002, 95, 172–182. [Google Scholar] [CrossRef]
- Haberle, B.; Bode, U.; von Schweinitz, D. Differentiated treatment protocols for high- and standard-risk hepatoblastoma—An interim report of the german liver tumor study HB99. Klin. Padiatr. 2003, 215, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Malogolowkin, M.H.; Katzenstein, H.; Krailo, M.D.; Chen, Z.; Bowman, L.; Reynolds, M.; Finegold, M.; Greffe, B.; Rowland, J.; Newman, K.; et al. Intensified platinum therapy is an ineffective strategy for improving outcome in pediatric patients with advanced hepatoblastoma. J. Clin. Oncol. 2006, 24, 2879–2884. [Google Scholar] [CrossRef]
- Matsunaga, T.; Sasaki, F.; Ohira, M.; Hashizume, K.; Hayashi, A.; Hayashi, Y.; Mugishima, H.; Ohnuma, N.; Japanese Study Group for Pediatric Liver, T. Analysis of treatment outcome for children with recurrent or metastatic hepatoblastoma. Pediatr. Surg. Int. 2003, 19, 142–146. [Google Scholar] [PubMed]
- Ortega, J.A.; Douglass, E.C.; Feusner, J.H.; Reynolds, M.; Quinn, J.J.; Finegold, M.J.; Haas, J.E.; King, D.R.; Liu-Mares, W.; Sensel, M.G.; et al. Randomized comparison of cisplatin/vincristine/fluorouracil and cisplatin/continuous infusion doxorubicin for treatment of pediatric hepatoblastoma: A report from the children’s cancer group and the pediatric oncology group. J. Clin. Oncol. 2000, 18, 2665–2675. [Google Scholar]
- Pritchard, J.; Brown, J.; Shafford, E.; Perilongo, G.; Brock, P.; Dicks-Mireaux, C.; Keeling, J.; Phillips, A.; Vos, A.; Plaschkes, J. Cisplatin, doxorubicin, and delayed surgery for childhood hepatoblastoma: A successful approach—Results of the first prospective study of the international society of pediatric oncology. J. Clin. Oncol. 2000, 18, 3819–3828. [Google Scholar] [PubMed]
- Zsiros, J.; Brugieres, L.; Brock, P.; Roebuck, D.; Maibach, R.; Zimmermann, A.; Childs, M.; Pariente, D.; Laithier, V.; Otte, J.B.; et al. Dose-dense cisplatin-based chemotherapy and surgery for children with high-risk hepatoblastoma (SIOPEL-4): A prospective, single-arm, feasibility study. Lancet Oncol. 2013, 14, 834–842. [Google Scholar] [CrossRef]
- Czauderna, P.; Otte, J.B.; Aronson, D.C.; Gauthier, F.; Mackinlay, G.; Roebuck, D.; Plaschkes, J.; Perilongo, G. Guidelines for surgical treatment of hepatoblastoma in the modern era—Recommendations from the childhood liver tumour strategy group of the international society of paediatric oncology (SIOPEL). Eur. J. Cancer 2005, 41, 1031–1036. [Google Scholar] [CrossRef] [PubMed]
- Otte, J.B.; de Ville de Goyet, J.; Reding, R. Liver transplantation for hepatoblastoma: Indications and contraindications in the modern era. Pediatr. Transplant. 2005, 9, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Grotegut, S.; Kappler, R.; Tarimoradi, S.; Lehembre, F.; Christofori, G.; von Schweinitz, D. Hepatocyte growth factor protects hepatoblastoma cells from chemotherapy-induced apoptosis by akt activation. Int. J. Oncol. 2010, 36, 1261–1267. [Google Scholar] [PubMed]
- Warmann, S.W.; Armeanu, S.; Heigoldt, H.; Ruck, P.; Vonthein, R.; Heitmann, H.; Seitz, G.; Lemken, M.L.; Bitzer, M.; Fuchs, J.; et al. Adenovirus-mediated cytosine deaminase/5-fluorocytosine suicide gene therapy of human hepatoblastoma in vitro. Pediatr. Blood Cancer 2009, 53, 145–151. [Google Scholar] [CrossRef]
- Eicher, C.; Dewerth, A.; Thomale, J.; Ellerkamp, V.; Hildenbrand, S.; Warmann, S.W.; Fuchs, J.; Armeanu-Ebinger, S. Effect of sorafenib combined with cytostatic agents on hepatoblastoma cell lines and xenografts. Br. J. Cancer 2013, 108, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, W.; Kuchler, J.; Koch, A.; Friedrichs, N.; Waha, A.; Endl, E.; Czerwitzki, J.; Metzger, D.; Steiner, S.; Wurst, P.; et al. Activation of phosphatidylinositol-3'-kinase/Akt signaling is essential in hepatoblastoma survival. Clin. Cancer Res. 2009, 15, 4538–4545. [Google Scholar] [CrossRef]
- McConkey, D.J.; Zhu, K. Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resist. Updat. 2008, 11, 164–179. [Google Scholar] [CrossRef] [PubMed]
- Humeniuk, R.; Mishra, P.J.; Bertino, J.R.; Banerjee, D. Molecular targets for epigenetic therapy of cancer. Curr. Pharm. Biotechnol. 2009, 10, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.L.; Ooi, J.P.; Ismail, N.; Moad, A.I.; Muhammad, T.S. Programmed cell death pathways and current antitumor targets. Pharm. Res. 2009, 26, 1547–1560. [Google Scholar] [CrossRef] [PubMed]
- Warmann, S.W.; Frank, H.; Heitmann, H.; Ruck, P.; Herberts, T.; Seitz, G.; Fuchs, J. Bcl-2 gene silencing in pediatric epithelial liver tumors. J. Surg. Res. 2008, 144, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Kobrinsky, N.L.; Sjolander, D.E.; Goldenberg, J.A.; Ortmeier, T.C. Successful treatment of doxorubicin and cisplatin resistant hepatoblastoma in a child with beckwith-wiedemann syndrome with high dose acetaminophen and N-acetylcysteine rescue. Pediatr. Blood Cancer 2005, 45, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Inaba, H.; Handgretinger, R.; Furman, W.; Hale, G.; Leung, W. Allogeneic graft-versus-hepatoblastoma effect. Pediatr. Blood Cancer 2006, 46, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Armeanu, S.; Bitzer, M.; Lauer, U.M.; Venturelli, S.; Pathil, A.; Krusch, M.; Kaiser, S.; Jobst, J.; Smirnow, I.; Wagner, A.; et al. Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate. Cancer Res. 2005, 65, 6321–6329. [Google Scholar] [CrossRef]
- Hoh, A.; Dewerth, A.; Vogt, F.; Wenz, J.; Baeuerle, P.A.; Warmann, S.W.; Fuchs, J.; Armeanu-Ebinger, S. The activity of gammadelta T cells against paediatric liver tumour cells and spheroids in cell culture. Liver Int. 2013, 33, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.F.; Chen, P.J.; Sze, D.Y.; Reid, T.; Bartlett, D.; Kirn, D.H.; Liu, T.C. Oncolytic virotherapy for advanced liver tumours. J. Cell. Mol. Med. 2009, 13, 1238–1247. [Google Scholar] [CrossRef] [PubMed]
- Warmann, S.W.; Armeanu, S.; Frank, H.; Buck, H.; Graepler, F.; Lemken, M.L.; Heitmann, H.; Seitz, G.; Lauer, U.M.; Bitzer, M.; et al. In vitro gene targeting in human hepatoblastoma. Pediatr. Surg. Int. 2006, 22, 16–23. [Google Scholar]
- Von Schweinitz, D.; Hecker, H.; Schmidt-von-Arndt, G.; Harms, D. Prognostic factors and staging systems in childhood hepatoblastoma. Int. J. Cancer 1997, 74, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Chu, G. Cellular responses to cisplatin. The roles of DNA-binding proteins and DNA repair. J. Biol. Chem. 1994, 269, 787–790. [Google Scholar] [PubMed]
- Oue, T.; Yoneda, A.; Uehara, S.; Yamanaka, H.; Fukuzawa, M. Increased expression of multidrug resistance-associated genes after chemotherapy in pediatric solid malignancies. J. Pediatr. Surg. 2009, 44, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Pommier, Y.; Leteurtre, F.; Fesen, M.R.; Fujimori, A.; Bertrand, R.; Solary, E.; Kohlhagen, G.; Kohn, K.W. Cellular determinants of sensitivity and resistance to DNA topoisomerase inhibitors. Cancer Investig. 1994, 12, 530–542. [Google Scholar] [CrossRef]
- Townsend, D.M.; Tew, K.D. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 2003, 22, 7369–7375. [Google Scholar] [CrossRef] [PubMed]
- Sigal, A.; Rotter, V. Oncogenic mutations of the p53 tumor suppressor: The demons of the guardian of the genome. Cancer Res. 2000, 60, 6788–6793. [Google Scholar] [PubMed]
- Wong, R.S. Apoptosis in cancer: From pathogenesis to treatment. J. Exp. Clin. Cancer Res. 2011, 30, 87. [Google Scholar] [CrossRef] [PubMed]
- Chonghaile, T.N.; Letai, A. Mimicking the BH3 domain to kill cancer cells. Oncogene 2008, 27, S149–S157. [Google Scholar] [CrossRef] [PubMed]
- Chittenden, T.; Harrington, E.A.; O’Connor, R.; Flemington, C.; Lutz, R.J.; Evan, G.I.; Guild, B.C. Induction of apoptosis by the Bcl-2 homologue bak. Nature 1995, 374, 733–736. [Google Scholar] [CrossRef] [PubMed]
- Gibson, L.; Holmgreen, S.P.; Huang, D.C.; Bernard, O.; Copeland, N.G.; Jenkins, N.A.; Sutherland, G.R.; Baker, E.; Adams, J.M.; Cory, S. Bcl-w, a novel member of the Bcl-2 family, promotes cell survival. Oncogene 1996, 13, 665–675. [Google Scholar] [PubMed]
- Nakano, K.; Vousden, K.H. Puma, a novel proapoptotic gene, is induced by p53. Mol. Cell 2001, 7, 683–694. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.C.; Lindsten, T.; Mootha, V.K.; Weiler, S.; Gross, A.; Ashiya, M.; Thompson, C.B.; Korsmeyer, S.J. Tbid, a membrane-targeted death ligand, oligomerizes bak to release cytochrome c. Genes Dev. 2000, 14, 2060–2071. [Google Scholar] [PubMed]
- Oda, E.; Ohki, R.; Murasawa, H.; Nemoto, J.; Shibue, T.; Yamashita, T.; Tokino, T.; Taniguchi, T.; Tanaka, N. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 2000, 288, 1053–1058. [Google Scholar] [CrossRef] [PubMed]
- Eskes, R.; Desagher, S.; Antonsson, B.; Martinou, J.C. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol. Cell. Biol. 2000, 20, 929–935. [Google Scholar] [CrossRef] [PubMed]
- Korsmeyer, S.J.; Wei, M.C.; Saito, M.; Weiler, S.; Oh, K.J.; Schlesinger, P.H. Pro-apoptotic cascade activates bid, which oligomerizes Bak or Bax into pores that result in the release of cytochrome c. Cell Death Differ. 2000, 7, 1166–1173. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Rafiuddin-Shah, M.; Tu, H.C.; Jeffers, J.R.; Zambetti, G.P.; Hsieh, J.J.; Cheng, E.H. Hierarchical regulation of mitochondrion-dependent apoptosis by Bcl-2 subfamilies. Nat. Cell Biol. 2006, 8, 1348–1358. [Google Scholar] [CrossRef] [PubMed]
- Letai, A.; Bassik, M.C.; Walensky, L.D.; Sorcinelli, M.D.; Weiler, S.; Korsmeyer, S.J. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2002, 2, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.H.; Reynolds, C.P. Bcl-2 inhibitors: Targeting mitochondrial apoptotic pathways in cancer therapy. Clin. Cancer Res. 2009, 15, 1126–1132. [Google Scholar] [CrossRef] [PubMed]
- Youle, R.J.; Strasser, A. The Bcl-2 protein family: Opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 2008, 9, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Bagnoli, M.; Canevari, S.; Mezzanzanica, D. Cellular FLICE-inhibitory protein (c-FLIP) signalling: A key regulator of receptor-mediated apoptosis in physiologic context and in cancer. Int. J. Biochem. Cell Biol. 2009, 42, 210–213. [Google Scholar] [CrossRef] [PubMed]
- Safa, A.R.; Day, T.W.; Wu, C.H. Cellular FLICE-like inhibitory protein (c-FLIP): A novel target for cancer therapy. Curr. Cancer Drug Targets 2008, 8, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Adesina, A.M.; Lopez-Terrada, D.; Wong, K.K.; Gunaratne, P.; Nguyen, Y.; Pulliam, J.; Margolin, J.; Finegold, M.J. Gene expression profiling reveals signatures characterizing histologic subtypes of hepatoblastoma and global deregulation in cell growth and survival pathways. Hum. Pathol. 2009, 40, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Lieber, J.; Kirchner, B.; Eicher, C.; Warmann, S.W.; Seitz, G.; Fuchs, J.; Armeanu-Ebinger, S. Inhibition of Bcl-2 and Bcl-x enhances chemotherapy sensitivity in hepatoblastoma cells. Pediatr. Blood Cancer 2010, 55, 1089–1095. [Google Scholar] [CrossRef] [PubMed]
- Armeanu-Ebinger, S.; Fuchs, J.; Wenz, J.; Seitz, G.; Ruck, P.; Warmann, S.W. Proteasome inhibition overcomes trail resistance in human hepatoblastoma cells. Front. Biosci. 2012, 4, 2194–2202. [Google Scholar] [CrossRef]
- Cotter, F.E.; Johnson, P.; Hall, P.; Pocock, C.; al Mahdi, N.; Cowell, J.K.; Morgan, G. Antisense oligonucleotides suppress B-cell lymphoma growth in a scid-hu mouse model. Oncogene 1994, 9, 3049–3055. [Google Scholar] [PubMed]
- Chan, S.L.; Lee, M.C.; Tan, K.O.; Yang, L.K.; Lee, A.S.; Flotow, H.; Fu, N.Y.; Butler, M.S.; Soejarto, D.D.; Buss, A.D.; et al. Identification of chelerythrine as an inhibitor of bclxl function. J. Biol. Chem. 2003, 278, 20453–20456. [Google Scholar] [CrossRef] [PubMed]
- Zhai, D.; Jin, C.; Satterthwait, A.C.; Reed, J.C. Comparison of chemical inhibitors of antiapoptotic Bcl-2-family proteins. Cell Death Differ. 2006, 13, 1419–1421. [Google Scholar] [CrossRef] [PubMed]
- Doi, K.; Li, R.; Sung, S.S.; Wu, H.; Liu, Y.; Manieri, W.; Krishnegowda, G.; Awwad, A.; Dewey, A.; Liu, X.; et al. Discovery of marinopyrrole a (maritoclax) as a selective MCL-1 antagonist that overcomes ABT-737 resistance by binding to and targeting MCL-1 for proteasomal degradation. J. Biol. Chem. 2012, 287, 10224–10235. [Google Scholar] [CrossRef] [PubMed]
- Oltersdorf, T.; Elmore, S.W.; Shoemaker, A.R.; Armstrong, R.C.; Augeri, D.J.; Belli, B.A.; Bruncko, M.; Deckwerth, T.L.; Dinges, J.; Hajduk, P.J.; et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005, 435, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Muchmore, S.W.; Sattler, M.; Liang, H.; Meadows, R.P.; Harlan, J.E.; Yoon, H.S.; Nettesheim, D.; Chang, B.S.; Thompson, C.B.; Wong, S.L.; et al. X-ray and nmr structure of human Bcl-xl, an inhibitor of programmed cell death. Nature 1996, 381, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Lock, R.; Carol, H.; Houghton, P.J.; Morton, C.L.; Kolb, E.A.; Gorlick, R.; Reynolds, C.P.; Maris, J.M.; Keir, S.T.; Wu, J.; et al. Initial testing (stage 1) of the BH3 mimetic ABT-263 by the pediatric preclinical testing program. Pediatr. Blood Cancer 2008, 50, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Schelman, W.R.; Mohammed, T.A.; Traynor, A.M.; Kolesar, J.M.; Marnocha, R.M.; Eickhoff, J.; Keppen, M.; Alberti, D.B.; Wilding, G.; Takebe, N.; et al. A phase I study of AT-101 with cisplatin and etoposide in patients with advanced solid tumors with an expanded cohort in extensive-stage small cell lung cancer. Investig. New Drugs 2014, 32, 295–302. [Google Scholar] [CrossRef]
- Schimmer, A.D.; Raza, A.; Carter, T.H.; Claxton, D.; Erba, H.; de Angelo, D.J.; Tallman, M.S.; Goard, C.; Borthakur, G. A multicenter phase I/II study of obatoclax mesylate administered as a 3- or 24-hour infusion in older patients with previously untreated acute myeloid leukemia. PLoS One 2014, 9, e108694. [Google Scholar] [CrossRef] [PubMed]
- Modugno, M.; Banfi, P.; Gasparri, F.; Borzilleri, R.; Carter, P.; Cornelius, L.; Gottardis, M.; Lee, V.; Mapelli, C.; Naglich, J.G.; et al. MCL-1 antagonism is a potential therapeutic strategy in a subset of solid cancers. Exp. Cell. Res. 2014. [Google Scholar] [CrossRef]
- Molica, S. Progress in the treatment of elderly/unfit chronic lymphocytic leukemia patients: Results of the german CLL-11 trial. Expert Rev. Anticancer Ther. 2015, 15, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Arellano, M.L.; Borthakur, G.; Berger, M.; Luer, J.; Raza, A. A phase ii, multicenter, open-label study of obatoclax mesylate in patients with previously untreated myelodysplastic syndromes with anemia or thrombocytopenia. Clin. Lymphoma Myeloma Leukemia 2014, 14, 534–539. [Google Scholar] [CrossRef]
- Arisan, E.D.; Kutuk, O.; Tezil, T.; Bodur, C.; Telci, D.; Basaga, H. Small inhibitor of Bcl-2, HA14-1, selectively enhanced the apoptotic effect of cisplatin by modulating Bcl-2 family members in MDA-MB-231 breast cancer cells. Breast Cancer Res. Treat. 2010, 119, 271–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashimori, N.; Zeitlin, B.D.; Zhang, Z.; Warner, K.; Turkienicz, I.M.; Spalding, A.C.; Teknos, T.N.; Wang, S.; Nor, J.E. Tw-37, a small-molecule inhibitor of Bcl-2, mediates s-phase cell cycle arrest and suppresses head and neck tumor angiogenesis. Mol. Cancer Ther. 2009, 8, 893–903. [Google Scholar] [CrossRef] [PubMed]
- Konopleva, M.; Watt, J.; Contractor, R.; Tsao, T.; Harris, D.; Estrov, Z.; Bornmann, W.; Kantarjian, H.; Viallet, J.; Samudio, I.; et al. Mechanisms of antileukemic activity of the novel Bcl-2 homology domain-3 mimetic Gx15-070 (obatoclax). Cancer Res. 2008, 68, 3413–3420. [Google Scholar] [CrossRef] [PubMed]
- Mason, K.D.; Khaw, S.L.; Rayeroux, K.C.; Chew, E.; Lee, E.F.; Fairlie, W.D.; Grigg, A.P.; Seymour, J.F.; Szer, J.; Huang, D.C.; et al. The BH3 mimetic compound, ABT-737, synergizes with a range of cytotoxic chemotherapy agents in chronic lymphocytic leukemia. Leukemia 2009, 23, 2034–2041. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, R.M.; Goustin, A.S.; Aboukameel, A.; Chen, B.; Banerjee, S.; Wang, G.; Nikolovska-Coleska, Z.; Wang, S.; Al-Katib, A. Preclinical studies of Tw-37, a new nonpeptidic small-molecule inhibitor of Bcl-2, in diffuse large cell lymphoma xenograft model reveal drug action on both Bcl-2 and Mcl-1. Clin. Cancer Res. 2007, 13, 2226–2235. [Google Scholar] [CrossRef] [PubMed]
- Oliver, L.; Mahe, B.; Gree, R.; Vallette, F.M.; Juin, P. HA14-1, a small molecule inhibitor of Bcl-2, bypasses chemoresistance in leukaemia cells. Leuk. Res. 2007, 31, 859–863. [Google Scholar] [CrossRef] [PubMed]
- Trudel, S.; Stewart, A.K.; Li, Z.; Shu, Y.; Liang, S.B.; Trieu, Y.; Reece, D.; Paterson, J.; Wang, D.; Wen, X.Y. The Bcl-2 family protein inhibitor, ABT-737, has substantial antimyeloma activity and shows synergistic effect with dexamethasone and melphalan. Clin. Cancer Res. 2007, 13, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Champa, D.; Russo, M.A.; Liao, X.H.; Refetoff, S.; Ghossein, R.A.; di Cristofano, A. Obatoclax overcomes resistance to cell death in aggressive thyroid carcinomas by countering BCL2A1 and MCL1 overexpression. Endocr. Relat. Cancer 2014, 21, 755–767. [Google Scholar] [CrossRef] [PubMed]
- Koehler, B.C.; Scherr, A.L.; Lorenz, S.; Elssner, C.; Kautz, N.; Welte, S.; Jaeger, D.; Urbanik, T.; Schulze-Bergkamen, H. Pan-Bcl-2 inhibitor obatoclax delays cell cycle progression and blocks migration of colorectal cancer cells. PLoS One 2014, 9, e106571. [Google Scholar] [CrossRef] [PubMed]
- Vogler, M.; Weber, K.; Dinsdale, D.; Schmitz, I.; Schulze-Osthoff, K.; Dyer, M.J.; Cohen, G.M. Different forms of cell death induced by putative Bcl2 inhibitors. Cell Death Differ. 2009, 16, 1030–1039. [Google Scholar] [CrossRef] [PubMed]
- Lieber, J.; Ellerkamp, V.; Wenz, J.; Kirchner, B.; Warmann, S.W.; Fuchs, J.; Armeanu-Ebinger, S. Apoptosis sensitizers enhance cytotoxicity in hepatoblastoma cells. Pediatr. Surg. Int. 2011, 28, 149–159. [Google Scholar] [CrossRef]
- Lieber, J.; Dewerth, A.; Wenz, J.; Kirchner, B.; Eicher, C.; Warmann, S.W.; Fuchs, J.; Armeanu-Ebinger, S. Increased efficacy of CDDP in a xenograft model of hepatoblastoma using the apoptosis sensitizer ABT-737. Oncol. Rep. 2013, 29, 646. [Google Scholar] [PubMed]
- Lieber, J.; Eicher, C.; Wenz, J.; Kirchner, B.; Warmann, S.W.; Fuchs, J.; Armeanu-Ebinger, S. The BH3 mimetic ABT-737 increases treatment efficiency of paclitaxel against hepatoblastoma. BMC Cancer 2011, 11, 362. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Tu, H.C.; Ren, D.; Takeuchi, O.; Jeffers, J.R.; Zambetti, G.P.; Hsieh, J.J.; Cheng, E.H. Stepwise activation of Bax and Bak by tBid, Bim, and puma initiates mitochondrial apoptosis. Mol. Cell 2009, 36, 487–499. [Google Scholar] [CrossRef] [PubMed]
- Skommer, J.; Brittain, T.; Raychaudhuri, S. Bcl-2 inhibits apoptosis by increasing the time-to-death and intrinsic cell-to-cell variations in the mitochondrial pathway of cell death. Apoptosis 2010, 15, 1223–1233. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, G.J.; Dubrez, L.; Morgan, C.P.; Jones, N.A.; Whitehouse, J.; Corfe, B.M.; Dive, C.; Hickman, J.A. Cell damage-induced conformational changes of the pro-apoptotic protein bak in vivo precede the onset of apoptosis. J. Cell Biol. 1999, 144, 903–914. [Google Scholar] [CrossRef] [PubMed]
- Analysis, R.R.D.f.G.E. Available online: http://157.82.78.238/refexa/main_search.Jsp%5D (accessed on 10 January 2015).
- E-MEXP-1851, D. Available online: http://www.Ebi.Ac.Uk/arrayexpress%5D (accessed on 15 August 2012).
- Malogolowkin, M.H.; Katzenstein, H.M.; Krailo, M.; Chen, Z.; Quinn, J.J.; Reynolds, M.; Ortega, J.A. Redefining the role of doxorubicin for the treatment of children with hepatoblastoma. J. Clin. Oncol. 2008, 26, 2379–2383. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Liu, D.; Zhang, Z.J.; Shan, S.; Han, X.; Srinivasula, S.M.; Croce, C.M.; Alnemri, E.S.; Huang, Z. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc. Natl. Acad. Sci. USA 2000, 97, 7124–7129. [Google Scholar] [CrossRef] [PubMed]
- Jane, E.P.; Premkumar, D.R.; Morales, A.; Foster, K.A.; Pollack, I.F. Inhibition of phosphatidylinositol 3-kinase/Akt signaling by Nvp-Bkm120 promotes ABT-737-induced toxicity in a caspase-dependent manner through mitochondrial dysfunction and DNA damage response in established and primary cultured glioblastoma cells. J. Pharmacol. Exp. Ther. 2014, 350, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Lickliter, J.D.; Wood, N.J.; Johnson, L.; McHugh, G.; Tan, J.; Wood, F.; Cox, J.; Wickham, N.W. HA14-1 selectively induces apoptosis in Bcl-2-overexpressing leukemia/lymphoma cells, and enhances cytarabine-induced cell death. Leukemia 2003, 17, 2074–2080. [Google Scholar] [CrossRef] [PubMed]
- Manero, F.; Gautier, F.; Gallenne, T.; Cauquil, N.; Gree, D.; Cartron, P.F.; Geneste, O.; Gree, R.; Vallette, F.M.; Juin, P. The small organic compound HA14-1 prevents Bcl-2 interaction with Bax to sensitize malignant glioma cells to induction of cell death. Cancer Res. 2006, 66, 2757–2764. [Google Scholar] [CrossRef] [PubMed]
- Niizuma, H.; Nakamura, Y.; Ozaki, T.; Nakanishi, H.; Ohira, M.; Isogai, E.; Kageyama, H.; Imaizumi, M.; Nakagawara, A. Bcl-2 is a key regulator for the retinoic acid-induced apoptotic cell death in neuroblastoma. Oncogene 2006, 25, 5046–5055. [Google Scholar] [CrossRef] [PubMed]
- Hermanson, D.; Addo, S.N.; Bajer, A.A.; Marchant, J.S.; Das, S.G.; Srinivasan, B.; Al-Mousa, F.; Michelangeli, F.; Thomas, D.D.; Lebien, T.W.; et al. Dual mechanisms of sHA 14-1 in inducing cell death through endoplasmic reticulum and mitochondria. Mol. Pharmacol. 2009, 76, 667–678. [Google Scholar] [CrossRef] [PubMed]
- Pei, X.Y.; Dai, Y.; Grant, S. The small-molecule Bcl-2 inhibitor HA14-1 interacts synergistically with flavopiridol to induce mitochondrial injury and apoptosis in human myeloma cells through a free radical-dependent and Jun NH2-terminal kinase-dependent mechanism. Mol. Cancer Ther. 2004, 3, 1513–1524. [Google Scholar] [PubMed]
- Doshi, J.M.; Tian, D.; Xing, C. Ethyl-2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4h-chromene-3-carboxylate (HA 14-1), a prototype small-molecule antagonist against antiapoptotic Bcl-2 proteins, decomposes to generate reactive oxygen species that induce apoptosis. Mol. Pharm. 2007, 4, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Tian, D.; Das, S.G.; Doshi, J.M.; Peng, J.; Lin, J.; Xing, C. Sha 14-1, a stable and ros-free antagonist against anti-apoptotic Bcl-2 proteins, bypasses drug resistances and synergizes cancer therapies in human leukemia cell. Cancer Lett. 2008, 259, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Nikolovska-Coleska, Z.; Yang, C.Y.; Wang, R.; Tang, G.; Guo, J.; Shangary, S.; Qiu, S.; Gao, W.; Yang, D.; et al. Structure-based design of potent small-molecule inhibitors of anti-apoptotic Bcl-2 proteins. J. Med. Chem. 2006, 49, 6139–6142. [Google Scholar] [CrossRef] [PubMed]
- Forastiere, A.A. Chemotherapy in the treatment of locally advanced head and neck cancer. J. Surg. Oncol. 2008, 97, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Lejeune, F.J.; Lienard, D.; Matter, M.; Ruegg, C. Efficiency of recombinant human TNF in human cancer therapy. Cancer Immun. 2006, 6, 6. [Google Scholar] [PubMed]
- Nakamoto, T.; Inagawa, H.; Takagi, K.; Soma, G. A new method of antitumor therapy with a high dose of TNF perfusion for unresectable liver tumors. Anticancer Res. 2000, 20, 4087–4096. [Google Scholar] [PubMed]
- Lieber, J.; Ellerkamp, V.; Vogt, F.; Wenz, J.; Warmann, S.W.; Fuchs, J.; Armeanu-Ebinger, S. BH3-mimetic drugs prevent tumour onset in an orthotopic mouse model of hepatoblastoma. Exp. Cell Res. 2014, 322, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Pathil, A.; Armeanu, S.; Venturelli, S.; Mascagni, P.; Weiss, T.S.; Gregor, M.; Lauer, U.M.; Bitzer, M. Hdac inhibitor treatment of hepatoma cells induces both trail-independent apoptosis and restoration of sensitivity to trail. Hepatology 2006, 43, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Wajant, H. The fas signaling pathway: More than a paradigm. Science 2002, 296, 1635–1636. [Google Scholar] [CrossRef] [PubMed]
- Grutzmacher, C.; Park, S.; Elmergreen, T.L.; Tang, Y.; Scheef, E.A.; Sheibani, N.; Sorenson, C.M. Opposing effects of bim and Bcl-2 on lung endothelial cell migration. Am. J. Physiol. Lung Cell. Mol. Physiol. 2010, 299, L607–L620. [Google Scholar] [CrossRef] [PubMed]
- Sheibani, N.; Scheef, E.A.; Dimaio, T.A.; Wang, Y.; Kondo, S.; Sorenson, C.M. Bcl-2 expression modulates cell adhesion and migration promoting branching of ureteric bud cells. J. Cell. Physiol. 2007, 210, 616–625. [Google Scholar] [CrossRef] [PubMed]
- Koehler, B.C.; Scherr, A.L.; Lorenz, S.; Urbanik, T.; Kautz, N.; Elssner, C.; Welte, S.; Bermejo, J.L.; Jager, D.; Schulze-Bergkamen, H. Beyond cell death—Antiapoptotic Bcl-2 proteins regulate migration and invasion of colorectal cancer cells in vitro. PLoS One 2013, 8, e76446. [Google Scholar] [CrossRef] [PubMed]
- Vogt, F.; Lieber, J.; Dewerth, A.; Hoh, A.; Fuchs, J.; Armeanu-Ebinger, S. BH3 mimetics reduce adhesion and migration of hepatoblastoma and hepatocellular carcinoma cells. Exp. Cell Res. 2013, 319, 1443–1450. [Google Scholar] [CrossRef] [PubMed]
- Koch, A.; Waha, A.; Hartmann, W.; Hrychyk, A.; Schuller, U.; Wharton, K.A., Jr.; Fuchs, S.Y.; von Schweinitz, D.; Pietsch, T. Elevated expression of Wnt antagonists is a common event in hepatoblastomas. Clin. Cancer Res. 2005, 11, 4295–4304. [Google Scholar] [CrossRef] [PubMed]
- Von Schweinitz, D.; Kraus, J.A.; Albrecht, S.; Koch, A.; Fuchs, J.; Pietsch, T. Prognostic impact of molecular genetic alterations in hepatoblastoma. Med. Pediatr. Oncol. 2002, 38, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.J.; Kuruvilla, J.; Mendelson, D.; Pishvaian, M.J.; Deeken, J.F.; Siu, L.L.; Berger, M.S.; Viallet, J.; Marshall, J.L. Phase i dose finding studies of obatoclax (Gx15–070), a small molecule pan-Bcl-2 family antagonist, in patients with advanced solid tumors or lymphoma. Clin. Cancer Res. 2010, 16, 4038–4045. [Google Scholar] [CrossRef] [PubMed]
- Schimmer, A.D.; O’Brien, S.; Kantarjian, H.; Brandwein, J.; Cheson, B.D.; Minden, M.D.; Yee, K.; Ravandi, F.; Giles, F.; Schuh, A.; et al. A phase i study of the pan Bcl-2 family inhibitor obatoclax mesylate in patients with advanced hematologic malignancies. Clin. Cancer Res. 2008, 14, 8295–8301. [Google Scholar] [CrossRef] [PubMed]
- Langer, C.J.; Albert, I.; Ross, H.J.; Kovacs, P.; Blakely, L.J.; Pajkos, G.; Somfay, A.; Zatloukal, P.; Kazarnowicz, A.; Moezi, M.M.; et al. Randomized phase II study of carboplatin and etoposide with or without obatoclax mesylate in extensive-stage small cell lung cancer. Lung Cancer 2014, 85, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Souers, A.J.; Leverson, J.D.; Boghaert, E.R.; Ackler, S.L.; Catron, N.D.; Chen, J.; Dayton, B.D.; Ding, H.; Enschede, S.H.; Fairbrother, W.J.; et al. ABT-199, a potent and selective Bcl-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 2013, 19, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Kaefer, A.; Yang, J.; Noertersheuser, P.; Mensing, S.; Humerickhouse, R.; Awni, W.; Xiong, H. Mechanism-based pharmacokinetic/pharmacodynamic meta-analysis of navitoclax (ABT-263) induced thrombocytopenia. Cancer Chemother. Pharmacol. 2014, 74, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Johnson-Farley, N.; Veliz, J.; Bhagavathi, S.; Bertino, J.R. ABT-199, a BH3 mimetic that specifically targets Bcl-2, enhances the antitumor activity of chemotherapy, bortezomib, and JQ1 in “double hit” lymphoma cells. Leukemia Lymphoma 2014, 1, 1–12. [Google Scholar]
- Peirs, S.; Matthijssens, F.; Goossens, S.; van de Walle, I.; Ruggero, K.; de Bock, C.E.; Degryse, S.; Cante-Barrett, K.; Briot, D.; Clappier, E.; et al. ABT-199 mediated inhibition of Bcl-2 as a novel therapeutic strategy in T-cell acute lymphoblastic leukemia. Blood 2014, 124, 3738–3747. [Google Scholar] [CrossRef] [PubMed]
- Zeuner, A.; Francescangeli, F.; Contavalli, P.; Zapparelli, G.; Apuzzo, T.; Eramo, A.; Baiocchi, M.; de Angelis, M.L.; Biffoni, M.; Sette, G.; et al. Elimination of quiescent/slow-proliferating cancer stem cells by Bcl-xl inhibition in non-small cell lung cancer. Cell Death Differ. 2014, 21, 1877–1888. [Google Scholar] [CrossRef] [PubMed]
- Davids, M.S.; Letai, A. ABT-199: Taking dead aim at Bcl-2. Cancer Cell 2013, 23, 139–141. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lieber, J.; Armeanu-Ebinger, S.; Fuchs, J. The Role of BH3-Mimetic Drugs in the Treatment of Pediatric Hepatoblastoma. Int. J. Mol. Sci. 2015, 16, 4190-4208. https://doi.org/10.3390/ijms16024190
Lieber J, Armeanu-Ebinger S, Fuchs J. The Role of BH3-Mimetic Drugs in the Treatment of Pediatric Hepatoblastoma. International Journal of Molecular Sciences. 2015; 16(2):4190-4208. https://doi.org/10.3390/ijms16024190
Chicago/Turabian StyleLieber, Justus, Sorin Armeanu-Ebinger, and Jörg Fuchs. 2015. "The Role of BH3-Mimetic Drugs in the Treatment of Pediatric Hepatoblastoma" International Journal of Molecular Sciences 16, no. 2: 4190-4208. https://doi.org/10.3390/ijms16024190
APA StyleLieber, J., Armeanu-Ebinger, S., & Fuchs, J. (2015). The Role of BH3-Mimetic Drugs in the Treatment of Pediatric Hepatoblastoma. International Journal of Molecular Sciences, 16(2), 4190-4208. https://doi.org/10.3390/ijms16024190