On the Right Track: Comfort and Confusion in Indoor Environments
Abstract
:1. Introduction
2. Related Work
2.1. Alternative Path Algorithms
2.2. Cognitive Processes
2.3. Indoor Navigation Situations
2.4. Research Goal
3. Materials and Methods
3.1. Study Design and Setup
3.1.1. Exploratory Study
3.1.2. Stimuli
3.2. Procedure
- “Comfortable: enjoying physical and mental comfort (free from stress, tension or doubt)”
- “Confusing: disturbing in mind, cause to lose the sense of time or place”
3.3. Data Collection
3.4. Data Analysis and Statistics
3.4.1. Dataset
3.4.2. Motives
3.4.3. Central Tendency and Variability of the Ratings
3.4.4. Differences between groups
4. Results
4.1. Dataset
4.2. Motives
4.3. Central Tendency and Variability of the Ratings
4.4. Differences between Groups
- In video 18 a rather straightforward right turn (T-junction) is depicted in a narrow corridor.
- In video 12, a similar right turn is depicted but the corridor is wider and there is visual clutter (i.e., number and organization of objects in a scene [102]) present (several doors, cleaning gear, parked bike).
- In video 34, a courtyard is crossed but the doors providing access to the courtyard had to be opened manually.
- In video 8, a simple right turn is presented in a narrow corridor in an older part of the building.
- In video 13, stairs are walked down, also cleaning gear and cabinets were captured on camera.
5. Discussion
5.1. Data Acquisition
5.2. Motives
5.3. Differences between the Groups
5.3.1. Building
5.3.2. Type
5.3.3. Videos
5.4. Limitations of the Study and Future Work
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ahmetovic, D.; Gleason, C.; Ruan, C.; Kitani, K.; Takagi, H.; Asakawa, C. NavCog: A navigational cognitive assistant for the blind. In Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services, Florence, Italy, 9 September 2016; pp. 90–99. [Google Scholar]
- Cheraghi, S.A.; Sharma, A.; Namboodiri, V.; Arsal, G. SafeExit4AII. In Proceedings of the 16th International Web for All Conference, San Francisco, CA, USA, 13–15 May 2019; pp. 1–10. [Google Scholar]
- Biczok, G.; Diez Martinez, S.; Jelle, T.; Krogstie, J. Navigating MazeMap: Indoor human mobility, spatio-logical ties and future potential. In Proceedings of the IEEE International Conference on Pervasive Computing and Communication Workshops, Budapest, Hungary, 24–28 March 2014; pp. 266–271. [Google Scholar]
- Helal, A.; Moore, S.E.; Ramachandran, B. Drishti: An integrated navigation system for visually impaired and disabled. In Proceedings of the Fifth International Symposium on Wearable Computers, Zurich, Switzerland, 8–9 October 2001; pp. 149–156. [Google Scholar]
- Kishore, A.; Bhasin, A.; Balaji, A.; Vuppalapati, C.; Jadav, D.; Anantharaman, P.; Gangras, S. CENSE: A cognitive navigation system for people with special needs. In Proceedings of the IEEE Third International Conference on Big Data Computing Service and Applications, San Francisco, CA, USA, 6–9 April 2017; pp. 198–203. [Google Scholar]
- Chen, J.; Ou, G.; Peng, A.; Zheng, L.; Shi, J. An INS/floor-plan indoor localization system using the firefly particle filter. ISPRS Int. J. Geo-Inf. 2018, 7, 324. [Google Scholar] [CrossRef] [Green Version]
- Feng, G.; Ma, L.; Tan, X.; Qin, D. Drift-aware monocular localization based on a pre-constructed dense 3D map in indoor environments. ISPRS Int. J. Geo-Inf. 2018, 7, 299. [Google Scholar] [CrossRef] [Green Version]
- Jing, C.; Wang, S.; Wang, M.; Du, M.; Zhou, L.; Sun, T.; Wang, J. A low-cost collaborative location scheme with GNSS and RFID for the Internet of things. ISPRS Int. J. Geo-Inf. 2018, 7, 180. [Google Scholar] [CrossRef] [Green Version]
- Ebner, F.; Fetzer, T.; Deinzer, F.; Grzegorzek, M. On Wi-Fi model optimizations for smartphone-based indoor localization. ISPRS Int. J. Geo-Inf. 2017, 6, 233. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zheng, X.; Xiong, H.; Chen, R. Robust indoor mobile localization with a semantic augmented route network graph. ISPRS Int. J. Geo-Inf. 2017, 6, 221. [Google Scholar] [CrossRef] [Green Version]
- Chiang, K.W.; Liao, J.K.; Huang, S.H.; Chang, H.W.; Chu, C.H. The performance analysis of space resection-aided pedestrian dead reckoning for smartphone navigation in a mapped indoor environment. ISPRS Int. J. Geo-Inf. 2017, 6, 43. [Google Scholar] [CrossRef] [Green Version]
- Lai, Y.C.; Chang, C.C.; Tsai, C.M.; Huang, S.C.; Chiang, K.W. A knowledge-based step length estimation method based on fuzzy logic and multi-sensor fusion algorithms for a pedestrian dead reckoning system. ISPRS Int. J. Geo-Inf. 2016, 5, 70. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wang, J.; Liu, C.; Zhang, L.; Li, Z. Integrated WiFi/PDR/Smartphone using an adaptive system noise extended kalman filter algorithm for indoor localization. ISPRS Int. J. Geo-Inf. 2016, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wang, J.; Liu, C. Heading estimation with real-time compensation based on kalman filter algorithm for an indoor positioning system. ISPRS Int. J. Geo-Inf. 2016, 5, 98. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Liu, C.; Gao, J.; Li, X. An improved WiFi/PDR integrated system using an adaptive and robust filter for indoor localization. ISPRS Int. J. Geo-Inf. 2016, 5, 224. [Google Scholar] [CrossRef] [Green Version]
- Pang, Y.; Zhang, C.; Zhou, L.; Lin, B.; Lv, G. Extracting indoor space information in complex building environments. ISPRS Int. J. Geo-Inf. 2018, 7, 321. [Google Scholar] [CrossRef] [Green Version]
- Lewandowicz, E.; Lisowski, P.; Flisek, P. A modified methodology for generating indoor navigation models. ISPRS Int. J. Geo-Inf. 2019, 8, 60. [Google Scholar] [CrossRef] [Green Version]
- Worboys, M. Modeling indoor space. In Proceedings of the 3rd International Workshop, Chicago, IL, USA, 1 November 2011; pp. 1–6. [Google Scholar]
- Diakité, A.A.; Zlatanova, S. Spatial subdivision of complex indoor environments for 3D indoor navigation. Int. J. Geogr. Inf. Sci. 2018, 32, 213–235. [Google Scholar] [CrossRef] [Green Version]
- Kondyli, V.; Schultz, C.; Bhatt, M. Evidence-based parametric design: Computationally generated spatial morphologies satisfying behavioural-based design constraints. In Proceedings of the 13th International Conference on Spatial Information Theory, L’Aquila, Italy, 4–8 September 2017; Volume 86, pp. 1–11. [Google Scholar]
- Kondyli, V.; Bhatt, M.; Hartmann, T. Precedent based design foundations for parametric design. Adv. Comput. Des. 2018, 3, 30. [Google Scholar]
- Hunter, S. Architectural wayfinding. Des. Resour. 2010, 8, 1–6. [Google Scholar]
- Aboim Borges, M.; Silva, F. User-sensing as part of a wayfinding design process. Procedia Manuf. 2015, 3, 5912–5919. [Google Scholar] [CrossRef] [Green Version]
- Manning, J.R.; Lew, T.F.; Li, N.; Sekuler, R.; Kahana, M.J. MAGELLAN: A cognitive map-based model of human wayfinding. J. Exp. Psychol. Gen. 2014, 143, 1314–1330. [Google Scholar] [CrossRef] [Green Version]
- Raubal, M.; Worboys, M. A formal model of the process of wayfinding in built environments. Spat. Inf. Theory Cogn. Comput. Found. Geogr. Inf. Sci. 1999, 1661, 381–399. [Google Scholar]
- Hölscher, C.; Meilinger, T.; Vrachliotis, G.; Brösamle, M.; Knauff, M. Finding the way inside: Linking architectural design analysis and cognitive processes. In Spatial Cognition IV, Reasoning, Action, Interaction; Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3343, pp. 1–12. [Google Scholar]
- Golledge, R.G.; Jacobson, R.D.; Kitchin, R.; Blades, M. Cognitive maps, spatial abilities and human wayfinding. Geogr. Rev. Jpn. Ser. B 2000, 73, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Epstein, R.A.; Patai, E.Z.; Julian, J.B.; Spiers, H.J. The cognitive map in humans: Spatial navigation and beyond. Nat. Neurosci. 2017, 20, 1504–1513. [Google Scholar] [CrossRef]
- Kannan, B.; Kothari, N.; Gnegy, C.; Gedaway, H.; Dias, M.F.; Dias, M.B. Localization, route planning, and smartphone interface for indoor navigation. In Cooperative Robots and Sensor Networks (Studies in Computational Intelligence); Koubâa, A., Khelil, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 507, pp. 39–59. [Google Scholar]
- Štefanička, T.; Ďuračiová, R.; Seres, C. Development of a web-based indoor navigation system using an accelerometer and gyroscope: A case study at the faculty of natural sciences of comenius university. Slovak J. Civ. Eng. 2017, 25, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Sala, A.; Losilla, F.; Sánchez-Aarnoutse, J.; García-Haro, J. Design, implementation and evaluation of an indoor navigation system for visually impaired people. Sensors 2015, 15, 32168–32187. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Park, J.-H.; Shin, B.-S. A shortest path planning algorithm for cloud computing environment based on multi-access point topology analysis for complex indoor spaces. J. Supercomput. 2017, 73, 2867–2880. [Google Scholar] [CrossRef]
- Teo, T.A.; Cho, K.H. BIM-oriented indoor network model for indoor and outdoor combined route planning. Adv. Eng. Inform. 2016, 30, 268–282. [Google Scholar] [CrossRef]
- Ali, H.M.; Noori, Z.T. Indoor way finder navigation system using smartphone. Int. J. Comput. Sci. Mob. Comput. 2016, 5, 202–218. [Google Scholar]
- Khan, A.A.; Yao, Z.; Kolbe, T.H. Context aware indoor route planning using semantic 3D building models with cloud computing. In 3D Geoinformation Science; Springer: Berlin/Heidelberg, Germany, 2015; pp. 175–192. [Google Scholar]
- Delnevo, G.; Monti, L.; Vignola, F.; Salomoni, P.; Mirri, S. AlmaWhere: A prototype of accessible indoor wayfinding and navigation system. In Proceedings of the 15th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 12–15 January 2018; pp. 1–6. [Google Scholar]
- Yuan, W.; Schneider, M. Geospatial Thinking; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Warren, W.H. Non-euclidean navigation. J. Exp. Biol. 2019, 222. [Google Scholar] [CrossRef] [Green Version]
- Müller, M.; Ohm, C.; Schwappach, F.; Ludwig, B. The path of least resistance. Künstl. Intell. 2017, 31, 125–134. [Google Scholar]
- Hillier, B.; Iida, S. Network and psychological effects: A theory of urban movement. In Spatial Information Theory; COSIT 2005; Lecture Notes in Computer Science; Cohn, A.G., Mark, D.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3693, pp. 475–490. [Google Scholar]
- Jiang, B.; Liu, X. Computing the fewest-turn map directions based on the connectivity of natural roads. Int. J. Geogr. Inf. Sci. 2011, 25, 1069–1082. [Google Scholar] [CrossRef] [Green Version]
- Duckham, M.; Kulik, L. “Simplest” paths: Automated route selection for navigation. In Spatial Information Theory; Foundations of Geographic Information Science; COSIT 2003; Lecture Notes in Computer Science; Kuhn, W., Worboys, F.M., Timpf, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2825, pp. 169–185. [Google Scholar]
- Wang, J.; Zhao, H.; Winter, S. Integrating sensing, routing and timing for indoor evacuation. Fire Saf. J. 2015, 78, 111–121. [Google Scholar] [CrossRef]
- Park, I.; Jang, G.U.; Park, S.; Lee, J. Time-dependent optimal routing in micro-scale emergency situation. In Proceedings of the Tenth International Conference on Mobile Data Management: Systems, Services and Middleware, Taipei, Taiwan, 18–20 May 2009; pp. 714–719. [Google Scholar]
- Swobodzinski, M.; Raubal, M. An indoor routing algorithm for the blind: Development and comparison to a routing algorithm for the sighted. Int. J. Geogr. Inf. Sci. 2009, 23, 1315–1343. [Google Scholar] [CrossRef]
- Kahale, E.; Hanse, P.C.; Destin, V.; Uzan, G.; Lopez-Krahe, J. Path planning for a universal indoor navigation system. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Miesenberger, K., Buhler, C., Penaz, P., Eds.; Springer: Cham, Switzerland, 2016; Volume 9759, pp. 190–197. [Google Scholar]
- Dudas, P.M.; Ghafourian, M.; Karimi, H.A. ONALIN: Ontology and algorithm for indoor routing. In Proceedings of the Tenth International Conference on Mobile Data Management: Systems, Services and Middleware, Taipei, Taiwan, 18–20 May 2009; pp. 720–725. [Google Scholar]
- Zhou, Y.; Chen, H.; Huang, Y.; Luo, Y.; Zhang, Y.; Xie, X. An indoor route planning method with environment awareness. Int. Geosci. Remote Sens. Symp. 2018. [Google Scholar] [CrossRef]
- Farr, A.C.; Kleinschmidt, T.; Yarlagadda, P.; Mengersen, K. Wayfinding: A simple concept, a complex process. Transp. Rev. 2012, 32, 715–743. [Google Scholar] [CrossRef] [Green Version]
- Wiener, J.M.; Büchner, S.J.; Hölscher, C. Taxonomy of human wayfinding tasks: A knowledge-based approach. Spat. Cogn. Comput. 2009, 9, 152–165. [Google Scholar] [CrossRef]
- Montello, D.R. Navigation. In The Cambridge Handbook of Visuospatial Thinking; Shah, P., Miyake, A., Eds.; Cambridge University Press: New York, NY, USA, 2005; pp. 257–294. ISBN 9780521001731. [Google Scholar]
- Spiers, H.; Maguire, E. The dynamic nature of cognition during wayfinding. J. Environ. Psychol. 2008, 28, 232–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zube, E.H. Environmental perception. In Environmental Geology; Springer: Dordrecht, The Netherlands, 1999; pp. 214–216. ISBN 978-1-4020-4494-6. [Google Scholar]
- Erçevik Sönmez, B.; Erinsel Önder, D. The influence of GPS-based navigation systems on perception and image formation: A case study in urban environments. Cities 2019, 86, 102–112. [Google Scholar] [CrossRef]
- Duckham, M.; Winter, S.; Robinson, M. Including landmarks in routing instructions. J. Locat. Based Serv. 2010, 4, 28–52. [Google Scholar] [CrossRef]
- Hu, X.; Ding, L.; Shang, J.; Fan, H.; Novack, T.; Noskov, A.; Zipf, A. Data-driven approach to learning salience models of indoor landmarks by using genetic programming. Int. J. Digit. Earth 2020. [Google Scholar] [CrossRef]
- Jukka, M.; Mathias Jahnke, H.L.; Krisp, F.F. A computational method for indoor landmark extraction. Programme Locat. Serv. 2014. [Google Scholar] [CrossRef]
- Kattenbeck, M. Empirically measuring salience of objects for use in pedestrian navigation. In Proceedings of the 23rd Sigspatial International Conference on Advances in Geographic Information Systems, Washington, DC, USA, 3–6 November 2015. [Google Scholar]
- Zhu, L.; Švedová, H.; Shen, J.; Stachoň, Z.; Shi, J.; Snopková, D.; Li, X. An instance-based scoring system for indoor landmark salience evaluation. Geogr. CGS 2019, 124, 103–131. [Google Scholar] [CrossRef]
- Brunyé, T.T.; Gardony, A.L.; Holmes, A.; Taylor, H.A. Spatial decision dynamics during wayfinding: Intersections prompt the decision-making process. Cogn. Res. Princ. Implic. 2018, 3. [Google Scholar] [CrossRef]
- Nasir, M.; Nahavandi, S.; Creighton, D. Fuzzy simulation of pedestrian walking path considering local environmental stimuli. In Proceedings of the IEEE International Conference on Fuzzy Systems, Brisbane, Australia, 10–15 June 2012. [Google Scholar]
- Kuliga, S.; Nelligan, B.; Dalton, R.; Marchette, S.; Shelton, A.; Carlson, L.; Hölscher, C. Exploring individual differences and building complexity in wayfinding: The case of the seattle central library. Environ. Behav. 2019, 51, 1–51. [Google Scholar] [CrossRef]
- Weisman, J. Evaluating architectural legibility: Way-finding in the built environment. Environ. Behav. 1981, 13, 189–204. [Google Scholar] [CrossRef]
- Ohno, R.; Kushiyama, N.; Soeda, M. Wayfinding in cases with vertical traveling. J. Arch. Plan. (Trans. AIJ) 1999, 64, 87–91. [Google Scholar] [CrossRef]
- Carlson, L.A.; Hölscher, C.; Shipley, T.F.; Dalton, R.C. Getting lost in buildings. Curr. Dir. Psychol. Sci. 2010, 19, 284–289. [Google Scholar] [CrossRef]
- Hölscher, C.; Meilinger, T.; Vrachliotis, G.; Brösamle, M.; Knauff, M. Up the down staircase: Wayfinding strategies in multi-level buildings. J. Environ. Psychol. 2006, 26, 284–299. [Google Scholar] [CrossRef]
- Balaban, C.Z.; Karimpur, H.; Röser, F.; Hamburger, K. Turn left where you felt unhappy: How affect influences landmark-based wayfinding. Cogn. Process. 2017, 18, 135–144. [Google Scholar] [CrossRef]
- Palmiero, M.; Nori, R.; Rogolino, C.; D’amico, S.; Piccardi, L. Sex differences in visuospatial and navigational working memory: The role of mood induced by background music. Exp. Brain Res. 2016, 234, 2381–2389. [Google Scholar] [CrossRef]
- Huang, H.; Klettner, S.; Schmidt, M.; Gartner, G.; Leitinger, S.; Wagner, A.; Steinmann, R. AffectRoute—Considering people’s affective responses to environments for enhancing route-planning services. Int. J. Geogr. Inf. Sci. 2014, 28, 2456–2473. [Google Scholar] [CrossRef]
- Palmiero, M.; Piccardi, L. The role of emotional landmarks on topographical memory. Front. Psychol. 2017, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Gartner, G. openemotionmap.org—Emotional response to space as an additional concept in cartography. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Cao, L.; Li, N. Assessing the influence of repeated exposures and mental stress on human wayfinding performance in indoor environments using virtual reality technology. Adv. Eng. Inform. 2019, 39, 53–61. [Google Scholar] [CrossRef]
- Hund, A.M.; Minarik, J.L. Getting from here to there: Spatial anxiety, wayfinding strategies, direction type, and wayfinding efficiency. Spat. Cogn. Comput. 2006, 6, 179–201. [Google Scholar] [CrossRef] [Green Version]
- Slone, E.; Burles, F.; Robinson, K.; Levy, R.M.; Iaria, G. Floor plan connectivity influences wayfinding performance in virtual environments. Environ. Behav. 2015, 47, 1024–1053. [Google Scholar] [CrossRef]
- Fogliaroni, P.; Bucher, D.; Jankovic, N.; Giannopoulos, I. Intersections of our world. Leibniz Int. Proc. Inform. Lipics 2018, 114, 1–15. [Google Scholar]
- Ohm, C.; Müller, M.; Ludwig, B.; Bienk, S. Where is the landmark? Eye tracking studies in large-scale indoor environments. In Proceedings of the 2nd International Workshop on Eye Tracking for Spatial Research, Vienna, Austria, 23 September 2014; pp. 47–51. [Google Scholar]
- Viaene, P.; Ooms, K.; Vansteenkiste, P.; Lenoir, M.; De Maeyer, P. The use of eye tracking in search of indoor landmarks. CEUR Workshop Proc. 2014, 1241, 52–56. [Google Scholar]
- Goetz, M.; Zipf, A. Formal definition of a user-adaptive and length-optimal routing graph for complex indoor environments. Geo-Spat. Inf. Sci. 2011, 14, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Yuan, W.; Schneider, M. iNav: An indoor navigation model supporting length-dependent optimal routing. In Geospatial Thinking; Lecture Notes in Geoinformation and Cartography; Painho, M., Santos, M., Pundt, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 299–313. [Google Scholar]
- Liu, L.; Zlatanova, S. A “Door-to-door” path-finding approach for indoor navigation. In Proceedings of the Geoinformatics for Disaster Management, Antalya, Turkey, 3–8 May 2011; pp. 3–8. [Google Scholar]
- Vanclooster, A.; Van de Weghe, N.; De Maeyer, P. Integrating indoor and outdoor spaces for pedestrian navigation guidance: A review. Trans. GIS 2016, 20, 491–525. [Google Scholar] [CrossRef]
- Kalakou, S.; Moura, F. Bridging the gap in planning indoor pedestrian facilities. Transp. Rev. 2014, 34, 474–500. [Google Scholar] [CrossRef]
- Hölscher, C.; Meilinger, T.; Vrachliotis, G.; Brösamle, M.; Knauff, M. Finding the way inside: Linking architectural design analysis and cognitive processes. Spat. Cogn. Comput. 2005, 3343, 1–12. [Google Scholar]
- Dogu, U.; Erkip, F. Spatial factors affecting wayfinding and orientation: A case study in a shopping mall. Environ. Behav. 2000, 32, 731–755. [Google Scholar] [CrossRef]
- Ortega-Andeane, P.; Jiménez-Rosas, E.; Mercado-Doménech, S.; Estrada-Rodríguez, C. Space syntax as a determinant of spatial orientation perception. Int. J. Psychol. 2005, 40, 11–18. [Google Scholar] [CrossRef]
- Abu-Ghazzeh, T.M. Movement and wayfinding in the king saud university built environment: A look at freshman orientation and environmental information. J. Environ. Psychol. 1996, 16, 303–318. [Google Scholar] [CrossRef]
- Hahmann, S.; Miksch, J.; Resch, B.; Lauer, J. Geo-spatial Information Science Routing through open spaces—A performance comparison of algorithms. Geo-Spat. Inf. Sci. 2018, 5020, 1–11. [Google Scholar]
- Vanclooster, A.; Vanhaeren, N.; Viaene, P.; Ooms, K.; De Cock, L.; Fack, V.; Van de Weghe, N.; De Maeyer, P. Turn calculations for the indoor application of the fewest turns path algorithm. Int. J. Geogr. Inf. Sci. 2019. [Google Scholar] [CrossRef]
- Karimi, H.A.; Ghafourian, M. Indoor routing for individuals with special needs and preferences. Trans. GIS 2010, 14, 299–329. [Google Scholar] [CrossRef]
- Lin, W.Y.; Lin, P.H. Intelligent generation of indoor topology (i-GIT) for human indoor pathfinding based on IFC models and 3D GIS technology. Autom. Constr. 2018, 94, 340–359. [Google Scholar] [CrossRef]
- Fichtner, F.W.; Diakité, A.A.; Zlatanova, S.; Voûte, R. Semantic enrichment of octree structured point clouds for multi-story 3D pathfinding. Trans. GIS 2018, 22, 233–248. [Google Scholar] [CrossRef]
- Verghote, A.; Al-Haddad, S.; Goodrum, P.; Van Emelen, S. The effects of information format and spatial cognition on individual wayfinding performance. Buildings 2019, 9, 29. [Google Scholar] [CrossRef] [Green Version]
- Vanclooster, A.; Ooms, K.; Viaene, P.; Fack, V.; Van De Weghe, N.; De Maeyer, P. Evaluating suitability of the least risk path algorithm to support cognitive wayfinding in indoor spaces: An empirical study. Appl. Geogr. 2014, 53, 128–140. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, J. Usability Engineering; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1994; ISBN 0125184050. [Google Scholar]
- GPS for Enterprises. Available online: http://www.thinkkit.eu/en-gb/gps-for-enterprises/download (accessed on 16 November 2018).
- Freitas, H.; Oliveira, M.; Jenkins, M.; Popjoy, O. The Focus Group, A Qualitative Research Method; ISRC: Baltimore, MD, USA, 1998. [Google Scholar]
- Krueger, R.A.; Casey, M.A. Designing and conducting focus group interviews. In Social Analysis Selected Tools and Techniques; The World Bank: Washington, DC, USA, 2001; pp. 4–24. ISBN 00393665. [Google Scholar]
- Li, R.; Klippel, A. Wayfinding behaviors in complex buildings: The impact of environmental legibility and familiarity. Environ. Behav. 2014. [Google Scholar] [CrossRef]
- Emo, B. Choice zones: Architecturally relevant areas of interest. Spat. Cogn. Comput. 2018, 18, 173–193. [Google Scholar] [CrossRef]
- Van Someren, M.W.; Barnard, Y.F.; Sandberg, J.A. The Think Aloud Method: A Practical Guide to Modelling Cognitive Processes; Academic Press: London, UK, 1994; ISBN 0127142703. [Google Scholar]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Baltaretu, A.; Krahmer, E.; Maes, A. Improving route directions: The role of intersection type and visual clutter for spatial reference. Appl. Cogn. Psychol. 2015, 29, 647–660. [Google Scholar] [CrossRef]
- Ipeirotis, P. Demographics of Mechanical Turk; CeDER-10-01 Working Paper; WSDM: Marina del Rey, CA, USA, 2010. [Google Scholar]
- Paolacci, G.; Chandler, J.; Ipeirotis, P. Running experiments on amazon mechanical turk. Judgm. Decis. Mak. 2010, 5, 411–419. [Google Scholar]
- Mason, W.; Suri, S. Conducting behavioral research on Amazon’s Mechanical Turk. Behav. Res. Methods 2012, 44, 1–23. [Google Scholar] [CrossRef]
- Ward-Ciesielski, E.F.; Winer, E.S.; Drapeau, C.W.; Nadorff, M.R. Examining components of emotion regulation in relation to sleep problems and suicide risk. J. Affect. Disord. 2018, 241, 41–48. [Google Scholar] [CrossRef]
- Meilinger, T.; Franz, G.; Bülthoff, H.H. From isovists via mental representations to behaviour: First steps toward closing the causal chain. Environ. Plan. B Plan. Des. 2012, 39, 48–62. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Klippel, A. Using space syntax to understand knowledge acquisition and wayfinding in indoor environments. In Proceedings of the 9th IEEE International Conference on Cognitive Informatics (ICCI), Beijing, China, 7–9 July 2010; pp. 302–307. [Google Scholar]
- Dalton, R.C.; Hölscher, C.; Montello, D.R. Wayfinding as a social activity. Front. Psychol. 2019, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Jazuk, K.; Panagiotis, M.; Thrash, T.; Victor, S.; Hoelscher, C. Social density and building layout: The experience of crowding in wayfinding. In Proceedings of the 7th International Conference on Spatial Cognition (ICSC), Roma, Italy, 10–14 September 2018. [Google Scholar]
- Li, H.; Thrash, T.; Hölscher, C.; Schinazi, V.R. The effect of crowdedness on human wayfinding and locomotion in a multi-level virtual shopping mall. J. Environ. Psychol. 2019, 65, 101320. [Google Scholar] [CrossRef]
- Silva, C.; Rebelo, F.; Vilar, E.; Noriega, P. Preliminary study about social influence over wayfinding decisions. Procedia Manuf. 2015, 3, 5920–5926. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.; Frumento, S.; Nese, M.; Predieri, I. Interior color and psychological functioning in a university residence hall. Front. Psychol. 2018, 9, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hidayetoglu, M.L.; Yildirim, K.; Akalin, A. The effects of color and light on indoor wayfinding and the evaluation of the perceived environment. J. Environ. Psychol. 2012, 32, 50–58. [Google Scholar] [CrossRef]
- Vilar, E.; Teixeira, L.; Rebelo, F.; Noriega, P.; Teles, J. Using environmental affordances to direct people natural movement indoors. Work 2012, 41, 1149–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarzkopf, S.; Von Stülpnagel, R. What lab eye tracking tells us about wayfinding a comparison of stationary and mobile eye tracking in a large building scenario. In Proceedings of the 1st International Workshop Eye Tracking for Spatial Research, Lille, France, 15–17 May 2013; pp. 31–36. [Google Scholar]
- Hölscher, C.; Büchner, S.J.; Meilinger, T.; Strube, G. Adaptivity of wayfinding strategies in a multi-building ensemble: The effects of spatial structure, task requirements, and metric information. J. Environ. Psychol. 2009, 29, 208–219. [Google Scholar] [CrossRef]
- Vanclooster, A.; Van de Weghe, N.; Fack, V.; De Maeyer, P. Comparing indoor and outdoor network models for automatically calculating turns. J. Locat. Based Serv. 2014, 8, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.; Sun, D.; Rilett, L.R. Heuristic shortest path algorithms for transportation applications: State of the art. Comput. Oper. Res. 2006, 33, 3324–3343. [Google Scholar] [CrossRef]
- Richter, K.; Duckham, M. Simplest instructions: Finding easy-to-describe. In Geographic Information Science; ; Lecture Notes in Computer Science; Cova, T.J., Miller, H.J., Beard, K., Frank, A.U., Goodchild, M.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5266, pp. 274–289. [Google Scholar]
- Haque, S.; Kulik, L.; Klippel, A. Algorithms for reliable navigation and wayfinding. Spat. Cogn. 2006. [Google Scholar] [CrossRef] [Green Version]
- Grum, E. Danger of getting lost: Optimize a path to minimize risk. In Proceedings of the 10th Symposion on Information & Communication Technologies (ICT) in Urban Planning And Spatial Developement and Impacts of ICT on Physical Space, Vienna, Austria, 22–25 February 2005. [Google Scholar]
Code | Description | Examples |
---|---|---|
Setup | Related to the survey setup (video, words from questions and instructions) | Speed, shaky, comfortable |
Colors/lightning | Related to the colors or lightning | Bright, red |
Social | Referring to (the presence or lack of) other people | Someone, nobody |
Actions | Verbs (or derivatives) related to navigation | Moving, walking |
Environmental elements | Tangible objects in the environment | Door, wall |
Places | Referring to locations | Hallway, school, environment |
Spatial Descriptions | Other words (nouns, adverbs or adjectives) with a spatial component | Narrow, outside, above, path |
Non-spatial Descriptions | Nouns, adverbs or adjectives without a spatial component | Nice, anxiety |
Other | Any other words | Seems, appear, just, and |
Variable | df | Comfort | Confusion | ||||
---|---|---|---|---|---|---|---|
n | H | p | n | H | p | ||
actual dataset validation dataset | 1 | 3173 453 | 1.209 | 0.271 | 3172 452 | 2.114 | 0.146 |
Comfort (%) | Confusion (%) | Δ (= Comfort − Confusion) | |||||
---|---|---|---|---|---|---|---|
Coder 1 | Coder 2 | Coder 1 | Coder 2 | Coder 1 | Coder 2 | ||
1 | Setup | 7.51 | 10.98 | 5.52 | 10.50 | 1.99 | 0.49 |
2 | Colors/lightning | 4.62 | 4.05 | 3.31 | 2.76 | 1.31 | 1.28 |
3 | Social | 2.89 | 3.47 | 1.66 | 1.66 | 1.23 | 1.81 |
4 | Actions | 5.20 | 5.20 | 4.97 | 5.52 | 0.23 | −0.32 |
5 | Environmental elements | 3.47 | 2.31 | 3.87 | 3.87 | −0.40 | −1.56 |
6 | Places | 5.78 | 8.67 | 5.52 | 8.29 | 0.26 | 0.38 |
7 | Spatial Descriptions | 14.45 | 12.14 | 16.57 | 16.02 | −2.12 | −3.88 |
8 | Non-spatial Descriptions | 28.90 | 26.59 | 26.52 | 16.57 | 2.38 | 10.02 |
9 | Other | 27.17 | 26.59 | 32.04 | 34.81 | −4.88 | −8.22 |
Video | Count | Comfort | Confusion | ||||
---|---|---|---|---|---|---|---|
Modus | Median | IQR | Modus | Median | IQR | ||
1 | 84 | 5.00 | 4.00 | 2.00 | 5.00 | 4.00 | 2.00 |
2 | 85 | 5.00 | 4.00 | 2.00 | 5.00 | 5.00 | 2.00 |
3 | 95 | 5.00 | 4.00 | 2.00 | 5.00 | 4.00 | 2.00 |
4 | 89 | 5.00 | 4.00 | 2.00 | 5.00 | 4.00 | 2.00 |
5 | 91 | 5.00 | 4.00 | 1.00 | 5.00 | 4.00 | 2.00 |
6 | 90 | 5.00 | 4.00 | 2.00 | 5.00 | 4.00 | 2.00 |
7 | 96 | 5.00 | 3.50 | 3.00 | 5.00 | 4.00 | 3.00 |
8 | 89 | 4.00 | 4.00 | 1.00 | 3.00 | 3.00 | 1.00 |
9 | 93 | 5.00 | 4.00 | 2.00 | 5.00 | 4.00 | 2.00 |
10 | 93 | 5.00 | 4.00 | 2.00 | 4.00 | 4.00 | 2.00 |
11 | 95 | 5.00 | 4.00 | 2.00 | 5.00 | 3.00 | 2.00 |
12 | 88 | 4.00 | 4.00 | 2.25 | 5.00 | 3.00 | 3.00 |
13 | 87 | 5.00 | 4.00 | 2.00 | 3.00 | 3.00 | 1.50 |
14 | 95 | 5.00 | 4.00 | 2.00 | 4.00 | 4.00 | 2.00 |
15 | 90 | 5.00 | 4.00 | 2.00 | 5.00 | 4.00 | 2.00 |
16 | 88 | 5.00 | 4.00 | 2.00 | 5.00 | 4.00 | 2.00 |
17 | 95 | 4.00 | 4.00 | 2.00 | 5.00 | 4.00 | 2.00 |
18 | 87 | 3.00 | 3.00 | 2.00 | 3.00 | 4.00 | 2.00 |
19 | 92 | 4.00 | 4.00 | 2.00 | 5.00 | 4.00 | 2.00 |
20 | 96 | 5.00 | 4.00 | 2.00 | 5.00 | 4.00 | 2.00 |
21 | 90 | 4.00 | 4.00 | 2.00 | 5.00 | 4.00 | 2.00 |
22 | 88 | 4.00 | 4.00 | 2.00 | 5.00 | 4.00 | 2.00 |
23 | 94 | 4.00 | 4.00 | 2.00 | 5.00 | 4.00 | 2.00 |
24 | 93 | 5.00 | 4.00 | 2.00 | 5.00 | 4.00 | 2.00 |
25 | 88 | 5.00 | 4.00 | 2.00 | 5.00 | 4.00 | 2.00 |
26 | 88 | 5.00 | 4.00 | 2.25 | 5.00 | 4.00 | 3.00 |
27 | 89 | 5.00 | 4.00 | 2.00 | 5.00 | 4.00 | 2.00 |
28 | 87 | 4.00 | 4.00 | 2.00 | 5.00 | 3.00 | 3.00 |
29 | 88 | 5.00 | 4.00 | 2.00 | 5.00 | 4.00 | 2.00 |
30 | 96 | 5.00 | 4.00 | 3.00 | 5.00 | 4.00 | 3.00 |
31 | 89 | 5.00 | 4.00 | 2.00 | 5.00 | 4.00 | 2.00 |
32 | 96 | 4.00 | 4.00 | 2.00 | 5.00 | 4.00 | 2.00 |
33 | 93 | 5.00 | 4.00 | 2.00 | 5.00 | 4.00 | 2.00 |
34 | 90 | 4.00 | 4.00 | 3.00 | 5.00 | 4.00 | 2.00 |
35 | 87 | 5.00 | 4.00 | 2.00 | 4.00 | 4.00 | 2.00 |
Variable | Groups | df | Comfort | Confusion | ||||||
---|---|---|---|---|---|---|---|---|---|---|
n | Mean Rank | H | p | n | Mean Rank | H | p | |||
Building | 3 | 2.573 | 0.462 | 1.886 | 0.596 | |||||
UZ | 1088 | 160,604 | 1087 | 161,193 | ||||||
Plateau | 911 | 159,611 | 910 | 158,734 | ||||||
Tweek./Hoven | 909 | 154,803 | 910 | 156,682 | ||||||
Dunant | 265 | 161,117 | 265 | 154,692 | ||||||
Type | 4 | 9.009 | 0.061 | 10.022 | 0.040 * | |||||
Simple L- turn | 909 | 159,769 | 908 | 159,272 | ||||||
T-junction | 639 | 153,592 | 640 | 157,363 | ||||||
Open space | 802 | 159,257 | 801 | 155,808 | ||||||
Doors | 361 | 169,592 | 361 | 171,586 | ||||||
Stairs | 462 | 154,184 | 462 | 15,403 | ||||||
Video | 34 | 73.152 | 0.000 * | 84.144 | 0.000 * | |||||
1 | 84 | 171,645 | 84 | 180,145 | ||||||
2 | 85 | 180,636 | 85 | 189,173 | ||||||
3 | 95 | 169,181 | 95 | 182,292 | ||||||
4 | 89 | 168,957 | 89 | 162,405 | ||||||
5 | 91 | 190,634 | 90 | 183,524 | ||||||
6 | 90 | 166,712 | 90 | 160,959 | ||||||
7 | 96 | 140,509 | 96 | 147,566 | ||||||
8 | 89 | 148,748 | 89 | 131,274 | ||||||
9 | 93 | 151,237 | 93 | 163,983 | ||||||
10 | 93 | 151,621 | 93 | 151,101 | ||||||
11 | 95 | 152,471 | 95 | 143,338 | ||||||
12 | 88 | 137,795 | 88 | 141,584 | ||||||
13 | 87 | 157,821 | 87 | 135,057 | ||||||
14 | 95 | 153,394 | 95 | 14,985 | ||||||
15 | 90 | 168,946 | 90 | 168,843 | ||||||
16 | 88 | 173,769 | 88 | 176,066 | ||||||
17 | 94 | 144,436 | 95 | 152,309 | ||||||
18 | 87 | 137,456 | 87 | 144,061 | ||||||
19 | 92 | 166,163 | 92 | 174,955 | ||||||
20 | 96 | 171,671 | 96 | 16,938 | ||||||
21 | 90 | 15,599 | 90 | 164,665 | ||||||
22 | 88 | 151,913 | 88 | 165,933 | ||||||
23 | 94 | 152,862 | 94 | 150,466 | ||||||
24 | 93 | 149,222 | 93 | 145,269 | ||||||
25 | 88 | 174,111 | 88 | 161,342 | ||||||
26 | 88 | 143,472 | 88 | 143,657 | ||||||
27 | 89 | 165,717 | 89 | 159,026 | ||||||
28 | 87 | 147,566 | 87 | 138,801 | ||||||
29 | 88 | 169,549 | 88 | 159,888 | ||||||
30 | 96 | 144,796 | 96 | 152,119 | ||||||
31 | 89 | 180,312 | 89 | 181,622 | ||||||
32 | 96 | 156,728 | 96 | 161,325 | ||||||
33 | 93 | 153,668 | 93 | 157,226 | ||||||
34 | 90 | 139,019 | 89 | 153,021 | ||||||
35 | 87 | 170,223 | 87 | 152,599 |
Simple L-Turn | T-Junction | Open Space | Doors | Stairs | |
---|---|---|---|---|---|
Simple L-turn | 19.09 | 34.64 | −123.14 | 52.41 | |
T-junction | 15.55 | −142.23 | 33.33 | ||
Open space | −157.79 * | 17.77 | |||
Doors | 175.56 * | ||||
Stairs |
Comparisons Video | Z | Adjusted p |
---|---|---|
Comfort | ||
18-5 | 531.8 | 0.035 |
12-5 | 528.4 | 0.037 |
34-5 | 516.1 | 0.05 |
Confusion | ||
8-2 | 579 | 0.009 |
13-2 | 541.2 | 0.035 |
8-5 | 522.5 | 0.045 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanhaeren, N.; De Cock, L.; Lapon, L.; Van de Weghe, N.; Ooms, K.; De Maeyer, P. On the Right Track: Comfort and Confusion in Indoor Environments. ISPRS Int. J. Geo-Inf. 2020, 9, 132. https://doi.org/10.3390/ijgi9020132
Vanhaeren N, De Cock L, Lapon L, Van de Weghe N, Ooms K, De Maeyer P. On the Right Track: Comfort and Confusion in Indoor Environments. ISPRS International Journal of Geo-Information. 2020; 9(2):132. https://doi.org/10.3390/ijgi9020132
Chicago/Turabian StyleVanhaeren, Nina, Laure De Cock, Lieselot Lapon, Nico Van de Weghe, Kristien Ooms, and Philippe De Maeyer. 2020. "On the Right Track: Comfort and Confusion in Indoor Environments" ISPRS International Journal of Geo-Information 9, no. 2: 132. https://doi.org/10.3390/ijgi9020132
APA StyleVanhaeren, N., De Cock, L., Lapon, L., Van de Weghe, N., Ooms, K., & De Maeyer, P. (2020). On the Right Track: Comfort and Confusion in Indoor Environments. ISPRS International Journal of Geo-Information, 9(2), 132. https://doi.org/10.3390/ijgi9020132