Extracting Indoor Space Information in Complex Building Environments
<p>Complexity of large buildings. (<b>a</b>) Actual view and (<b>b</b>) plan of isolated components. (<b>c</b>) Indoor space results extracted using the search-loop method. S1 is the indoor space polygon obtained by the search-loop method. S2–S6 are the regions occupied by the isolated components of the building; (<b>d</b>) Actual results. I1–I5 are the internal islands of S1′.</p> "> Figure 2
<p>Overview of the proposed indoor space extraction procedure: (<b>a</b>) Building components; (<b>b</b>) calculation of the indoor space boundary of a single floor; (<b>c</b>) indoor single-floor space extraction of a building; (<b>d</b>) identification of the downward connectivity of single-floor space; (<b>e</b>) indoor cross-floor space extracting of a building; and (<b>f</b>) extraction result, (<b>a</b>–<b>c</b>) are part of the building in (<b>d</b>) for clear expression.</p> "> Figure 3
<p>Boundary components: (<b>a</b>) walls and (<b>b</b>) columns.</p> "> Figure 4
<p>Calculation of the indoor space boundary: (<b>a</b>) boundary components of spaces and (<b>b</b>) results of the Boolean operation.</p> "> Figure 5
<p>Flowchart for extracting a single-floor space.</p> "> Figure 6
<p>Extraction and modeling of single-floor building spaces in floor plan view: (<b>a</b>) convex hull <math display="inline"><semantics> <mi>C</mi> </semantics></math> of <math display="inline"><semantics> <mi>S</mi> </semantics></math>; (<b>b</b>) result of the Boolean difference operation; (<b>c</b>) distinction between indoor and outdoor spaces, and (<b>d</b>) resulting indoor single-floor spaces.</p> "> Figure 7
<p>Construction of the boundary relationship.</p> "> Figure 8
<p>Examples of cross-floor spaces: (<b>a</b>) pipe well, (<b>b</b>) elevator shaft, (<b>c</b>) air duct well, and (<b>d</b>) atrium.</p> "> Figure 9
<p>Cross-floor space representation in a construction plan: (<b>a</b>) pipe well and (<b>b</b>) atrium.</p> "> Figure 10
<p>Polyline of the hole symbol: (<b>a</b>) discrete line segments and (<b>b</b>) topological reconstruction.</p> "> Figure 11
<p>Judging the connectivity of building spaces: (<b>a</b>) cross-floor space and (<b>b</b>) single-floor space.</p> "> Figure 12
<p>Space area relationships between the upper and lower floors: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>.</mo> <mi>a</mi> <mi>r</mi> <mi>e</mi> <mi>a</mi> <mo><</mo> <mi>B</mi> <mo>.</mo> <mi>a</mi> <mi>r</mi> <mi>e</mi> <mi>a</mi> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>.</mo> <mi>a</mi> <mi>r</mi> <mi>e</mi> <mi>a</mi> <mo>=</mo> <mi>B</mi> <mo>.</mo> <mi>a</mi> <mi>r</mi> <mi>e</mi> <mi>a</mi> </mrow> </semantics></math>, and (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>.</mo> <mi>a</mi> <mi>r</mi> <mi>e</mi> <mi>a</mi> <mo>></mo> <mi>B</mi> <mo>.</mo> <mi>a</mi> <mi>r</mi> <mi>e</mi> <mi>a</mi> </mrow> </semantics></math>. <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>.</mo> <mi>a</mi> <mi>r</mi> <mi>e</mi> <mi>a</mi> </mrow> </semantics></math> is the upper indoor space area, and <math display="inline"><semantics> <mrow> <mi>B</mi> <mo>.</mo> <mi>a</mi> <mi>r</mi> <mi>e</mi> <mi>a</mi> </mrow> </semantics></math> is the lower space area.</p> "> Figure 13
<p>Flowchart for extracting a cross-floor space.</p> "> Figure 14
<p>Comparison of single-floor and cross-floor space extraction: (<b>a</b>) single-floor space 3D model, (<b>b</b>) floor slab without a hole, (<b>c</b>) cross-floor space 3D model, and (<b>d</b>) floor slab with a hole.</p> "> Figure 15
<p>The indoor space automatic extraction system: (<b>a</b>) BIM data integrated within GIS software and (<b>b</b>) indoor space automatic extraction.</p> "> Figure 16
<p>Floor plans of the building: (<b>a</b>) first floor, (<b>b</b>) second floor, (<b>c</b>) third floor, (<b>d</b>) fourth floor, and (<b>e</b>) fifth floor.</p> "> Figure 17
<p>Single-floor space extraction results of the building: (<b>a</b>) first floor, (<b>b</b>) second floor, (<b>c</b>) third floor, (<b>d</b>) fourth floor, and (<b>e</b>) fifth floor.</p> "> Figure 18
<p>Boundary relationship.</p> "> Figure 19
<p>Connectivity relationships of indoor cross-floor spaces.</p> "> Figure 20
<p>Results of the indoor cross-floor space modeling: (<b>a</b>) hallway and (<b>b</b>) audience hall.</p> "> Figure 21
<p>Situation of isolated components: (<b>a</b>) first floor plan, (<b>b</b>) isolated column, and (<b>c</b>) isolated wall.</p> "> Figure 22
<p>Extraction results obtained using the search-loop method: (<b>a</b>) first floor plan, (<b>b</b>) isolated column, and (<b>c</b>) isolated wall.</p> "> Figure 23
<p>Extraction results obtained using proposed method: (<b>a</b>) first floor plan, (<b>b</b>) isolated column, and (<b>c</b>) isolated wall.</p> "> Figure 24
<p>Comparison of the number of correct indoor spaces.</p> "> Figure 25
<p>Conversion to other indoor space expression models: (<b>a</b>) network and (<b>b</b>) grid model.</p> ">
Abstract
:1. Introduction
2. Basic Idea and Overall Procedure
3. Method
3.1. Calculation for the Indoor Space Boundary of a Single Floor
3.2. Extracting Indoor Single-Floor Space of a Building
3.3. Identifying the Downward Connectivity of Single-Floor Space
- (a)
- Space accessibility. Because this space type spans multiple floors, there is no floor slab barrier in the vertical direction, and any floor of the building can be reached through this space.
- (b)
- Function specificity. A cross-floor space is generally designed to meet specific functional requirements of a building and has a specific role.
3.4. Extracting Indoor Cross-Floor Space of a Building
- (a)
- A.area < B.area. The upper floor space is smaller than the lower floor space. The upper space projection is completely within the lower space.
- (b)
- A.area = B.area. The upper space is equal to the lower space. The upper space projection matches the lower space.
- (c)
- A.area > B.area. The upper space is larger than the lower space. The upper space projection covers the lower space.
4. Case Study
4.1. Experimental Design
4.2. Experimental Data
4.3. Experimental Results and Analysis
4.3.1. Indoor Single-Floor Space
4.3.2. Indoor Cross-Floor Space
5. Discussion
5.1. Accuracy of the Method
5.2. Advantages of the Method
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Goodchild, M.F. Virtual geographic environments as collective constructions. Acta Geod. Cartogr. Sin. 2008, 31, 1–6. [Google Scholar]
- Diakité, A.A.; Zlatanova, S. Spatial subdivision of complex indoor environments for 3D indoor navigation. Int. J. Geogr. Inf. Sci. 2017, 32, 213–235. [Google Scholar] [CrossRef] [Green Version]
- Worboys, M. Modeling indoor space. In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Indoor Spatial Awareness, Chicago, IL, USA, 1 November 2011; pp. 1–6. [Google Scholar]
- Li, X.; Claramunt, C.; Ray, C. A grid graph-based model for the analysis of 2D indoor spaces. Comput. Environ. Urban Syst. 2010, 34, 532–540. [Google Scholar] [CrossRef]
- Zlatanova, S.; Liu, L.; Sithole, G.; Zhao, J.; Mortari, F. Space Subdivision for Indoor Applications; Delft University of Technology, OTB Research Institute for the Built Environment: Delft, The Netherlands, 31 December 2014. [Google Scholar]
- Zlatanova, S.; Liu, L.; Sithole, G. A conceptual framework of space subdivision for indoor navigation. In Proceedings of the 5th ACM Sigspatial International Workshop on Indoor Spatial Awareness, Orlando, FL, USA, 5–8 November 2013; pp. 37–41. [Google Scholar]
- Li, D.; Zhu, Q.; Liu, Q.; Xu, P. From 2D to 3D GIS for cybercity. Geo-Spat. Inf. Sci. 2004, 7, 1–5. [Google Scholar]
- Xiong, Q.; Zhu, Q.; Du, Z.; Zlatanova, S.; Zhang, Y.; Zhou, Y.; Li, Y. Free multi-floor indoor space extraction from complex 3D building models. Earth Sci. Inf. 2017, 10, 69–83. [Google Scholar] [CrossRef]
- Lee, J. A spatial access-oriented implementation of a 3-D GIS topological data model for urban entities. GeoInformatica 2004, 8, 237–264. [Google Scholar] [CrossRef]
- Gilliéron, P.Y.; Büchel, D.; Spassov, I.; Merminod, B. Indoor navigation performance analysis. In Proceedings of the 8th European Navigation Conference GNSS, Rotterdam, The Netherlands, 17–19 May 2004. [Google Scholar]
- Choi, J.; Lee, J. 3D geo-network for agent-based building evacuation simulation. In 3D Geo-Information Sciences; Lee, J., Zlatanova, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 283–299. [Google Scholar]
- Choset, H.; Lynch, K.; Hutchinson, S.; Kantor, G.; Burgard, W.; Kavraki, L.; Thrun, S. Principles of Robot Motion: Theory, Algorithms, and Implementations; MIT Press: Cambridge, MA, USA, 2005; p. 512. [Google Scholar]
- Kneidl, A.; Borrmann, A.; Hartmann, D. Generation and use of sparse navigation graphs for microscopic pedestrian simulation models. Adv. Eng. Inf. 2012, 26, 669–680. [Google Scholar] [CrossRef]
- Lorenz, B.; Ohlbach, H.J.; Stoffel, E.P. A hybrid spatial model for representing indoor environments. Lect. Notes Comput. Sci. 2006, 4295, 102–112. [Google Scholar]
- Wallgrün, J.O. Autonomous construction of hierarchical voronoi-based route graph representations. In Proceedings of the Spatial Cognition IV: Reasoning, Action, Interaction, Frauenchiemsee, Germany, 11–13 October 2005; pp. 413–433. [Google Scholar]
- Geraerts, R. Planning short paths with clearance using explicit corridors. In Proceedings of the IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 1997–2004. [Google Scholar]
- Krūminaitė, M.; Zlatanova, S. Indoor space subdivision for indoor navigation. In Proceedings of the Sixth ACM SIGSPATIAL International Workshop on Indoor Spatial Awareness, Dallas/Fort Worth, TX, USA, 4 November 2014; pp. 25–31. [Google Scholar]
- Li, Y.; He, Z. 3D indoor navigation: A framework of combining BIM with 3D GIS. In Proceedings of the 44th World Congress of the International Society of City and Regional Planners (ISOCARP), Dalian, China, 19–23 September 2008. [Google Scholar]
- Tang, S.J.; Zhu, Q.; Wang, W.W.; Zhang, Y.T. Automatic topology derivation from IFC building model for in-door intelligent navigation. ISPRS—Int. Arch. Photogr. Remote Sens. Spat. Inf. Sci. 2015, XL-4/W5, 7–11. [Google Scholar] [CrossRef]
- Lin, Y.H.; Liu, Y.S.; Gao, G.; Han, X.G.; Lai, C.Y.; Gu, M. The IFC-based path planning for 3D indoor spaces. Adv. Eng. Inf. 2013, 27, 189–205. [Google Scholar] [CrossRef]
- Isikdag, U.; Zlatanova, S.; Underwood, J. A bim-oriented model for supporting indoor navigation requirements. Comput. Environ. Urban Syst. 2013, 41, 112–123. [Google Scholar] [CrossRef]
- Lamarche, F.; Donikian, S. Crowd of virtual humans: A new approach for real time navigation in complex and structured environments. Comput. Graph. Forum 2010, 23, 509–518. [Google Scholar] [CrossRef] [Green Version]
- Stoffel, E.P.; Lorenz, B.; Ohlbach, H.J. Towards a semantic spatial model for pedestrian indoor navigation. In Proceedings of the 2007 Conference on Advances in Conceptual Modeling: Foundations and Applications, Auckland, New Zealand, 5–9 November 2007; pp. 328–337. [Google Scholar]
- Liu, L.; Zlatanova, S. A “door-to-door” path-finding approach for indoor navigation. In Proceedings of the Gi4DM 2011: GeoInformation for Disaster Management, Antalya, Turkey, 3–8 May 2011. [Google Scholar]
- Gabriel, G.; Stéphane, C.; Sisi, Z.; Yannick, B.; Johanne, S.P.; Peter, V.O. Indoor pedestrian navigation using foot-mounted imu and portable ultrasound range sensors. Sensors 2011, 11, 7606–7624. [Google Scholar] [CrossRef]
- Afyouni, I.; Ray, C.; Claramunt, C. Spatial models for context-aware indoor navigation systems: A survey. J. Spat. Inf. Sci. 2012, 2012, 85–123. [Google Scholar] [CrossRef]
- Liu, X.; Xie, N.; Tang, K.; Jia, J. Lightweighting for Web3D visualization of large-scale BIM scenes in real-time. Graph. Models 2016, 88, 40–56. [Google Scholar] [CrossRef]
- Goldstein, R.; Breslav, S.; Khan, A. Towards voxel-based algorithms for building performance simulation. In Proceedings of the IBPSA—Canada eSim Conference, Ottawa, ON, Canada, 7–10 May 2014. [Google Scholar]
- Bandi, S.; Thalmann, D. Space discretization for efficient human navigation. Comput. Graph. Forum 1998, 17, 195–206. [Google Scholar] [CrossRef]
- Lewis, R.; Séquin, C. Generation of 3D building models from 2D architectural plans. Comput.-Aided Des. 1998, 30, 765–779. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, H.; Wen, Y. A new reconstruction method for 3D buildings from 2D vector floor plan. Comput.-Aided Des. Appl. 2014, 11, 704–714. [Google Scholar] [CrossRef]
- Ah-Soon, C.; Tombre, K. Variations on the analysis of architectural drawings. In Proceedings of the Fourth International Conference on Document Analysis and Recognition, Ulm, Germany, 18–20 August 1997; pp. 347–351. [Google Scholar]
- Zhi, G.; Lo, S.; Fang, Z. A graph-based algorithm for extracting units and loops from architectural floor plans for a building evacuation model. Comput.-Aided Des. 2003, 35, 1–14. [Google Scholar] [CrossRef]
- Autodesk Revit Help: About Defining the Upper Boundary of a Room. 2017. Available online: http://help.autodesk.com/view/RVT/2017/ENU/?guid=GUID-C3040C34-62FC-4F31-9594-1082CFF86FFE (accessed on 26 May 2018).
- Tsiliakou, E.; Dimopoulou, E. 3D network analysis for indoor space applications. ISPRS—Int. Arch. Photogr. Remote Sens. Spat. Inf. Sci. 2016, XLII-2/W2, 147–154. [Google Scholar] [CrossRef]
- Tang, P.; Huber, D.; Akinci, B.; Lipman, R.; Lytle, A. Automatic reconstruction of as-built building information models from laser-scanned point clouds: A review of related techniques. Autom. Constr. 2010, 19, 829–843. [Google Scholar] [CrossRef]
- Becker, S.; Peter, M.; Fritsch, D. Grammar-supported 3D indoor reconstruction from point clouds for as-built BIM. ISPRS Ann. Photogr. Remote Sens. Spat. Inf. Sci. 2015, II-3/W4, 17–24. [Google Scholar] [CrossRef]
Name | Semantic Description |
---|---|
Wall | Main component in the vertical direction. It plays load-bearing, enclosure, and space separation roles and is the main expression of the boundary for a building space in the vertical direction. |
Curtain wall | Consists of a metal frame and a plate and does not bear the load of the main structure. |
Column | Mainly supports the vertical load of the building. |
Railing | Height between the human chest and abdomen; used to ensure personal safety or separate a space. |
Floor slab | Platform that directly bears loads and divides a space in the horizontal direction of the building. |
Floor | Wall | Column | Railing | Total Number of Boundary Components |
---|---|---|---|---|
First floor | 240 | 85 | 6 | 331 |
Second floor | 215 | 84 | 6 | 305 |
Third floor | 218 | 81 | 4 | 303 |
Fourth floor | 260 | 76 | 4 | 340 |
Fifth floor | 90 | 38 | 0 | 128 |
Floor | Number of Single-Floor Indoor Spaces |
---|---|
First floor | 46 |
Second floor | 39 |
Third floor | 39 |
Fourth floor | 47 |
Fifth floor | 6 |
Floor | Number of Cross-Floor Indoor Spaces |
---|---|
First floor | 8 |
Second floor | 8 |
Third floor | 4 |
Fourth floor | 4 |
Fifth floor | 1 |
Indoor Space Situation | Search-Loop Method | Our Method | |
---|---|---|---|
Single-floor space | Without isolated component | √ | √ |
With isolated component | × | √ | |
Cross-floor space | × | √ |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, Y.; Zhang, C.; Zhou, L.; Lin, B.; Lv, G. Extracting Indoor Space Information in Complex Building Environments. ISPRS Int. J. Geo-Inf. 2018, 7, 321. https://doi.org/10.3390/ijgi7080321
Pang Y, Zhang C, Zhou L, Lin B, Lv G. Extracting Indoor Space Information in Complex Building Environments. ISPRS International Journal of Geo-Information. 2018; 7(8):321. https://doi.org/10.3390/ijgi7080321
Chicago/Turabian StylePang, Yueyong, Chi Zhang, Liangchen Zhou, Bingxian Lin, and Guonian Lv. 2018. "Extracting Indoor Space Information in Complex Building Environments" ISPRS International Journal of Geo-Information 7, no. 8: 321. https://doi.org/10.3390/ijgi7080321
APA StylePang, Y., Zhang, C., Zhou, L., Lin, B., & Lv, G. (2018). Extracting Indoor Space Information in Complex Building Environments. ISPRS International Journal of Geo-Information, 7(8), 321. https://doi.org/10.3390/ijgi7080321