Phase Synchronization and Dynamic Behavior of a Novel Small Heterogeneous Coupled Network
<p>Pinched hysteresis loops with <span class="html-italic">A</span> = 1.9, <span class="html-italic">F</span> = 0.5, and different initial values.</p> "> Figure 2
<p>Topology diagram of the novel small heterogeneous coupled network.</p> "> Figure 3
<p>Bifurcation diagram and the two largest Lyapunov exponents of the coupled network controlled by <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math>, with initial states (0.1, 0, 0, 0, 0.1). (<b>a</b>) Bifurcation diagram; (<b>b</b>) Lyapunov exponents diagram.</p> "> Figure 4
<p>Multiple periodic burstings with different spikes of a small heterogeneous coupled network controlled by <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math>, and initial states (0.1, 0, 0, 0, 0.1). (<b>a</b>) period-3 bursting with <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 0.75; (<b>b</b>) period-4 bursting with <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 0.84; (<b>c</b>) period-5 bursting with <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 0.91; (<b>d</b>) Period-6 bursting with <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 0.99; (<b>e</b>) period-7 bursting with <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.083.</p> "> Figure 5
<p>The firing patterns of the membrane potential in a small heterogeneous coupled network controlled by <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math>, with initial states (0.1, 0, 0, 0, 0.1). (<b>a</b>) Periodic spiking mode with <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 0.63; (<b>b</b>) chaotic spiking mode with <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 0.71; (<b>c</b>) stochastic bursting mode with <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.178; (<b>d</b>) chaotic bursting mode with <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.39; (<b>e</b>) periodic bursting mode with <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.65.</p> "> Figure 6
<p>The phase diagrams of the coupled network controlled by <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math>, with initial states (0.1, 0, 0, 0, 0.1). (<b>a</b>) Periodic spiking mode with <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 0.63; (<b>b</b>) chaotic spiking mode with <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 0.71; (<b>c</b>) stochastic bursting mode with <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.178; (<b>d</b>) chaotic bursting mode with <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.39; (<b>e</b>) periodic bursting mode with <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.65.</p> "> Figure 7
<p>Coexistence behavior controlled by initial value, and <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 0.83. (<b>a</b>) The coexisting attractor phase diagram of the network; (<b>b</b>) the basin of attraction for the coexisting behavior.</p> "> Figure 8
<p>The phase synchronization in a small heterogeneous coupled network controlled by <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math>, with initial states (0.1, 0, 0, 0, 0.1). (<b>a</b>) <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 0.5; (<b>b</b>) <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 0.8; (<b>c</b>) <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.5; (<b>d</b>) <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.8; (<b>e</b>) <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.96; (<b>f</b>) <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.98.</p> "> Figure 9
<p>A circuit diagram of the hyperbolic tangent function.</p> "> Figure 10
<p>A circuit diagram of the coupled network.</p> "> Figure 11
<p>Simulation results of the small heterogeneous coupled network. (<b>a</b>). <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 0.63; (<b>b</b>). <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 0.71; (<b>c</b>). <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.178; (<b>d</b>). <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.39; (<b>e</b>). <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.65.</p> "> Figure 12
<p>STM32-based hardware layout diagram of the small heterogeneous coupled network.</p> "> Figure 13
<p>STM32-based flowchart of the fourth-order Runge–Kutta integration method.</p> "> Figure 14
<p>Microcontroller implementation of the small heterogeneous coupled network. (<b>a</b>). <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 0.63; (<b>b</b>). <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 0.71; (<b>c</b>). <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.178; (<b>d</b>). <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.39; (<b>e</b>). <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.65.</p> ">
Abstract
:1. Introduction
2. Mathematical Model and Equilibrium Point Studies
2.1. Mathematical Model
2.2. The Equilibrium Points of the Small Heterogeneous Coupled Network
3. Numerical Simulation
3.1. Firing Activity of the Small Heterogeneous Coupled Network
3.2. Synchronization Behavior of the Small Heterogeneous Coupled Network
4. Circuit Simulation and Hardware Implementation
4.1. Circuit Simulation
4.2. Microcontroller Implementation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HR | Hindmarsh–Rose |
HNN | Hopfield neural network |
2D | Two dimensional |
References
- Wang, M.; Deng, Y.; Liao, X.; Li, Z.; Ma, M.; Zeng, Y. Dynamics and circuit implementation of a four-wing memristive chaotic system with attractor rotation. Int. J. Non-Linear. Mech. 2019, 111, 149–159. [Google Scholar] [CrossRef]
- Peng, Y.; He, S.; Sun, K. Parameter identification for discrete memristive chaotic map using adaptive differential evolution algorithm. Nonlinear Dyn. 2022, 107, 1263–1275. [Google Scholar] [CrossRef]
- Li, H.; Li, C.; He, S. Locally Active Memristor with Variable Parameters and Its Oscillation Circuit. Int. J. Bifurcat. Chaos 2023, 33, 2350032. [Google Scholar] [CrossRef]
- Wang, M.; An, M.; Zhang, X.; Iu, H.H.C. Feedback Control-Based Parallel Memristor-Coupled Sine Map and Its Hardware Implementation. IEEE Trans. Circuits Syst. II-Express Briefs 2023, 70, 4251–4255. [Google Scholar] [CrossRef]
- Wang, M.; An, M.; He, S.; Zhang, X.; Ho-Ching Iu, H.; Li, Z. Two-dimensional memristive hyperchaotic maps with different coupling frames and its hardware implementation. Chaos Interdiscip. J. Nonlinear Sci. 2023, 33, 073129. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Zhang, J.; Fang, T.; Huang, S.; Wang, M. Synchronous dynamics in neural system coupled with memristive synapse. Nonlinear Dyn. 2018, 92, 1395–1402. [Google Scholar] [CrossRef]
- Chen, C.; Bao, H.; Chen, M.; Xu, Q.; Bao, B. Non-ideal memristor synapse-coupled bi-neuron Hopfield neural network: Numerical simulations and breadboard experiments. AEU-Int. J. Electron. Commun. 2019, 111, 152894. [Google Scholar] [CrossRef]
- Chen, C.; Chen, J.; Bao, H.; Chen, M.; Bao, B. Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons. Nonlinear Dyn. 2019, 95, 3385–3399. [Google Scholar] [CrossRef]
- Lin, H.; Wang, C.; Hong, Q.; Sun, Y. A multi-stable memristor and its application in a neural network. IEEE Trans. Circuits Syst. II-Express Briefs 2020, 67, 3472–3476. [Google Scholar] [CrossRef]
- Lin, H.; Wang, C.; Sun, Y.; Yao, W. Firing multistability in a locally active memristive neuron model. Nonlinear Dyn. 2020, 100, 3667–3683. [Google Scholar] [CrossRef]
- Pham, V.T.; Volos, C.; Jafari, S.; Kapitaniak, T. Coexistence of hidden chaotic attractors in a novel no-equilibrium system. Nonlinear Dyn. 2017, 87, 2001–2010. [Google Scholar] [CrossRef]
- Cang, S.; Li, Y.; Zhang, R.; Wang, Z. Hidden and self-excited coexisting attractors in a Lorenz-like system with two equilibrium points. Nonlinear Dyn. 2019, 95, 381–390. [Google Scholar] [CrossRef]
- Pisarchik, A.N.; Feudel, U. Control of multistability. Phys. Rep. 2014, 540, 167–218. [Google Scholar] [CrossRef]
- Parastesh, F.; Jafari, S.; Azarnoush, H. Traveling patterns in a network of memristor-based oscillators with extreme multistability. Eur. Phys. J. Spec. Top. 2019, 228, 2123–2131. [Google Scholar] [CrossRef]
- He, S.; Liu, J.; Wang, H.; Sun, K. A discrete memristive neural network and its application for character recognition. Neurocomputing 2023, 523, 1–8. [Google Scholar] [CrossRef]
- He, S.; Fu, L.; Lu, Y.; Wu, X.; Wang, H.; Sun, K. Analog circuit of a simplified Tent map and its application in sensor position optimization. IEEE Trans. Circuits Syst. II-Express Briefs 2022, 70, 885–888. [Google Scholar] [CrossRef]
- Hodgkin, A.L.; Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952, 117, 500. [Google Scholar] [CrossRef] [PubMed]
- Hindmarsh, J.L.; Rose, R.M. A model of the nerve impulse using two first-order differential equations. Nature 1982, 296, 162–164. [Google Scholar] [CrossRef]
- Hindmarsh, J.L.; Rose, R.M. A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. Ser. Biol. Sci. 1984, 221, 87–102. [Google Scholar]
- Izhikevich, E.M.; FitzHugh, R. Fitzhugh-nagumo model. Scholarpedia 2006, 1, 1349. [Google Scholar] [CrossRef]
- Tsumoto, K.; Kitajima, H.; Yoshinaga, T.; Aihara, K.; Kawakami, H. Bifurcations in Morris-Lecar neuron model. Neurocomputing 2006, 69, 293–316. [Google Scholar] [CrossRef]
- Ma, M.; Lu, Y.; Li, Z.; Sun, Y.; Wang, C. Multistability and Phase Synchronization of Rulkov Neurons Coupled with a Locally Active Discrete Memristor. Fractal Fract. 2023, 7, 82. [Google Scholar] [CrossRef]
- Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 1982, 79, 2554–2558. [Google Scholar] [CrossRef] [PubMed]
- Hopfield, J.J. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA 1984, 81, 3088–3092. [Google Scholar] [CrossRef]
- Lin, H.; Wang, C.; Chen, C.; Sun, Y.; Zhou, C.; Xu, C.; Hong, Q. Neural bursting and synchronization emulated by neural networks and circuits. IEEE Trans. Circuits Syst. I-Regul. Pap. 2021, 68, 3397–3410. [Google Scholar] [CrossRef]
- Lu, Y.; Li, H.; Li, C. Electrical activity and synchronization of memristor synapse-coupled HR network based on energy method. Neurocomputing 2023, 544, 126246. [Google Scholar] [CrossRef]
- Guo, Z.; Li, Z.; Wang, M.; Ma, M.L. Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh–Rose and FitzHugh–Nagumo neurons with two time delays. Chin. Phys. B 2023, 32, 038701. [Google Scholar] [CrossRef]
- Peng, C.; Li, Z.; Wang, M.; Ma, M. Dynamics in a memristor-coupled heterogeneous neuron network under electromagnetic radiation. Nonlinear Dyn. 2023. [Google Scholar] [CrossRef]
- Njitacke, Z.T.; Tsafack, N.; Ramakrishnan, B.; Rajagopal, K.; Kengne, J.; Awrejcewicz, J. Complex dynamics from heterogeneous coupling and electromagnetic effect on two neurons: Application in images encryption. Chaos Solitons Fractals 2021, 153, 111577. [Google Scholar] [CrossRef]
- Njitacke Tabekoueng, Z.; Shankar Muni, S.; Fonzin Fozin, T.; Dolvis Leutcho, G.; Awrejcewicz, J. Coexistence of infinitely many patterns and their control in heterogeneous coupled neurons through a multistable memristive synapse. Chaos Interdiscip. J. Nonlinear Sci. 2022, 32, 053114. [Google Scholar] [CrossRef]
- Wang, M.; Peng, J.; Zhang, X.; Iu, H.H.C.; Li, Z. Firing activities analysis of a novel small heterogeneous coupled network through a memristive synapse. Nonlinear Dyn. 2023, 111, 15397–15415. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Peng, J.; He, S.; Zhang, X.; Iu, H.H.-C. Phase Synchronization and Dynamic Behavior of a Novel Small Heterogeneous Coupled Network. Fractal Fract. 2023, 7, 818. https://doi.org/10.3390/fractalfract7110818
Wang M, Peng J, He S, Zhang X, Iu HH-C. Phase Synchronization and Dynamic Behavior of a Novel Small Heterogeneous Coupled Network. Fractal and Fractional. 2023; 7(11):818. https://doi.org/10.3390/fractalfract7110818
Chicago/Turabian StyleWang, Mengjiao, Jiwei Peng, Shaobo He, Xinan Zhang, and Herbert Ho-Ching Iu. 2023. "Phase Synchronization and Dynamic Behavior of a Novel Small Heterogeneous Coupled Network" Fractal and Fractional 7, no. 11: 818. https://doi.org/10.3390/fractalfract7110818
APA StyleWang, M., Peng, J., He, S., Zhang, X., & Iu, H. H.-C. (2023). Phase Synchronization and Dynamic Behavior of a Novel Small Heterogeneous Coupled Network. Fractal and Fractional, 7(11), 818. https://doi.org/10.3390/fractalfract7110818