[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (98)

Search Parameters:
Keywords = Hopfield neural network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2729 KiB  
Article
Social Image Security with Encryption and Watermarking in Hybrid Domains
by Conghuan Ye, Shenglong Tan, Jun Wang, Li Shi, Qiankun Zuo and Wei Feng
Entropy 2025, 27(3), 276; https://doi.org/10.3390/e27030276 - 6 Mar 2025
Viewed by 118
Abstract
In this digital era, social images are the most vital information carrier on multimedia social platforms. More and more users are interested in sharing social images with mobile terminals on multimedia social platforms. Social image sharing also faces potential risks from malicious use, [...] Read more.
In this digital era, social images are the most vital information carrier on multimedia social platforms. More and more users are interested in sharing social images with mobile terminals on multimedia social platforms. Social image sharing also faces potential risks from malicious use, such as illegal sharing, piracy, and misappropriation. This paper mainly concentrates on secure social image sharing. To address how to share social images in a safe way, a social image security scheme is proposed. The technology addresses the social image security problem and the active tracing problem. First, discrete wavelet transform (DWT) is performed directly from the JPEG image. Then, the high-bit planes of the LL, LH, and HL are permuted with cellular automation (CA), bit-XOR, and singular value decomposition (SVD) computing, and their low-bit planes are chosen to embed a watermark. In the end, the encrypted and watermarked image is again permuted with cellular automation in the discrete cosine transform (DCT) domain. Experimental results and security analysis show that the social image security method not only has good performance in robustness, security, and time complexity but can also actively trace the illegal distribution of social images. The proposed social image security method can provide double-level security for multimedia social platforms. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

Figure 1
<p>The DPV production scheme: (<b>a</b>) labeled binary tree; (<b>b</b>) the interval corresponding to the tree in (<b>a</b>); (<b>c</b>) the corresponding complete binary tree.</p>
Full article ">Figure 2
<p>The GoL scheme: superior, the initial seed of GoL; middle, the original images; inferior, the scrambled images.</p>
Full article ">Figure 3
<p>Encoding using social network analysis.</p>
Full article ">Figure 4
<p>The proposed security scheme.</p>
Full article ">Figure 5
<p>Encrypted and decrypted results: (<b>a</b>) The plain image. (<b>b</b>) The cipher image. (<b>c</b>) The reconstructed image with a different initial value. (<b>d</b>) The reconstructed image with correct parameters.</p>
Full article ">Figure 6
<p>Experimental results: (<b>a</b>) Original images. (<b>b</b>) Initial histograms. (<b>c</b>) Encrypted images. (<b>d</b>) Encrypted histograms.</p>
Full article ">Figure 7
<p>Correlation: (<b>a</b>) original image; (<b>b</b>) encrypted image.</p>
Full article ">Figure 8
<p>Encryption process discussion: (<b>a</b>) original images; (<b>b</b>) <math display="inline"><semantics> <mrow> <mn>4</mn> <mo>×</mo> <mn>4</mn> </mrow> </semantics></math> block permutation across the high-bit planes of the LL, LH, and HL sub-bands; (<b>c</b>) single-coefficient permutation across the high-bit planes of the LL, LH, and HL sub-bands; (<b>d</b>) bit-XOR diffusion after <math display="inline"><semantics> <mrow> <mn>8</mn> <mo>×</mo> <mn>8</mn> </mrow> </semantics></math> block permutation across the high-bit planes of the LL, LH, and HL sub-bands; and (<b>e</b>) SVD diffusion of (<b>d</b>).</p>
Full article ">
17 pages, 5536 KiB  
Article
A Simple Third-Order Hopfield Neural Network: Dynamic Analysis, Microcontroller Implementation and Application to Random Number Generation
by Victor Kamdoum Tamba, Viet-Thanh Pham and Christos Volos
Symmetry 2025, 17(3), 330; https://doi.org/10.3390/sym17030330 - 22 Feb 2025
Viewed by 308
Abstract
This manuscript introduces a simple third-order Hopfield neural network. Its dynamics, implementation with a microcontroller and application to random number generation are explored. The model includes three coupled neurons with no synaptic weights between the first neuron and the third, and between the [...] Read more.
This manuscript introduces a simple third-order Hopfield neural network. Its dynamics, implementation with a microcontroller and application to random number generation are explored. The model includes three coupled neurons with no synaptic weights between the first neuron and the third, and between the third and the second. The fundamental features (i.e., symmetry, dissipation and the requirement of existence of an attractor) of the model are studied. The results suggest that the model is asymmetric, dissipative and capable of supporting attractors. The dynamic analysis of the model is conducted through computer explorations, and the findings reveal that it develops complex behaviors like chaos and the coexistence of patterns. The coexistence of patterns is controlled using the linear augmentation method. The coexisting patterns are destroyed, and the multistable system is transformed into a monostable one. In order to confirm the numerical findings, a microcontroller implementation of the considered HNN model is carried out, and the findings of both approaches are concordant. Finally, the elaborated third-order HNN chaotic model is designed for random number generation application. The NIST statistical tests are provided in order to confirm the random features of the generated signals. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Chaos Theory and Application)
Show Figures

Figure 1

Figure 1
<p>Connection topology of the HNN. The <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </semantics></math> represents the synaptic weight between neuron i and j.</p>
Full article ">Figure 2
<p>Bifurcation diagram (<b>a</b>) and corresponding graph of maximum Lyapunov exponent (<b>b</b>) versus the unique control parameter <math display="inline"><semantics> <mi>p</mi> </semantics></math>, varying in the increasing (blue curve) and in the decreasing (red curve) directions.</p>
Full article ">Figure 3
<p>Some asymmetric phase profiles of system (3) generated for diverse values of the control parameter <math display="inline"><semantics> <mi>p</mi> </semantics></math> setting as follows: <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>0.099</mn> </mrow> </semantics></math> for (<b>a</b>(<b>i</b>,<b>ii</b>)); <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> for (<b>b</b>(<b>i</b>,<b>ii</b>)); <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>0.0993</mn> </mrow> </semantics></math> for (<b>c</b>(<b>i</b>,<b>ii</b>)); and <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>0.0997</mn> </mrow> </semantics></math> for (<b>d</b>(<b>i</b>,<b>ii</b>)). The initial conditions are (<math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>) = (<math display="inline"><semantics> <mo>±</mo> </semantics></math>0.7454, <math display="inline"><semantics> <mo>±</mo> </semantics></math>1.7542, <math display="inline"><semantics> <mo>±</mo> </semantics></math>4.9817).</p>
Full article ">Figure 3 Cont.
<p>Some asymmetric phase profiles of system (3) generated for diverse values of the control parameter <math display="inline"><semantics> <mi>p</mi> </semantics></math> setting as follows: <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>0.099</mn> </mrow> </semantics></math> for (<b>a</b>(<b>i</b>,<b>ii</b>)); <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> for (<b>b</b>(<b>i</b>,<b>ii</b>)); <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>0.0993</mn> </mrow> </semantics></math> for (<b>c</b>(<b>i</b>,<b>ii</b>)); and <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>0.0997</mn> </mrow> </semantics></math> for (<b>d</b>(<b>i</b>,<b>ii</b>)). The initial conditions are (<math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>) = (<math display="inline"><semantics> <mo>±</mo> </semantics></math>0.7454, <math display="inline"><semantics> <mo>±</mo> </semantics></math>1.7542, <math display="inline"><semantics> <mo>±</mo> </semantics></math>4.9817).</p>
Full article ">Figure 4
<p>Asymmetric phase profiles demonstrating the coexistence of patterns in system (5) for <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>0.4366</mn> </mrow> </semantics></math> and different initial conditions. (<b>a</b>) Shows a pair of period-3 attractors for (<math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>) = (<math display="inline"><semantics> <mo>±</mo> </semantics></math>10, <math display="inline"><semantics> <mo>±</mo> </semantics></math>20, <math display="inline"><semantics> <mo>±</mo> </semantics></math>30) and (<b>b</b>) shows a pair of chaotic attractors for (<math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>) = (<math display="inline"><semantics> <mo>±</mo> </semantics></math>3.674, <math display="inline"><semantics> <mo>±</mo> </semantics></math>0.5449, <math display="inline"><semantics> <mo>±</mo> </semantics></math>1.3649).</p>
Full article ">Figure 5
<p>Cross section of the basin of attraction of system (3) computed with <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>0.4366</mn> </mrow> </semantics></math>. (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>-<math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math> plane, (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>-<math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math> and (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>-<math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Bifurcation diagram of the controlled system versus the coupling strength in the increasing (red curve) and decreasing (blue curve) direction for <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>4.45</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>Essential stages in the implementation of a chaotic system based on an Arduino board.</p>
Full article ">Figure 8
<p>The device consisting of a computer, a digital oscilloscope, a digital-to-analogue converter and an Arduino board in operation.</p>
Full article ">Figure 9
<p>Asymmetry phase profiles showing the implementation of a simple third-order Hopfield Neural Network through an Arduino board. These phase portraits are obtained with the following values of the unique control parameter <math display="inline"><semantics> <mi>p</mi> </semantics></math>: <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>0.099</mn> </mrow> </semantics></math> for (<b>a</b>,<b>b</b>); <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> for (<b>c</b>,<b>d</b>); <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>0.0993</mn> </mrow> </semantics></math> for (<b>e</b>,<b>f</b>); and <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>0.0997</mn> </mrow> </semantics></math> for (<b>g</b>,<b>h</b>). The initial conditions are (<math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>) = (<math display="inline"><semantics> <mo>±</mo> </semantics></math>0.7454, <math display="inline"><semantics> <mo>±</mo> </semantics></math>1.7542, <math display="inline"><semantics> <mo>±</mo> </semantics></math>4.9817).</p>
Full article ">Figure 10
<p>Asymmetry phase profiles validating the phenomenon of the coexistence of patterns in a simple third-order Hopfield Neural Network. These coexisting patterns are obtained for a fixed value of unique control parameter <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>0.4366</mn> </mrow> </semantics></math> and different initial conditions. (<b>a</b>,<b>b</b>) show a pair of period-3 attractors for (<math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>) = (<math display="inline"><semantics> <mo>±</mo> </semantics></math>10, <math display="inline"><semantics> <mo>±</mo> </semantics></math>20, <math display="inline"><semantics> <mo>±</mo> </semantics></math>30) and (<b>c</b>,<b>d</b>) show a pair of chaotic attractors for (<math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>) = (<math display="inline"><semantics> <mo>±</mo> </semantics></math>3.674, <math display="inline"><semantics> <mo>±</mo> </semantics></math>0.5449, <math display="inline"><semantics> <mo>±</mo> </semantics></math>1.3649).</p>
Full article ">Figure 11
<p>Schematic description of RNG based on the elaborated third-order HNN chaotic model.</p>
Full article ">
15 pages, 5329 KiB  
Article
Dynamics Research of the Hopfield Neural Network Based on Hyperbolic Tangent Memristor with Absolute Value
by Huiyan Gao and Hongmei Xu
Micromachines 2025, 16(2), 228; https://doi.org/10.3390/mi16020228 - 17 Feb 2025
Viewed by 318
Abstract
Neurons in the brain are interconnected through synapses. Local active memristors can both simulate the synaptic behavior of neurons and the action potentials of neurons. Currently, the hyperbolic tangent function-type memristors used for coupling neural networks do not belong to local active memristors. [...] Read more.
Neurons in the brain are interconnected through synapses. Local active memristors can both simulate the synaptic behavior of neurons and the action potentials of neurons. Currently, the hyperbolic tangent function-type memristors used for coupling neural networks do not belong to local active memristors. To take advantage of local active memristors and consider the multi-equilibrium point problem, a cosine function is introduced into the state equation, resulting in the design of an absolute value hyperbolic tangent-type double local active memristor, and it is used as a coupling synapse to replace a synaptic weight in a 3-neuron HNN. Then, basic dynamical analysis methods are used to study the effects of different memristor synapse coupling strengths and different initial conditions on the dynamics of the neural network. The research results indicate that dynamical behavior of memristor Hopfield neural network is closely related to the synaptic coupling strengths and the initial conditions, and this neural network exhibits rich dynamical behaviors, including the coexistence of chaotic and periodic attractors, super-multistability phenomena, etc. Finally, the neural network was implemented using an FPGA development board, verifying the hardware feasibility of this system. Full article
Show Figures

Figure 1

Figure 1
<p>The relationship between <math display="inline"><semantics> <mrow> <mi mathvariant="normal">G</mi> <mfenced> <mi>x</mi> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mi>n</mi> </semantics></math>.</p>
Full article ">Figure 2
<p>Memristor circuit.</p>
Full article ">Figure 3
<p>Hysteresis loops and time domain waveform of memristor: (<b>a</b>) hysteresis loops at different frequencies; (<b>b</b>) hysteresis loops at different amplitudes; and (<b>c</b>) time domain waveforms of voltage and current.</p>
Full article ">Figure 4
<p>POP and DC V-I diagram of memristor: (<b>a</b>) POP; (<b>b</b>) DC V-I diagram.</p>
Full article ">Figure 5
<p>Topological structure diagram of memristor coupled HNN.</p>
Full article ">Figure 6
<p>The bifurcation diagram of the synaptic coupling strength value b in the range of (−15,15), and the initial conditions of the system are (<b>a</b>) (1,1,1,3) and (<b>b</b>) (1,1,1,<math display="inline"><semantics> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </semantics></math>).</p>
Full article ">Figure 7
<p>Bifurcation diagram regarding the synaptic coupling strength value <span class="html-italic">b</span>, the initial conditions of the system are (<b>a</b>) (1,1,1,3) and (<b>b</b>) (1,1,1,<math display="inline"><semantics> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </semantics></math>).</p>
Full article ">Figure 8
<p>Lyapunov exponent spectrum regarding the value of synaptic coupling strength <span class="html-italic">b</span>.</p>
Full article ">Figure 9
<p>Two-dimensional phase trajectory plot for different <span class="html-italic">b</span> values: (<b>a</b>) coexisting period 1 attractors (<math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>3.00</mn> </mrow> </semantics></math>); (<b>b</b>) coexisting double scroll attractors and periodic attractors (<math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>4.50</mn> </mrow> </semantics></math>); (<b>c</b>) coexisting period 6 attractors period 1 attractors (<math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>4.74</mn> </mrow> </semantics></math>); (<b>d</b>) coexisting double scroll attractors and periodic attractors (<math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>5.10</mn> </mrow> </semantics></math>); (<b>e</b>) coexisting period 3 attractors period 1 attractors (<math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>5.24</mn> </mrow> </semantics></math>); and (<b>f</b>) coexisting double scroll attractors and periodic attractors (<math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>5.80</mn> </mrow> </semantics></math>).</p>
Full article ">Figure 10
<p>Initial conditions <span class="html-italic">z</span>(0) and associated coexisting chaotic and periodic attractors: (<b>a</b>) coexisting chaotic attractor in the <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>−</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>−</mo> <mi>z</mi> </mrow> </semantics></math> plane; (<b>b</b>) coexisting chaotic attractor in the <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>−</mo> <mi>z</mi> </mrow> </semantics></math> plane; (<b>c</b>) coexisting periodic attractor in the <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>−</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>−</mo> <mi>z</mi> </mrow> </semantics></math> plane; and (<b>d</b>) coexisting periodic attractor in the <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>−</mo> <mi>z</mi> </mrow> </semantics></math> plane.</p>
Full article ">Figure 11
<p>Hardware realization connection diagram of the system: (<b>a</b>) connecting block diagram of the system and (<b>b</b>) physical connection diagram of the system.</p>
Full article ">Figure 12
<p>MATLAB simulation diagram and phase diagram displayed by the oscilloscope: (<b>a</b>) simulation diagram at <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>5.10</mn> </mrow> </semantics></math> (chaos); (<b>b</b>) simulation diagram at <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>5.24</mn> </mrow> </semantics></math> (period-3); (<b>c</b>) phase diagram displayed by the oscilloscope at <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>5.10</mn> </mrow> </semantics></math> (chaos); and (<b>d</b>) Phase diagram of the oscilloscope display at <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>5.24</mn> </mrow> </semantics></math> (period-3).</p>
Full article ">
18 pages, 7018 KiB  
Article
Edge-of-Chaos Kernel and Dynamic Analysis of a Hopfield Neural Network with a Locally Active Memristor
by Li Zhang, Yike Ma, Rongli Jiang, Zongli Yang, Xiangkai Pu and Zhongyi Li
Electronics 2025, 14(4), 766; https://doi.org/10.3390/electronics14040766 - 16 Feb 2025
Viewed by 301
Abstract
Locally active memristors with an Edge-of-Chaos kernel (EOCK) represent a significant advancement in the simulation of neuromorphic dynamics. However, current research on memristors with an EOCK remains at the circuit level, without further analysis of their feasibility. In this context, we designed a [...] Read more.
Locally active memristors with an Edge-of-Chaos kernel (EOCK) represent a significant advancement in the simulation of neuromorphic dynamics. However, current research on memristors with an EOCK remains at the circuit level, without further analysis of their feasibility. In this context, we designed a memristor and installed it in a third-order circuit, where it showed local activity and stability under defined voltage and inductance parameters. This behavior ensured that by varying the input voltage and inductance, the memristor could effectively simulate various neural activities, including inhibitory postsynaptic potential and chaotic waveforms. By subsequently integrating the memristor with an EOCK into a Hopfield neural network (HNN) framework and substituting the self-coupling weight, we observed a rich spectrum of dynamic behaviors, including the rare phenomenon of antimonotonicity bubble bifurcation. Finally, we used hardware circuits to realize these generated dynamic phenomena, confirming the feasibility of the memristor. By introducing the HNN and studying its dynamic behavior and hardware circuit implementation, this study provides theoretical insights into and an empirical basis for developing circuits and systems that replicate the complexity of human brain functions. This study provides a reference for the development and application of EOCK in the future. Full article
Show Figures

Figure 1

Figure 1
<p>Pinched hysteresis loop. Red marks the case where A = 7 and w = 800. Blue marks the case where A = 7 and w = 1000. Green marks the case where A = 7 and w = 1200. Black marks the case where A = 7 and w = 1500.</p>
Full article ">Figure 2
<p>DC V-I curve of the first-order memristor, defined in (2), This equation contains two stable negative slope domains, 5.0206 V &lt; V &lt; 8.7815 V (−3.76 &lt; X &lt; −1.24) and 0.5266 V &lt; V &lt; 1.5 V (0 &lt; X &lt; 0.53).</p>
Full article ">Figure 3
<p><math display="inline"><semantics> <mrow> <mi mathvariant="normal">v</mi> <mo>−</mo> <msub> <mi mathvariant="normal">J</mi> <mrow> <mn>21</mn> </mrow> </msub> </mrow> </semantics></math> curves: (<b>a</b>) negative slope domain over the range of 5.0206 V &lt; V &lt; 8.7815 V, and (<b>b</b>) negative slope domain over the range of 0.5266 V &lt; V &lt; 1.5 V.</p>
Full article ">Figure 4
<p>EOCK, with 1 port consisting of a negative resistance in series with a negative inductance; the prototype is given in [<a href="#B24-electronics-14-00766" class="html-bibr">24</a>].</p>
Full article ">Figure 5
<p>At w = 0, the inductor L and the capacitor C behave as a short circuit and an open circuit, respectively, in the third-order memristive circuit with an EOCK.</p>
Full article ">Figure 6
<p>Parameter map of the memristive circuit in the L vs. V plane. The locally passive domain, LAD, EOC domain and RHP domain are clearly displayed. (<b>a</b>) Ranges of 5.0206 V &lt; V &lt; 9 V and 0.01 H &lt; L &lt; 0.7 H, with C = 3350 uF, (<b>b</b>) Ranges of 0.5 V &lt; V &lt; 1.5 V and 0.01 H &lt; L &lt; 0.3 H, with C = 3350 uF.</p>
Full article ">Figure 7
<p>Neuromorphic behavior generated in a third-order memristor with L = 0.288 H, C = 20 uF and an input voltage v<sub>in</sub> of 0.0807 V. The initial state is <math display="inline"><semantics> <mrow> <mfenced> <mrow> <mi mathvariant="normal">x</mi> <mfenced> <mn>0</mn> </mfenced> <mo>,</mo> <msub> <mi mathvariant="normal">v</mi> <mi mathvariant="normal">c</mi> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <msub> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">L</mi> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </mfenced> <mo>=</mo> <mo stretchy="false">(</mo> <mo>−</mo> <mn>4.7976</mn> <mo>,</mo> <mn>0.8072</mn> <mo>,</mo> <mn>0.1857</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>. (<b>a</b>) Time-domain waveform diagram. (<b>b</b>) Phase trajectory diagram. The arrowhead indicates the direction of motion.</p>
Full article ">Figure 8
<p>Neuromorphic behavior generated in a third-order memristor with L = 0.03 H, C = 20 uF and an input voltage v<sub>in</sub> of 5.5 V. The initial state is <math display="inline"><semantics> <mrow> <mfenced> <mrow> <mi mathvariant="normal">x</mi> <mfenced> <mn>0</mn> </mfenced> <mo>,</mo> <msub> <mi mathvariant="normal">v</mi> <mi mathvariant="normal">c</mi> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <msub> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">L</mi> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </mfenced> <mo>=</mo> <mo stretchy="false">(</mo> <mo>−</mo> <mn>3.56</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>. (<b>a</b>) Time-domain waveform diagram. (<b>b</b>) Phase trajectory diagram.</p>
Full article ">Figure 9
<p>Neuromorphic behavior generated in a third-order memristor with L = 0.6766 H, C = 2000 uF and an input voltage v<sub>in</sub> of 5.501 V. The initial state is <math display="inline"><semantics> <mrow> <mfenced> <mrow> <mi mathvariant="normal">x</mi> <mfenced> <mn>0</mn> </mfenced> <mo>,</mo> <msub> <mi mathvariant="normal">v</mi> <mi mathvariant="normal">c</mi> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <msub> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">L</mi> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </mfenced> <mo>=</mo> <mo stretchy="false">(</mo> <mo>−</mo> <mn>4.62</mn> <mo>,</mo> <mn>0.5</mn> <mo>,</mo> <mn>0.36</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>. (<b>a</b>) Time-domain waveform diagram. (<b>b</b>) Phase trajectory diagram.</p>
Full article ">Figure 10
<p>Neuromorphic behavior generated in a third-order memristor with L = 0.05 H, C = 20 uF and an input voltage v<sub>in</sub> of 8.72 V. The initial state is <math display="inline"><semantics> <mrow> <mfenced> <mrow> <mi mathvariant="normal">x</mi> <mfenced> <mn>0</mn> </mfenced> <mo>,</mo> <msub> <mi mathvariant="normal">v</mi> <mi mathvariant="normal">c</mi> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <msub> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">L</mi> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </mfenced> <mo>=</mo> <mo stretchy="false">(</mo> <mo>−</mo> <mn>1.24457</mn> <mo>,</mo> <mn>8.7</mn> <mo>,</mo> <mn>0.135</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>. (<b>a</b>) Time-domain waveform diagram. (<b>b</b>) Phase trajectory diagram. The arrowhead indicates the direction of motion.</p>
Full article ">Figure 11
<p>When U<sub>m</sub> = 5.521 V, T = 1 s, L = 0.5776 H, C = 2 uF and the initial state <math display="inline"><semantics> <mrow> <mfenced> <mrow> <mi mathvariant="normal">x</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <msub> <mi mathvariant="normal">v</mi> <mi mathvariant="normal">c</mi> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <msub> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">L</mi> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </mfenced> <mo>=</mo> <mo stretchy="false">(</mo> <mo>−</mo> <mn>4.62</mn> <mo>,</mo> <mn>0.5</mn> <mo>,</mo> <mn>0.36</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>, (<b>a</b>) single-spike-bursting with D = 0.14, (<b>b</b>) two-spike bursting with D = 0.31, and (<b>c</b>) three-spike bursting with D = 0.49.</p>
Full article ">Figure 12
<p>Topological connection of the novel HNN with a memristive self-synaptic ability.</p>
Full article ">Figure 13
<p>Single-parameter bifurcation plots and Lyapunov exponents as functions of parameter b under the initial conditions <math display="inline"><semantics> <mrow> <mfenced> <mrow> <mo>−</mo> <mn>0.1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo>−</mo> <mn>0.1</mn> </mrow> </mfenced> </mrow> </semantics></math>. Bifurcation plot for b = [0,0.5]. (<b>a</b>) Bifurcation diagram. (<b>b</b>) Lyapunov exponent spectrum.</p>
Full article ">Figure 14
<p>Single-parameter bifurcation plots and Lyapunov exponents as functions of parameter b under the initial conditions <math display="inline"><semantics> <mrow> <mfenced> <mrow> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> </mrow> </mfenced> </mrow> </semantics></math>. Bifurcation plot for a = [1,1.45]. (<b>a</b>) Bifurcation diagram. (<b>b</b>) Lyapunov exponent spectrum.</p>
Full article ">Figure 15
<p>Single-parameter bifurcation plots and Lyapunov exponents as functions of parameter b under the initial conditions <math display="inline"><semantics> <mrow> <mfenced> <mrow> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> </mrow> </mfenced> </mrow> </semantics></math>. Bifurcation plot for <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="normal">w</mi> <mn>2</mn> <mo>′</mo> </msubsup> </mrow> </semantics></math> = [1.6,2.5]. (<b>a</b>) Bifurcation diagram. (<b>b</b>) Lyapunov exponent spectrum.</p>
Full article ">Figure 16
<p>Anti-monotonicity phenomenon of the external forcing current for different parameter a. (<b>a</b>) a = 0.98; (<b>b</b>) a = 1; (<b>c</b>) a = 1.007; (<b>d</b>) a = 1.009; (<b>e</b>) a = 1.011; (<b>f</b>) a = 1.013.</p>
Full article ">Figure 17
<p>STM32 hardware board and phase trajectory diagram displayed by the oscilloscope.</p>
Full article ">Figure 18
<p>Code of the phase trajectory diagram.</p>
Full article ">Figure 19
<p>Comparative analysis of phase trajectory diagrams from MATLAB2023 simulations versus the STM32 hardware implementation. (<b>a</b>–<b>c</b>) Phase track diagrams generated by the simulation software. (<b>d</b>–<b>f</b>) Phase track diagrams generated by the hardware circuit.</p>
Full article ">
22 pages, 3691 KiB  
Article
G-TS-HRNN: Gaussian Takagi–Sugeno Hopfield Recurrent Neural Network
by Omar Bahou, Mohammed Roudani and Karim El Moutaouakil
Information 2025, 16(2), 141; https://doi.org/10.3390/info16020141 - 14 Feb 2025
Viewed by 292
Abstract
The Hopfield Recurrent Neural Network (HRNN) is a single-point descent metaheuristic that uses a single potential solution to explore the search space of optimization problems, whose constraints and objective function are aggregated into a typical energy function. The initial point is usually randomly [...] Read more.
The Hopfield Recurrent Neural Network (HRNN) is a single-point descent metaheuristic that uses a single potential solution to explore the search space of optimization problems, whose constraints and objective function are aggregated into a typical energy function. The initial point is usually randomly initialized, then moved by applying operators, characterizing the discrete dynamics of the HRNN, which modify its position or direction. Like all single-point metaheuristics, HRNN has certain drawbacks, such as being more likely to get stuck in local optima or miss global optima due to the use of a single point to explore the search space. Moreover, it is more sensitive to the initial point and operator, which can influence the quality and diversity of solutions. Moreover, it can have difficulty with dynamic or noisy environments, as it can lose track of the optimal region or be misled by random fluctuations. To overcome these shortcomings, this paper introduces a population-based fuzzy version of the HRNN, namely Gaussian Takagi–Sugeno Hopfield Recurrent Neural Network (G-TS-HRNN). For each neuron, the G-TS-HRNN associates an input fuzzy variable of d values, described by an appropriate Gaussian membership function that covers the universe of discourse. To build an instance of G-TS-HRNN(s) of size s, we generate s n-uplets of fuzzy values that present the premise of the Takagi–Sugeno system. The consequents are the differential equations governing the dynamics of the HRNN obtained by replacing each premise fuzzy value with the mean of different Gaussians. The steady points of all the rule premises are aggregated using the fuzzy center of gravity equation, considering the level of activity of each rule. G-TS-HRNN is used to solve the random optimization method based on the support vector model. Compared with HRNN, G-TS-HRNN performs better on well-known data sets. Full article
Show Figures

Figure 1

Figure 1
<p>Illustration of the sector nonlinearity approach.</p>
Full article ">Figure 2
<p>Membership functions for <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Gaussian Takagi–Sugeno HRNN sampling, fuzzification, and equilibrium state approximation.</p>
Full article ">Figure 4
<p>Illustration of the approximation of the optimal steady state via the Takagi–Sugeno HRNN sampling method.</p>
Full article ">Figure 5
<p>The energy of the G-TS-HRNN for different sample sizes vs. the energy of the HRNN at a steady point.</p>
Full article ">Figure 6
<p>Takagi–Sugeno HRNN robustness.</p>
Full article ">Figure 7
<p>Mean accuracy (<b>a</b>), mean F1-score (<b>b</b>), mean precision (<b>c</b>), and mean recall (<b>d</b>), on all data sets of the HRNN-SVM and the nine samples of G-TS-HRNN-SVM.</p>
Full article ">Figure 8
<p>Mean cpu time required by HRNN and G-TS-HRNN.</p>
Full article ">
20 pages, 7717 KiB  
Article
Dynamic Analysis and Implementation of FPGA for a New 4D Fractional-Order Memristive Hopfield Neural Network
by Fei Yu, Shankou Zhang, Dan Su, Yiya Wu, Yumba Musoya Gracia and Huige Yin
Fractal Fract. 2025, 9(2), 115; https://doi.org/10.3390/fractalfract9020115 - 13 Feb 2025
Viewed by 471
Abstract
Memristor-based fractional-order chaotic systems can record information from the past, present, and future, and describe the real world more accurately than integer-order systems. This paper proposes a novel memristor model and verifies its characteristics through the pinched loop (PHL) method. Subsequently, a new [...] Read more.
Memristor-based fractional-order chaotic systems can record information from the past, present, and future, and describe the real world more accurately than integer-order systems. This paper proposes a novel memristor model and verifies its characteristics through the pinched loop (PHL) method. Subsequently, a new fractional-order memristive Hopfield neural network (4D-FOMHNN) is introduced to simulate induced current, accompanied by Caputo’s definition of fractional order. An Adomian decomposition method (ADM) is employed for system solution. By varying the parameters and order of the 4D-FOMHNN, rich dynamic behaviors including transient chaos, chaos, and coexistence attractors are observed using methods such as bifurcation diagrams and Lyapunov exponent analysis. Finally, the proposed FOMHNN system is implemented on a field-programmable gate array (FPGA), and the oscilloscope observation results are consistent with the MATLAB numerical simulation results, which further validate the theoretical analysis of the FOMHNN system and provide a theoretical basis for its application in the field of encryption. Full article
(This article belongs to the Special Issue Analysis and Modeling of Fractional-Order Dynamical Networks)
Show Figures

Figure 1

Figure 1
<p>The voltage–current trajectory diagram of Equation (<a href="#FD9-fractalfract-09-00115" class="html-disp-formula">9</a>).</p>
Full article ">Figure 2
<p>The topology of the HNN model based on memristors.</p>
Full article ">Figure 3
<p>Lyapunov exponent spectrum and bifurcation diagram for <math display="inline"><semantics> <mrow> <mi>e</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mspace width="3.33333pt"/> <mi>p</mi> <mo>=</mo> <mn>0.59</mn> </mrow> </semantics></math> order <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>∈</mo> <mo>[</mo> <mn>0.3</mn> <mo>,</mo> <mn>0.7</mn> <mo>]</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>The periodic time-domain waveform of transient chaos and phase diagram of transient chaos and coexisting attractors.</p>
Full article ">Figure 5
<p>Lyapunov exponent spectrum and bifurcation diagram for <math display="inline"><semantics> <mrow> <mi>e</mi> <mo>=</mo> <mn>0.61</mn> <mo>,</mo> <mspace width="3.33333pt"/> <mi>p</mi> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math> order <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>∈</mo> <mo>[</mo> <mn>0.3</mn> <mo>,</mo> <mn>0.7</mn> <mo>]</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>The periodic time-domain waveform of transient chaos and phase diagram of transient chaos and coexisting attractors.</p>
Full article ">Figure 7
<p>Lyapunov exponent spectrum and bifurcation diagram for <math display="inline"><semantics> <mrow> <mi>e</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mspace width="3.33333pt"/> <mi>p</mi> <mo>=</mo> <mn>1.74</mn> </mrow> </semantics></math> order <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>∈</mo> <mo>[</mo> <mn>0.3</mn> <mo>,</mo> <mn>0.7</mn> <mo>]</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>The phase diagram of attractors.</p>
Full article ">Figure 9
<p>Lyapunov exponent spectrum and bifurcation diagram for <math display="inline"><semantics> <mrow> <mi>e</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mspace width="3.33333pt"/> <mi>p</mi> <mo>=</mo> <mn>2.05</mn> </mrow> </semantics></math> order <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>∈</mo> <mo>[</mo> <mn>0.3</mn> <mo>,</mo> <mn>0.7</mn> <mo>]</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p>Lyapunov exponent spectrum and bifurcation diagram of <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 11
<p>Lyapunov exponent spectrum and bifurcation diagram of <math display="inline"><semantics> <mrow> <mi>e</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 12
<p>The chaotic attractor diagram and device diagram displayed by FPGA-connected oscilloscope.</p>
Full article ">Figure 12 Cont.
<p>The chaotic attractor diagram and device diagram displayed by FPGA-connected oscilloscope.</p>
Full article ">Figure 13
<p>The chaotic attractor diagram and device diagram displayed by FPGA-connected oscilloscope.</p>
Full article ">Figure 13 Cont.
<p>The chaotic attractor diagram and device diagram displayed by FPGA-connected oscilloscope.</p>
Full article ">
16 pages, 308 KiB  
Article
Well-Posedness of the Mild Solutions for Incommensurate Systems of Delay Fractional Differential Equations
by Babak Shiri
Fractal Fract. 2025, 9(2), 60; https://doi.org/10.3390/fractalfract9020060 - 21 Jan 2025
Viewed by 615
Abstract
Systems of incommensurate delay fractional differential equations (DFDEs) with non-vanishing constant delay of retarded type are investigated. It is shown that the mild solutions are well-posed in Hadamard sense on the space of continuous functions. The analysis is local and carried out for [...] Read more.
Systems of incommensurate delay fractional differential equations (DFDEs) with non-vanishing constant delay of retarded type are investigated. It is shown that the mild solutions are well-posed in Hadamard sense on the space of continuous functions. The analysis is local and carried out for finite intervals. The strong results are obtained with weak conditions by using state-of-the-art new methods. No condition on the Lipschitz parameter is added for well-posedness results. Application of this theorem for the Hopfield neural network is carried out. Full article
19 pages, 6656 KiB  
Article
Dynamic Analysis and FPGA Implementation of Fractional-Order Hopfield Networks with Memristive Synapse
by Andrés Anzo-Hernández, Ernesto Zambrano-Serrano, Miguel Angel Platas-Garza and Christos Volos
Fractal Fract. 2024, 8(11), 628; https://doi.org/10.3390/fractalfract8110628 - 24 Oct 2024
Cited by 2 | Viewed by 1171
Abstract
Memristors have become important components in artificial synapses due to their ability to emulate the information transmission and memory functions of biological synapses. Unlike their biological counterparts, which adjust synaptic weights, memristor-based artificial synapses operate by altering conductance or resistance, making them useful [...] Read more.
Memristors have become important components in artificial synapses due to their ability to emulate the information transmission and memory functions of biological synapses. Unlike their biological counterparts, which adjust synaptic weights, memristor-based artificial synapses operate by altering conductance or resistance, making them useful for enhancing the processing capacity and storage capabilities of neural networks. When integrated into systems like Hopfield neural networks, memristors enable the study of complex dynamic behaviors, such as chaos and multistability. Moreover, fractional calculus is significant for their ability to model memory effects, enabling more accurate simulations of complex systems. Fractional-order Hopfield networks, in particular, exhibit chaotic and multistable behaviors not found in integer-order models. By combining memristors with fractional-order Hopfield neural networks, these systems offer the possibility of investigating different dynamic phenomena in artificial neural networks. This study investigates the dynamical behavior of a fractional-order Hopfield neural network (HNN) incorporating a memristor with a piecewise segment function in one of its synapses, highlighting the impact of fractional-order derivatives and memristive synapses on the stability, robustness, and dynamic complexity of the system. Using a network of four neurons as a case study, it is demonstrated that the memristive fractional-order HNN exhibits multistability, coexisting chaotic attractors, and coexisting limit cycles. Through spectral entropy analysis, the regions in the initial condition space that display varying degrees of complexity are mapped, highlighting those areas where the chaotic series approach a pseudo-random sequence of numbers. Finally, the proposed fractional-order memristive HNN is implemented on a Field-Programmable Gate Array (FPGA), demonstrating the feasibility of real-time hardware realization. Full article
Show Figures

Figure 1

Figure 1
<p>Pinched hysteresis loop. (<b>a</b>) For different <math display="inline"><semantics> <mi>α</mi> </semantics></math>-orders when <math display="inline"><semantics> <mrow> <mi>F</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>b</b>) For different frequencies when <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.97</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>Intersections of the curves <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> (red curve) and <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> (blue curve) under the fixed parameters <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>=</mo> <mn>2.0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>3.3</mn> </mrow> </semantics></math>. The external input parameter <span class="html-italic">I</span> is varied across (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>=</mo> <mo>−</mo> <mn>3</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, and (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Eigenvalues of the Jacobian matrix in the complex plane, evaluated at equilibrium points for different values of <span class="html-italic">I</span>. For <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>=</mo> <mo>−</mo> <mn>3</mn> </mrow> </semantics></math>, the equilibrium points are <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0.378</mn> <mo>,</mo> <mo>−</mo> <mn>0.301</mn> <mo>,</mo> <mn>0.089</mn> <mo>,</mo> <mo>−</mo> <mn>0.376</mn> <mo>,</mo> <mn>0.411</mn> <mo>)</mo> </mrow> </semantics></math>; for <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, they are <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0.5</mn> <mo>)</mo> </mrow> </semantics></math>; and, for <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, they are <math display="inline"><semantics> <mrow> <mo>(</mo> <mo>−</mo> <mn>0.504</mn> <mo>,</mo> <mn>0.426</mn> <mo>,</mo> <mo>−</mo> <mn>0.114</mn> <mo>,</mo> <mn>0.534</mn> <mo>,</mo> <mn>0.622</mn> <mo>)</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>Phase portraits of the fractional-order system (<a href="#FD6-fractalfract-08-00628" class="html-disp-formula">6</a>) with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.97</mn> </mrow> </semantics></math> and initial conditions <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>x</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>x</mi> <mn>5</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>)</mo> <mo>=</mo> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>a</b>) 3D projection on the <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>4</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>5</mn> </msub> </mrow> </semantics></math> plane; (<b>b</b>) 3D projection on the <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>4</mn> </msub> </mrow> </semantics></math> plane.</p>
Full article ">Figure 5
<p>(<b>a</b>) Bifurcation diagram showing the local maxima of the state <math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math> as a function of the control parameter <math display="inline"><semantics> <mi>α</mi> </semantics></math>, with the blue color corresponding to initial conditions <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> and the red color representing the initial conditions <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mo>−</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>. This represents a commensurate case, where the fractional orders for both the neuron equations and the memristor equation are identical. (<b>b</b>) Bifurcation diagram showing an incommensurate case where the fractional orders for the neuron equations in (<a href="#FD6-fractalfract-08-00628" class="html-disp-formula">6</a>) (<math display="inline"><semantics> <msub> <mi>α</mi> <mi>i</mi> </msub> </semantics></math>, with <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> </mrow> </semantics></math>) are fixed at <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>0.97</mn> </mrow> </semantics></math>, while the fractional-order derivative for the memristor equation <math display="inline"><semantics> <msub> <mi>α</mi> <mn>5</mn> </msub> </semantics></math> is varied within the range <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mn>5</mn> </msub> <mo>∈</mo> <mrow> <mo>(</mo> <mn>0.9</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Basin of attraction in the <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>−</mo> <msub> <mi>x</mi> <mn>5</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> plane with <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.97</mn> </mrow> </semantics></math>, coexisting attractor above (blue) and below (red).</p>
Full article ">Figure 7
<p>Phase portraits of the fractional-order system (<a href="#FD6-fractalfract-08-00628" class="html-disp-formula">6</a>) with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.97</mn> </mrow> </semantics></math> and initial conditions <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2.5</mn> <mo>)</mo> </mrow> </semantics></math> for the blue color and <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mo>−</mo> <mn>2.5</mn> <mo>)</mo> </mrow> </semantics></math> for the red color, where (<b>a</b>) represents <math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math>−<math display="inline"><semantics> <msub> <mi>x</mi> <mn>2</mn> </msub> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math>−<math display="inline"><semantics> <msub> <mi>x</mi> <mn>3</mn> </msub> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math>−<math display="inline"><semantics> <msub> <mi>x</mi> <mn>4</mn> </msub> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <msub> <mi>x</mi> <mn>2</mn> </msub> </semantics></math>−<math display="inline"><semantics> <msub> <mi>x</mi> <mn>3</mn> </msub> </semantics></math>.</p>
Full article ">Figure 8
<p>Phase portraits of the fractional-order system (<a href="#FD6-fractalfract-08-00628" class="html-disp-formula">6</a>) with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.97</mn> </mrow> </semantics></math> and initial conditions <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> for the blue color and <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mo>−</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> for the red color, where (<b>a</b>) represents <math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math>−<math display="inline"><semantics> <msub> <mi>x</mi> <mn>2</mn> </msub> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math>−<math display="inline"><semantics> <msub> <mi>x</mi> <mn>3</mn> </msub> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math>−<math display="inline"><semantics> <msub> <mi>x</mi> <mn>4</mn> </msub> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <msub> <mi>x</mi> <mn>2</mn> </msub> </semantics></math>−<math display="inline"><semantics> <msub> <mi>x</mi> <mn>3</mn> </msub> </semantics></math>.</p>
Full article ">Figure 9
<p>Complexity diagram for the fractional-order (<a href="#FD6-fractalfract-08-00628" class="html-disp-formula">6</a>) with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mrow> <mn>0.97</mn> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>∈</mo> <mrow> <mo>[</mo> <mo>−</mo> <mn>3</mn> <mo>,</mo> <mn>3</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>5</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>∈</mo> <mrow> <mo>[</mo> <mo>−</mo> <mn>3</mn> <mo>,</mo> <mn>3</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p>Values of SE from the time series of <math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math> obtained via (<a href="#FD6-fractalfract-08-00628" class="html-disp-formula">6</a>), when <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.97</mn> </mrow> </semantics></math> and the initial conditions were set as <math display="inline"><semantics> <mrow> <mo>[</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>x</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>x</mi> <mn>5</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>]</mo> </mrow> </semantics></math>=<math display="inline"><semantics> <mrow> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </semantics></math>. (<b>a</b>) Varying the parameter <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>∈</mo> <mo>[</mo> <mn>0.1</mn> <mo>,</mo> <mn>3</mn> <mo>]</mo> </mrow> </semantics></math>. (<b>b</b>) Varying the parameter <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>∈</mo> <mo>[</mo> <mn>2</mn> <mo>,</mo> <mn>5</mn> <mo>]</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 11
<p>Experimental setup for the implementation of the proposed system: (<b>a</b>) IFM 127 VCA to 24 VDC, 30-watt power supply, model DN1020; (<b>b</b>) National Instruments sbRIO-9626 with XC6SLX45 FPGA; and (<b>c</b>) PROTEK 100 MHz oscilloscope, model P-2510.</p>
Full article ">Figure 12
<p>Block diagram description for the implementation of the proposed system using the GL integration method. This block description represents (<a href="#FD15-fractalfract-08-00628" class="html-disp-formula">15</a>), where blocks <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <msup> <mi>h</mi> <mi>α</mi> </msup> </mrow> </semantics></math> compute the dynamics of the <span class="html-italic">i</span>-th state and blocks FIR<sub><span class="html-italic">i</span></sub> compute the convolution between the <span class="html-italic">i</span>-th state and the binomial coefficient array <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>[</mo> <mi>k</mi> <mo>]</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 13
<p>Implementation of the convolution between the binomial coefficients and the most recent <math display="inline"><semantics> <msub> <mi>L</mi> <mi>m</mi> </msub> </semantics></math> samples from each state. The design utilizes a single Multiply–Accumulate (MAC) structure, where a mod-<math display="inline"><semantics> <msub> <mi>L</mi> <mi>m</mi> </msub> </semantics></math> counter, referred to as “coef_counter”, is employed to iterate through all the coefficients.</p>
Full article ">Figure 14
<p>Approximation to activation function by a piecewise approximation. (<b>a</b>) Hyperbolic tangent function <math display="inline"><semantics> <mrow> <mo form="prefix">tanh</mo> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </semantics></math> (black color continuous line) and its piecewise approximation <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </semantics></math> (red color dashed line) described in Equation (<a href="#FD17-fractalfract-08-00628" class="html-disp-formula">17</a>) for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>. (<b>b</b>) Magnitude of the error in the approximation <math display="inline"><semantics> <mrow> <mo>|</mo> <mo form="prefix">tanh</mo> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>−</mo> <mi>ϵ</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>|</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 15
<p>Phase portraits registered in the P-2510 scope for the implemented fractional-order system, where (<b>a</b>) represents <math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math>−<math display="inline"><semantics> <msub> <mi>x</mi> <mn>2</mn> </msub> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math>−<math display="inline"><semantics> <msub> <mi>x</mi> <mn>3</mn> </msub> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math>−<math display="inline"><semantics> <msub> <mi>x</mi> <mn>4</mn> </msub> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <msub> <mi>x</mi> <mn>2</mn> </msub> </semantics></math>−<math display="inline"><semantics> <msub> <mi>x</mi> <mn>3</mn> </msub> </semantics></math>.</p>
Full article ">
21 pages, 712 KiB  
Article
OPT-FRAC-CHN: Optimal Fractional Continuous Hopfield Network
by Karim El Moutaouakil, Zakaria Bouhanch, Abdellah Ahourag, Ahmed Aberqi and Touria Karite
Symmetry 2024, 16(7), 921; https://doi.org/10.3390/sym16070921 - 18 Jul 2024
Cited by 4 | Viewed by 1057
Abstract
The continuous Hopfield network (CHN) is a common recurrent neural network. The CHN tool can be used to solve a number of ranking and optimization problems, where the equilibrium states of the ordinary differential equation (ODE) related to the CHN give the solution [...] Read more.
The continuous Hopfield network (CHN) is a common recurrent neural network. The CHN tool can be used to solve a number of ranking and optimization problems, where the equilibrium states of the ordinary differential equation (ODE) related to the CHN give the solution to any given problem. Because of the non-local characteristic of the “infinite memory” effect, fractional-order (FO) systems have been proved to describe more accurately the behavior of real dynamical systems, compared to the model’s ODE. In this paper, a fractional-order variant of a Hopfield neural network is introduced to solve a Quadratic Knap Sac Problem (QKSP), namely the fractional CHN (FRAC-CHN). Firstly, the system is integrated with the quadratic method for fractional-order equations whose trajectories have shown erratic paths and jumps to other basin attractions. To avoid these drawbacks, a new algorithm for obtaining an equilibrium point for a CHN is introduced in this paper, namely the optimal fractional CHN (OPT-FRAC-CHN). This is a variable time-step method that converges to a good local minima in just a few iterations. Compared with the non-variable time-stepping CHN method, the optimal time-stepping CHN method (OPT-CHN) and the FRAC-CHN method, the OPT-FRAC-CHN method, produce the best local minima for random CHN instances and for the optimal feeding problem. Full article
Show Figures

Figure 1

Figure 1
<p>Electronic diagram of equilibrium continuous Hopfield network.</p>
Full article ">Figure 2
<p>The methodology adopted to carry out this work.</p>
Full article ">Figure 3
<p>Electronic diagram of a discrete-time Hopfield lattice of order <math display="inline"><semantics> <mi>α</mi> </semantics></math>.</p>
Full article ">Figure 4
<p>CHN energy vs. iterations.</p>
Full article ">Figure 5
<p>OPT-CHN energy vs. iterations.</p>
Full article ">Figure 6
<p>FRAC-CHN energy vs. iterations for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>OPT-FRAC-CHN energy vs. iterations for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>CHN energy vs. iteration.</p>
Full article ">Figure 9
<p>OPT-CHN energy vs. iteration.</p>
Full article ">Figure 10
<p>FRAC-CHN energy vs. iteration for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 11
<p>OPT-FRAC-CHN energy vs. iteration for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 12
<p>The diet CHN energy vs. iteration.</p>
Full article ">Figure 13
<p>The diet OPT-CHN energy vs. iteration.</p>
Full article ">Figure 14
<p>The diet FRAC-CHN energy vs. iteration for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 15
<p>The diet OPT-FRAC-CHN energy vs. iteration for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>.</p>
Full article ">
19 pages, 6987 KiB  
Article
Multistable Memristor Synapse-Based Coupled Bi-Hopfield Neuron Model: Dynamic Analysis, Microcontroller Implementation and Image Encryption
by Victor Kamdoum Tamba, Arsene Loic Mbanda Biamou, Viet-Thanh Pham and Giuseppe Grassi
Electronics 2024, 13(12), 2414; https://doi.org/10.3390/electronics13122414 - 20 Jun 2024
Cited by 4 | Viewed by 1235
Abstract
The memristor, a revolutionary electronic component, mimics both neural synapses and electromagnetic induction phenomena. Recent study challenges are the development of effective neural models and discovering their dynamics. In this study, we propose a novel Hopfield neural network model leveraging multistable memristors, showcasing [...] Read more.
The memristor, a revolutionary electronic component, mimics both neural synapses and electromagnetic induction phenomena. Recent study challenges are the development of effective neural models and discovering their dynamics. In this study, we propose a novel Hopfield neural network model leveraging multistable memristors, showcasing its efficacy in encoding biomedical images. We investigate the equilibrium states and dynamic behaviors of our designed model through comprehensive numerical simulations, revealing a rich array of phenomena including periodic orbits, chaotic dynamics, and homogeneous coexisting attractors. The practical realization of our model is achieved using a microcontroller, with experimental results demonstrating strong agreement with theoretical analyses. Furthermore, harnessing the chaos inherent in the neural network, we develop a robust biomedical image encryption technique, validated through rigorous computational performance tests. Full article
Show Figures

Figure 1

Figure 1
<p>I-V characteristics of the considered memristor. (<b>a</b>) <span class="html-italic">A</span> = 1 V, 2 V, 3 V, 4 V and <span class="html-italic">f</span> = 1 Hz; (<b>b</b>) <span class="html-italic">f</span> = 1 Hz, 2 Hz, 3 Hz, 4 Hz and <span class="html-italic">A</span> = 4 V. The initial state <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>; (<b>c</b>) initial states: <span class="html-italic">x</span><sub>0</sub> = ±1, ±7, ±14, ±21, <span class="html-italic">A</span> = 4 V and <span class="html-italic">f</span> = 1 Hz.</p>
Full article ">Figure 2
<p>The designed multistable memristor synapse-based coupled bi-Hopfield neuron model.</p>
Full article ">Figure 3
<p>Determination of the equilibrium states <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>y</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, which are indicated by the intersections of two function curves.</p>
Full article ">Figure 4
<p>Influence of <math display="inline"><semantics> <mi>ρ</mi> </semantics></math> on the behaviors of the model: (<b>a</b>) bifurcation diagram (<b>b</b>) Lyapunov exponents for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mfenced> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo> </mo> <mi>y</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo> </mo> <mi>z</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </mfenced> <mo>=</mo> <mfenced> <mrow> <mn>0</mn> <mo>,</mo> <mo> </mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>9</mn> </mrow> </msup> <mo>,</mo> <mo> </mo> <mn>0</mn> </mrow> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Phase spaces confirming the occurrence of chaos in the system for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mfenced> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo> </mo> <mi>y</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo> </mo> <mi>z</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </mfenced> <mo>=</mo> <mfenced> <mrow> <mn>0</mn> <mo>,</mo> <mo> </mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>9</mn> </mrow> </msup> <mo>,</mo> <mo> </mo> <mn>0</mn> </mrow> </mfenced> </mrow> </semantics></math> and diverse selected values of <math display="inline"><semantics> <mi>ρ</mi> </semantics></math>: (<b>a</b>) period-1 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.087</mn> </mrow> </semantics></math>, (<b>b</b>) period-2 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.1</mn> </mrow> </semantics></math>, (<b>c</b>) period-3 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.105</mn> </mrow> </semantics></math>, (<b>d</b>) chaos for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.107</mn> </mrow> </semantics></math>, (<b>e</b>) period-3 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.13</mn> </mrow> </semantics></math>, (<b>f</b>) period-6 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.134</mn> </mrow> </semantics></math>, (<b>g</b>) chaos for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.14</mn> </mrow> </semantics></math>, (<b>h</b>) chaos for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.15</mn> </mrow> </semantics></math>, (<b>i</b>) chaos for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.4</mn> </mrow> </semantics></math>, (<b>j</b>) period-3 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.728</mn> </mrow> </semantics></math>, (<b>k</b>) period-6 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.972</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5 Cont.
<p>Phase spaces confirming the occurrence of chaos in the system for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mfenced> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo> </mo> <mi>y</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo> </mo> <mi>z</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </mfenced> <mo>=</mo> <mfenced> <mrow> <mn>0</mn> <mo>,</mo> <mo> </mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>9</mn> </mrow> </msup> <mo>,</mo> <mo> </mo> <mn>0</mn> </mrow> </mfenced> </mrow> </semantics></math> and diverse selected values of <math display="inline"><semantics> <mi>ρ</mi> </semantics></math>: (<b>a</b>) period-1 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.087</mn> </mrow> </semantics></math>, (<b>b</b>) period-2 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.1</mn> </mrow> </semantics></math>, (<b>c</b>) period-3 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.105</mn> </mrow> </semantics></math>, (<b>d</b>) chaos for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.107</mn> </mrow> </semantics></math>, (<b>e</b>) period-3 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.13</mn> </mrow> </semantics></math>, (<b>f</b>) period-6 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.134</mn> </mrow> </semantics></math>, (<b>g</b>) chaos for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.14</mn> </mrow> </semantics></math>, (<b>h</b>) chaos for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.15</mn> </mrow> </semantics></math>, (<b>i</b>) chaos for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.4</mn> </mrow> </semantics></math>, (<b>j</b>) period-3 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.728</mn> </mrow> </semantics></math>, (<b>k</b>) period-6 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.972</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Impact of the initial state <math display="inline"><semantics> <mrow> <mi>z</mi> <mfenced> <mn>0</mn> </mfenced> </mrow> </semantics></math> on the comportment of the model: (<b>a</b>) bifurcation diagram and (<b>b</b>) maximum Lyapunov exponent, for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.97</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mfenced> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo> </mo> <mi>y</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo> </mo> <mi>z</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </mfenced> <mo>=</mo> <mfenced> <mrow> <mn>0</mn> <mo>,</mo> <mo> </mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>9</mn> </mrow> </msup> <mo>,</mo> <mo> </mo> <mi>z</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>Several coexisting chaotic attractors at diverse positions for several value initial states <math display="inline"><semantics> <mrow> <mi>z</mi> <mfenced> <mn>0</mn> </mfenced> </mrow> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.97</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mfenced> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo> </mo> <mo> </mo> <mi>y</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </mfenced> <mo>=</mo> <mfenced> <mrow> <mn>0</mn> <mo>,</mo> <mo> </mo> <mo> </mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>9</mn> </mrow> </msup> </mrow> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>Cross section of the basin of attraction for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.97</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mfenced> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo> </mo> <mo> </mo> <mi>y</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </mfenced> <mo>=</mo> <mfenced> <mrow> <mn>0</mn> <mo>,</mo> <mo> </mo> <mo> </mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>9</mn> </mrow> </msup> </mrow> </mfenced> </mrow> </semantics></math>. Each domain of initial states leads to a color representing a particular phase space.</p>
Full article ">Figure 9
<p>Implementation procedure of the elaborated multistable memristor synapse-based coupled bi-Hopfield neuron model.</p>
Full article ">Figure 10
<p>Hardware implementation devices. The dual-channel digital oscilloscope displays a chaotic attractor in the plane (<math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>z</mi> </msub> <mo>−</mo> <msub> <mi>V</mi> <mi>y</mi> </msub> </mrow> </semantics></math>) for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.15</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mfenced> <mrow> <mi>x</mi> <mfenced> <mn>0</mn> </mfenced> <mo>,</mo> <mo> </mo> <mo> </mo> <mi>y</mi> <mfenced> <mn>0</mn> </mfenced> <mo>,</mo> <mo> </mo> <mo> </mo> <mi>z</mi> <mfenced> <mn>0</mn> </mfenced> </mrow> </mfenced> <mo>=</mo> <mfenced> <mrow> <mn>0</mn> <mo>,</mo> <mo> </mo> <mo> </mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>9</mn> </mrow> </msup> <mo>,</mo> <mo> </mo> <mo> </mo> <mn>0</mn> </mrow> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 11
<p>Phase portraits for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math> and specific values of the coupling strength <math display="inline"><semantics> <mi>ρ</mi> </semantics></math>: (<b>a</b>) period-1 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.087</mn> </mrow> </semantics></math>, (<b>b</b>) period-2 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.1</mn> </mrow> </semantics></math>, (<b>c</b>) period-3 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.105</mn> </mrow> </semantics></math>, (<b>d</b>) chaos for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.107</mn> </mrow> </semantics></math>, (<b>e</b>) period-3 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.13</mn> </mrow> </semantics></math>, (<b>f</b>) period-6 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.134</mn> </mrow> </semantics></math>, (<b>g</b>) chaos for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.14</mn> </mrow> </semantics></math>, (<b>h</b>) chaos for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.15</mn> </mrow> </semantics></math>, (<b>i</b>) chaos for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.4</mn> </mrow> </semantics></math>, (<b>j</b>) period-3 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.728</mn> </mrow> </semantics></math>, (<b>k</b>) period-6 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.972</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mfenced> <mrow> <mi>x</mi> <mfenced> <mn>0</mn> </mfenced> <mo>,</mo> <mo> </mo> <mo> </mo> <mi>y</mi> <mfenced> <mn>0</mn> </mfenced> <mo>,</mo> <mo> </mo> <mo> </mo> <mi>z</mi> <mfenced> <mn>0</mn> </mfenced> </mrow> </mfenced> <mo>=</mo> <mfenced> <mrow> <mn>0</mn> <mo>,</mo> <mo> </mo> <mo> </mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>9</mn> </mrow> </msup> <mo>,</mo> <mo> </mo> <mo> </mo> <mn>0</mn> </mrow> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 12
<p>Complete diagram of the encryption algorithm.</p>
Full article ">Figure 13
<p>Numerical results: (<b>a</b>) initial image of cerebrovascular accident, (<b>b</b>) initial image of pulmonary fibrosis, (<b>c</b>) initial image of lung cancer, (<b>d</b>) encrypted image of cerebrovascular accident, (<b>e</b>) encrypted image of pulmonary fibrosis, (<b>f</b>) encrypted image of lung cancer, (<b>g</b>) decrypted image of cerebrovascular accident, (<b>h</b>) decrypted image of pulmonary fibrosis, (<b>i</b>) decrypted image of lung cancer.</p>
Full article ">Figure 13 Cont.
<p>Numerical results: (<b>a</b>) initial image of cerebrovascular accident, (<b>b</b>) initial image of pulmonary fibrosis, (<b>c</b>) initial image of lung cancer, (<b>d</b>) encrypted image of cerebrovascular accident, (<b>e</b>) encrypted image of pulmonary fibrosis, (<b>f</b>) encrypted image of lung cancer, (<b>g</b>) decrypted image of cerebrovascular accident, (<b>h</b>) decrypted image of pulmonary fibrosis, (<b>i</b>) decrypted image of lung cancer.</p>
Full article ">Figure 14
<p>Results of slight key modification: (<b>a</b>) correct keys, (<b>b</b>) <math display="inline"><semantics> <mrow> <mo> </mo> <mi>γ</mi> <mo>+</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>17</mn> </mrow> </msup> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mo> </mo> <mi>ρ</mi> <mo>+</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>17</mn> </mrow> </msup> </mrow> </semantics></math>, (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>17</mn> </mrow> </msup> </mrow> </semantics></math>, (<b>e</b>) <math display="inline"><semantics> <mrow> <mo> </mo> <mo> </mo> <mi>y</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>17</mn> </mrow> </msup> </mrow> </semantics></math>, and (<b>f</b>) <math display="inline"><semantics> <mrow> <mo> </mo> <mi>z</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>17</mn> </mrow> </msup> </mrow> </semantics></math>.</p>
Full article ">Figure 14 Cont.
<p>Results of slight key modification: (<b>a</b>) correct keys, (<b>b</b>) <math display="inline"><semantics> <mrow> <mo> </mo> <mi>γ</mi> <mo>+</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>17</mn> </mrow> </msup> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mo> </mo> <mi>ρ</mi> <mo>+</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>17</mn> </mrow> </msup> </mrow> </semantics></math>, (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>17</mn> </mrow> </msup> </mrow> </semantics></math>, (<b>e</b>) <math display="inline"><semantics> <mrow> <mo> </mo> <mo> </mo> <mi>y</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>17</mn> </mrow> </msup> </mrow> </semantics></math>, and (<b>f</b>) <math display="inline"><semantics> <mrow> <mo> </mo> <mi>z</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>17</mn> </mrow> </msup> </mrow> </semantics></math>.</p>
Full article ">Figure 15
<p>The distribution of the pixels of the unencrypted images (<b>a</b>), encrypted images (<b>b</b>), and decrypted images (<b>c</b>).</p>
Full article ">Figure 16
<p>Impacts of external perturbations and information loss on the performances of the algorithm: (<b>a</b>1(i)–<b>a</b>1(iii)) encrypted images with <math display="inline"><semantics> <mrow> <mn>0.001</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>0.005</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>0.01</mn> </mrow> </semantics></math> Gaussian noise, respectively. (<b>a</b>2(i)–<b>a</b>2(iii)) corresponding decrypted images. (<b>b</b>1(i)–<b>b</b>1(iii)) encrypted images with <math display="inline"><semantics> <mrow> <mn>0.001</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>0.005</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>0.01</mn> </mrow> </semantics></math> salt and pepper noise, respectively. <b>b</b>2(i)–<b>b</b>2(iii) corresponding decrypted images. (<b>c</b>1(i)–<b>c</b>1(iii)) encrypted image with <math display="inline"><semantics> <mrow> <mrow> <mn>1</mn> <mo>/</mo> <mrow> <mn>32</mn> </mrow> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mrow> <mn>1</mn> <mo>/</mo> <mrow> <mn>16</mn> <mo> </mo> </mrow> </mrow> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mo> </mo> <mrow> <mn>1</mn> <mo>/</mo> <mn>4</mn> </mrow> </mrow> </semantics></math> information loss, respectively. (<b>c</b>2(i)–<b>c</b>2(iii)) corresponding decrypted images.</p>
Full article ">Figure 16 Cont.
<p>Impacts of external perturbations and information loss on the performances of the algorithm: (<b>a</b>1(i)–<b>a</b>1(iii)) encrypted images with <math display="inline"><semantics> <mrow> <mn>0.001</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>0.005</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>0.01</mn> </mrow> </semantics></math> Gaussian noise, respectively. (<b>a</b>2(i)–<b>a</b>2(iii)) corresponding decrypted images. (<b>b</b>1(i)–<b>b</b>1(iii)) encrypted images with <math display="inline"><semantics> <mrow> <mn>0.001</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>0.005</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>0.01</mn> </mrow> </semantics></math> salt and pepper noise, respectively. <b>b</b>2(i)–<b>b</b>2(iii) corresponding decrypted images. (<b>c</b>1(i)–<b>c</b>1(iii)) encrypted image with <math display="inline"><semantics> <mrow> <mrow> <mn>1</mn> <mo>/</mo> <mrow> <mn>32</mn> </mrow> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mrow> <mn>1</mn> <mo>/</mo> <mrow> <mn>16</mn> <mo> </mo> </mrow> </mrow> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mo> </mo> <mrow> <mn>1</mn> <mo>/</mo> <mn>4</mn> </mrow> </mrow> </semantics></math> information loss, respectively. (<b>c</b>2(i)–<b>c</b>2(iii)) corresponding decrypted images.</p>
Full article ">
17 pages, 722 KiB  
Article
Dynamics of Symmetrical Discontinuous Hopfield Neural Networks with Poisson Stable Rates, Synaptic Connections and Unpredictable Inputs
by Marat Akhmet, Zakhira Nugayeva and Roza Seilova
Symmetry 2024, 16(6), 740; https://doi.org/10.3390/sym16060740 - 13 Jun 2024
Viewed by 825
Abstract
The purpose of this paper is to study the dynamics of Hopfield neural networks with impulsive effects, focusing on Poisson stable rates, synaptic connections, and unpredictable external inputs. Through the symmetry of impulsive and differential compartments of the model, we follow and extend [...] Read more.
The purpose of this paper is to study the dynamics of Hopfield neural networks with impulsive effects, focusing on Poisson stable rates, synaptic connections, and unpredictable external inputs. Through the symmetry of impulsive and differential compartments of the model, we follow and extend the principal dynamical ideas of the founder. Specifically, the research delves into the phenomena of unpredictability and Poisson stability, which have been examined in previous studies relating to models of continuous and discontinuous neural networks with constant components. We extend the analysis to discontinuous models characterized by variable impulsive actions and structural ingredients. The method of included intervals based on the B-topology is employed to investigate the networks. It is a novel approach that addresses the unique challenges posed by the sophisticated recurrence. Full article
(This article belongs to the Special Issue Application of Symmetry in Equations)
Show Figures

Figure 1

Figure 1
<p>The coordinates of function <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>The trajectory of function <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>.</p>
Full article ">
17 pages, 4804 KiB  
Article
Clearance Nonlinear Control Method of Electro-Hydraulic Servo System Based on Hopfield Neural Network
by Tao Wang and Jinchun Song
Machines 2024, 12(5), 329; https://doi.org/10.3390/machines12050329 - 11 May 2024
Cited by 2 | Viewed by 1080
Abstract
The electro-hydraulic servo system has advantages such as high pressure, large flow, and high power, etc., which can also realize stepless regulation, so it is widely used in many engineering machineries. A linear model is sometimes only a simple approximation of an idealized [...] Read more.
The electro-hydraulic servo system has advantages such as high pressure, large flow, and high power, etc., which can also realize stepless regulation, so it is widely used in many engineering machineries. A linear model is sometimes only a simple approximation of an idealized model, but in an actual system, there may be nonlinear and transient variation characteristics in the systems. Coupling is reflected in the fact that the components or functional structures implemented by each system used for the design of hydraulic systems are not completely or independently related to each other, but affect each other. The nonlinear clearance between the actuator and the load reduces the control accuracy of the system and increases the impact, thus losing stable working conditions. In the paper, based on the nonlinear clearance problem of the electro-hydraulic servo system, a mathematical transfer model with clearance is established, and on this basis, a clearance compensation method based on the Hopfield neural network is proposed. In this way, clearance compensation can be realized by adjusting the parameters of neural network nodes, through simple and convenient operation. Finally, by setting different clearance values, the results of the step response and sine response curve before and after clearance compensation of the hydraulic system are compared, and the effectiveness of Hopfield neural network compensation clearance control is verified based on the comparison simulation results. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

Figure 1
<p>Input and output characteristic curve of clearance characteristic.</p>
Full article ">Figure 2
<p>Hysteresis model of clearance.</p>
Full article ">Figure 3
<p>The model of asymmetric cylinder system with flexible connection.</p>
Full article ">Figure 4
<p>Schematic diagram of rotating pair with clearance.</p>
Full article ">Figure 5
<p>Schematic diagram of clearance changes.</p>
Full article ">Figure 6
<p>Hopfield neural network.</p>
Full article ">Figure 7
<p>Mesh structure of Hopfield network.</p>
Full article ">Figure 8
<p>Process block diagram.</p>
Full article ">Figure 9
<p>Block diagram of an electro-hydraulic servo system with nonlinear clearance model control.</p>
Full article ">Figure 10
<p>Control system of electro-hydraulic servo system.</p>
Full article ">Figure 11
<p>Applied electro-hydraulic servo system.</p>
Full article ">Figure 12
<p>Comparison diagram of system step response curve between uncompensated clearance and compensated clearance during extension movement: (<b>a</b>) The clearance value is 0.1 mm; (<b>b</b>) the clearance value is 0.5 mm; (<b>c</b>) the clearance value is 1 mm.</p>
Full article ">Figure 13
<p>Comparison diagram of system step response curve between uncompensated clearance and compensated clearance during retraction movement: (<b>a</b>) The clearance value is 0.1 mm; (<b>b</b>) the clearance value is 0.5 mm; (<b>c</b>) the clearance value is 1 mm.</p>
Full article ">Figure 14
<p>Comparison of the sine signal curves (1 cm) of the system output between the uncompensated clearance and the compensated clearance: (<b>a</b>) The clearance value is 0.1 mm; (<b>b</b>) the clearance value is 0.5 mm; (<b>c</b>) the clearance value is 1 mm.</p>
Full article ">Figure 15
<p>Comparison of the sine signal curves (3 cm) of the system output between the uncompensated clearance and the compensated clearance: (<b>a</b>) The clearance value is 0.1 mm; (<b>b</b>) the clearance value is 0.5 mm; (<b>c</b>) the clearance value is 1 mm.</p>
Full article ">
15 pages, 1153 KiB  
Article
In Search of Dispersed Memories: Generative Diffusion Models Are Associative Memory Networks
by Luca Ambrogioni
Entropy 2024, 26(5), 381; https://doi.org/10.3390/e26050381 - 29 Apr 2024
Cited by 15 | Viewed by 4048
Abstract
Uncovering the mechanisms behind long-term memory is one of the most fascinating open problems in neuroscience and artificial intelligence. Artificial associative memory networks have been used to formalize important aspects of biological memory. Generative diffusion models are a type of generative machine learning [...] Read more.
Uncovering the mechanisms behind long-term memory is one of the most fascinating open problems in neuroscience and artificial intelligence. Artificial associative memory networks have been used to formalize important aspects of biological memory. Generative diffusion models are a type of generative machine learning techniques that have shown great performance in many tasks. Similar to associative memory systems, these networks define a dynamical system that converges to a set of target states. In this work, we show that generative diffusion models can be interpreted as energy-based models and that, when trained on discrete patterns, their energy function is (asymptotically) identical to that of modern Hopfield networks. This equivalence allows us to interpret the supervised training of diffusion models as a synaptic learning process that encodes the associative dynamics of a modern Hopfield network in the weight structure of a deep neural network. Leveraging this connection, we formulate a generalized framework for understanding the formation of long-term memory, where creative generation and memory recall can be seen as parts of a unified continuum. Full article
(This article belongs to the Special Issue Deep Generative Modeling: Theory and Applications)
Show Figures

Figure 1

Figure 1
<p>Visualization of different kinds of energy landscape and gradient vector fields corresponding to different forms of memory (in a two-dimensional space): (<b>a</b>) classical point-like memory; (<b>b</b>) extended localized memory; (<b>c</b>) non-localized (semantic) memory structure. The color denotes the probability density of the learned distribution while the lines represent the integral trajectories of the vector field oinduced by the score function.</p>
Full article ">Figure 2
<p>Qualitative analysis of the (marginal) denoising trajectories of a binary associative memory problem with four patterns in a five-dimensional space. (<b>a</b>) Comparison between denoising trajectories of diffusion models and modern Hopfield updates. The diffusion curves are integrated using the Euler method with 2000 steps. The trajectories are overlaid to four modern Hopfield updates. (<b>b</b>) Comparison between exact and learned deterministic denoising trajectories. The colors are used to identify individual trajectories.</p>
Full article ">Figure 3
<p>(<b>a</b>) Median error of exact diffusion model as function of the dimensionality. (<b>b</b>) Capacity of diffusion models and Hopfield networks in log scale. The shaded area denotes the estimated <math display="inline"><semantics> <mrow> <mn>95</mn> <mo>%</mo> </mrow> </semantics></math> intervals.</p>
Full article ">
40 pages, 23417 KiB  
Article
MTS-PRO2SAT: Hybrid Mutation Tabu Search Algorithm in Optimizing Probabilistic 2 Satisfiability in Discrete Hopfield Neural Network
by Ju Chen, Yuan Gao, Mohd Shareduwan Mohd Kasihmuddin, Chengfeng Zheng, Nurul Atiqah Romli, Mohd. Asyraf Mansor, Nur Ezlin Zamri and Chuanbiao When
Mathematics 2024, 12(5), 721; https://doi.org/10.3390/math12050721 - 29 Feb 2024
Cited by 6 | Viewed by 1366
Abstract
The primary objective of introducing metaheuristic algorithms into traditional systematic logic is to minimize the cost function. However, there is a lack of research on the impact of introducing metaheuristic algorithms on the cost function under different proportions of positive literals. In order [...] Read more.
The primary objective of introducing metaheuristic algorithms into traditional systematic logic is to minimize the cost function. However, there is a lack of research on the impact of introducing metaheuristic algorithms on the cost function under different proportions of positive literals. In order to fill in this gap and improve the efficiency of the metaheuristic algorithm in systematic logic, we proposed a metaheuristic algorithm based on mutation tabu search and embedded it in probabilistic satisfiability logic in discrete Hopfield neural networks. Based on the traditional tabu search algorithm, the mutation operators of the genetic algorithm were combined to improve its global search ability during the learning phase and ensure that the cost function of the systematic logic converged to zero at different proportions of positive literals. Additionally, further optimization was carried out in the retrieval phase to enhance the diversity of solutions. Compared with nine other metaheuristic algorithms and exhaustive search algorithms, the proposed algorithm was superior to other algorithms in terms of time complexity and global convergence, and showed higher efficiency in the search solutions at the binary search space, consolidated the efficiency of systematic logic in the learning phase, and significantly improved the diversity of the global solution in the retrieval phase of systematic logic. Full article
(This article belongs to the Special Issue Advances in Genetic Programming and Soft Computing)
Show Figures

Figure 1

Figure 1
<p>Generation process of neighborhood solution.</p>
Full article ">Figure 2
<p>Generation strategy to candidate solution.</p>
Full article ">Figure 3
<p>Flowchart of MTS.</p>
Full article ">Figure 4
<p><math display="inline"><semantics> <mrow> <mi>M</mi> <mi>A</mi> <msub> <mi>E</mi> <mrow> <mi>l</mi> <mi>e</mi> <mi>a</mi> <mi>r</mi> <mi>n</mi> </mrow> </msub> </mrow> </semantics></math> evaluation for all experimental models.</p>
Full article ">Figure 4 Cont.
<p><math display="inline"><semantics> <mrow> <mi>M</mi> <mi>A</mi> <msub> <mi>E</mi> <mrow> <mi>l</mi> <mi>e</mi> <mi>a</mi> <mi>r</mi> <mi>n</mi> </mrow> </msub> </mrow> </semantics></math> evaluation for all experimental models.</p>
Full article ">Figure 5
<p><math display="inline"><semantics> <mrow> <mi>G</mi> <mi>L</mi> <msub> <mi>I</mi> <mrow> <mi>a</mi> <mi>v</mi> <mi>g</mi> </mrow> </msub> </mrow> </semantics></math> evaluation for all experimental models.</p>
Full article ">Figure 5 Cont.
<p><math display="inline"><semantics> <mrow> <mi>G</mi> <mi>L</mi> <msub> <mi>I</mi> <mrow> <mi>a</mi> <mi>v</mi> <mi>g</mi> </mrow> </msub> </mrow> </semantics></math> evaluation for all experimental models.</p>
Full article ">Figure 6
<p><math display="inline"><semantics> <mrow> <mi>C</mi> <mi>T</mi> </mrow> </semantics></math> evaluation for all PRO2SAT embedded in metaheuristic algorithms.</p>
Full article ">Figure 6 Cont.
<p><math display="inline"><semantics> <mrow> <mi>C</mi> <mi>T</mi> </mrow> </semantics></math> evaluation for all PRO2SAT embedded in metaheuristic algorithms.</p>
Full article ">Figure 7
<p><math display="inline"><semantics> <mrow> <mi>A</mi> <mi>I</mi> </mrow> </semantics></math> evaluation for all PRO2SAT embedded in metaheuristic algorithms.</p>
Full article ">Figure 7 Cont.
<p><math display="inline"><semantics> <mrow> <mi>A</mi> <mi>I</mi> </mrow> </semantics></math> evaluation for all PRO2SAT embedded in metaheuristic algorithms.</p>
Full article ">Figure 8
<p><math display="inline"><semantics> <mrow> <mi>T</mi> <msub> <mi>V</mi> <mrow> <mi>s</mi> <mi>i</mi> <mi>m</mi> <mi>i</mi> <mi>l</mi> <mi>a</mi> <mi>r</mi> </mrow> </msub> </mrow> </semantics></math> evaluation for all experimental models.</p>
Full article ">Figure 8 Cont.
<p><math display="inline"><semantics> <mrow> <mi>T</mi> <msub> <mi>V</mi> <mrow> <mi>s</mi> <mi>i</mi> <mi>m</mi> <mi>i</mi> <mi>l</mi> <mi>a</mi> <mi>r</mi> </mrow> </msub> </mrow> </semantics></math> evaluation for all experimental models.</p>
Full article ">
20 pages, 4551 KiB  
Article
Impacts of Resampling and Downscaling Digital Elevation Model and Its Morphometric Factors: A Comparison of Hopfield Neural Network, Bilinear, Bicubic, and Kriging Interpolations
by Nguyen Quang Minh, Nguyen Thi Thu Huong, Pham Quoc Khanh, La Phu Hien and Dieu Tien Bui
Remote Sens. 2024, 16(5), 819; https://doi.org/10.3390/rs16050819 - 27 Feb 2024
Cited by 7 | Viewed by 3181
Abstract
The digital elevation model (DEM) and its derived morphometric factors, i.e., slope, aspect, profile and plan curvatures, and topographic wetness index (TWI), are essential for natural hazard modeling and prediction as they provide critical information about the terrain’s characteristics that can influence the [...] Read more.
The digital elevation model (DEM) and its derived morphometric factors, i.e., slope, aspect, profile and plan curvatures, and topographic wetness index (TWI), are essential for natural hazard modeling and prediction as they provide critical information about the terrain’s characteristics that can influence the likelihood and severity of natural hazards. Therefore, increasing the accuracy of the DEM and its derived factors plays a critical role. The primary aim of this study is to evaluate and compare the effects of resampling and downscaling the DEM from low to medium resolution and from medium to high resolutions using four methods: namely the Hopfield Neural Network (HNN), Bilinear, Bicubic, and Kriging, on five morphometric factors derived from it. A geospatial database was established, comprising five DEMs with different resolutions: specifically, a SRTM DEM with 30 m resolution, a 20 m resolution DEM derived from topographic maps at a scale of 50,000, a 10 m resolution DEM generated from topographic maps at a scale of 10,000, a 5 m resolution DEM created using surveying points with total stations, and a 5 m resolution DEM constructed through drone photogrammetry. The accuracy of the resampling and downscaling was assessed using Root Mean Square Error (RMSE) and mean absolute error (MAE) as statistical metrics. The results indicate that, in the case of downscaling from low to medium resolution, all four methods—HNN, Bilinear, Bicubic, and Kriging—significantly improve the accuracy of slope, aspect, profile and plan curvatures, and TWI. However, for the case of medium to high resolutions, further investigations are needed as the improvement in accuracy observed in the DEMs does not necessarily translate to the improvement of the second derivative morphometric factors such as plan and profile curvatures and TWI. While RMSEs of the first derivatives of DEMs, such as slope and aspect, reduced in a range of 8% to 55% in all five datasets, the RMSEs of curvatures and TWI slightly increased in cases of downscaling and resampling of Dataset 4. Among the four methods, the HNN method provides the highest accuracy, followed by the bicubic method. The statistics showed that in all five cases of the experiment, the HNN downscaling reduced the RMSE and MAE by 55% for the best case and 10% for the worst case for slope, and it reduced the RMSE by 50% for the best case of aspect. Both the HNN and the bicubic methods outperform the Kriging and bilinear methods. Therefore, we highly recommend using the HNN method for downscaling DEMs to produce more accurate morphometric factors, slope, aspect, profile and plan curvatures, and TWI. Full article
Show Figures

Figure 1

Figure 1
<p>Four datasets (<b>a</b>) DEM 20 m and 30 m in Nghe An Province; (<b>b</b>) DEM 5 m in Lang Son Province; (<b>c</b>) DEM 10 m in Kon Tum Province; (<b>d</b>) DEM 5 m in Cao Bang Province.</p>
Full article ">Figure 2
<p>Resampling and downscaling results: (<b>1a</b>–<b>1f</b>): Reference, Input and downscaled and resampled DEMs in Dataset 1; (<b>2a</b>–<b>2f</b>): Reference, Input and downscaled and resampled DEMs in Dataset 2; (<b>3a</b>–<b>3f</b>): Reference, Input and downscaled and resampled DEMs in Dataset 3; (<b>4a</b>–<b>4f</b>): Reference, Input and downscaled and resampled DEMs in Dataset 4; (<b>5a</b>–<b>5f</b>): Reference, Input and downscaled and resampled DEMs in Dataset 5.</p>
Full article ">Figure 2 Cont.
<p>Resampling and downscaling results: (<b>1a</b>–<b>1f</b>): Reference, Input and downscaled and resampled DEMs in Dataset 1; (<b>2a</b>–<b>2f</b>): Reference, Input and downscaled and resampled DEMs in Dataset 2; (<b>3a</b>–<b>3f</b>): Reference, Input and downscaled and resampled DEMs in Dataset 3; (<b>4a</b>–<b>4f</b>): Reference, Input and downscaled and resampled DEMs in Dataset 4; (<b>5a</b>–<b>5f</b>): Reference, Input and downscaled and resampled DEMs in Dataset 5.</p>
Full article ">Figure 3
<p>Histograms of the slopes obtained from the (<b>a</b>) Dataset 1: 30 m DEM in Nghean; (<b>b</b>) Dataset 2: 20 m DEM in Nghean; (<b>c</b>) Dataset 4: 10 m DEM in Daklak; (<b>d</b>) Dataset 5: 5 m DEM in Caobang.</p>
Full article ">Figure 4
<p>TWI calculated from resampled DEM in Dataset 5 (5 m resolution): (<b>a</b>) TWI from reference DEM; (<b>b</b>) TWI from “no resampling” 20 m DEM; (<b>c</b>) TWI from the DEM resampled by bilinear method; (<b>d</b>) TWI from the DEM resampled by bi-cubic method; (<b>e</b>) TWI from the DEM created by Kriging interpolation method; and (<b>f</b>) TWI from DEM generated by the HNN downscaling approach.</p>
Full article ">
Back to TopTop