[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (91)

Search Parameters:
Keywords = Hopfield neural network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6656 KiB  
Article
Dynamic Analysis and FPGA Implementation of Fractional-Order Hopfield Networks with Memristive Synapse
by Andrés Anzo-Hernández, Ernesto Zambrano-Serrano, Miguel Angel Platas-Garza and Christos Volos
Fractal Fract. 2024, 8(11), 628; https://doi.org/10.3390/fractalfract8110628 - 24 Oct 2024
Cited by 1 | Viewed by 1044
Abstract
Memristors have become important components in artificial synapses due to their ability to emulate the information transmission and memory functions of biological synapses. Unlike their biological counterparts, which adjust synaptic weights, memristor-based artificial synapses operate by altering conductance or resistance, making them useful [...] Read more.
Memristors have become important components in artificial synapses due to their ability to emulate the information transmission and memory functions of biological synapses. Unlike their biological counterparts, which adjust synaptic weights, memristor-based artificial synapses operate by altering conductance or resistance, making them useful for enhancing the processing capacity and storage capabilities of neural networks. When integrated into systems like Hopfield neural networks, memristors enable the study of complex dynamic behaviors, such as chaos and multistability. Moreover, fractional calculus is significant for their ability to model memory effects, enabling more accurate simulations of complex systems. Fractional-order Hopfield networks, in particular, exhibit chaotic and multistable behaviors not found in integer-order models. By combining memristors with fractional-order Hopfield neural networks, these systems offer the possibility of investigating different dynamic phenomena in artificial neural networks. This study investigates the dynamical behavior of a fractional-order Hopfield neural network (HNN) incorporating a memristor with a piecewise segment function in one of its synapses, highlighting the impact of fractional-order derivatives and memristive synapses on the stability, robustness, and dynamic complexity of the system. Using a network of four neurons as a case study, it is demonstrated that the memristive fractional-order HNN exhibits multistability, coexisting chaotic attractors, and coexisting limit cycles. Through spectral entropy analysis, the regions in the initial condition space that display varying degrees of complexity are mapped, highlighting those areas where the chaotic series approach a pseudo-random sequence of numbers. Finally, the proposed fractional-order memristive HNN is implemented on a Field-Programmable Gate Array (FPGA), demonstrating the feasibility of real-time hardware realization. Full article
Show Figures

Figure 1

Figure 1
<p>Pinched hysteresis loop. (<b>a</b>) For different <math display="inline"><semantics> <mi>α</mi> </semantics></math>-orders when <math display="inline"><semantics> <mrow> <mi>F</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>b</b>) For different frequencies when <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.97</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>Intersections of the curves <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> (red curve) and <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> (blue curve) under the fixed parameters <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>=</mo> <mn>2.0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>3.3</mn> </mrow> </semantics></math>. The external input parameter <span class="html-italic">I</span> is varied across (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>=</mo> <mo>−</mo> <mn>3</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, and (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Eigenvalues of the Jacobian matrix in the complex plane, evaluated at equilibrium points for different values of <span class="html-italic">I</span>. For <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>=</mo> <mo>−</mo> <mn>3</mn> </mrow> </semantics></math>, the equilibrium points are <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0.378</mn> <mo>,</mo> <mo>−</mo> <mn>0.301</mn> <mo>,</mo> <mn>0.089</mn> <mo>,</mo> <mo>−</mo> <mn>0.376</mn> <mo>,</mo> <mn>0.411</mn> <mo>)</mo> </mrow> </semantics></math>; for <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, they are <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0.5</mn> <mo>)</mo> </mrow> </semantics></math>; and, for <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, they are <math display="inline"><semantics> <mrow> <mo>(</mo> <mo>−</mo> <mn>0.504</mn> <mo>,</mo> <mn>0.426</mn> <mo>,</mo> <mo>−</mo> <mn>0.114</mn> <mo>,</mo> <mn>0.534</mn> <mo>,</mo> <mn>0.622</mn> <mo>)</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>Phase portraits of the fractional-order system (<a href="#FD6-fractalfract-08-00628" class="html-disp-formula">6</a>) with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.97</mn> </mrow> </semantics></math> and initial conditions <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>x</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>x</mi> <mn>5</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>)</mo> <mo>=</mo> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>a</b>) 3D projection on the <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>4</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>5</mn> </msub> </mrow> </semantics></math> plane; (<b>b</b>) 3D projection on the <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>4</mn> </msub> </mrow> </semantics></math> plane.</p>
Full article ">Figure 5
<p>(<b>a</b>) Bifurcation diagram showing the local maxima of the state <math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math> as a function of the control parameter <math display="inline"><semantics> <mi>α</mi> </semantics></math>, with the blue color corresponding to initial conditions <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> and the red color representing the initial conditions <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mo>−</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>. This represents a commensurate case, where the fractional orders for both the neuron equations and the memristor equation are identical. (<b>b</b>) Bifurcation diagram showing an incommensurate case where the fractional orders for the neuron equations in (<a href="#FD6-fractalfract-08-00628" class="html-disp-formula">6</a>) (<math display="inline"><semantics> <msub> <mi>α</mi> <mi>i</mi> </msub> </semantics></math>, with <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> </mrow> </semantics></math>) are fixed at <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>0.97</mn> </mrow> </semantics></math>, while the fractional-order derivative for the memristor equation <math display="inline"><semantics> <msub> <mi>α</mi> <mn>5</mn> </msub> </semantics></math> is varied within the range <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mn>5</mn> </msub> <mo>∈</mo> <mrow> <mo>(</mo> <mn>0.9</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Basin of attraction in the <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>−</mo> <msub> <mi>x</mi> <mn>5</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> plane with <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.97</mn> </mrow> </semantics></math>, coexisting attractor above (blue) and below (red).</p>
Full article ">Figure 7
<p>Phase portraits of the fractional-order system (<a href="#FD6-fractalfract-08-00628" class="html-disp-formula">6</a>) with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.97</mn> </mrow> </semantics></math> and initial conditions <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2.5</mn> <mo>)</mo> </mrow> </semantics></math> for the blue color and <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mo>−</mo> <mn>2.5</mn> <mo>)</mo> </mrow> </semantics></math> for the red color, where (<b>a</b>) represents <math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math>−<math display="inline"><semantics> <msub> <mi>x</mi> <mn>2</mn> </msub> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math>−<math display="inline"><semantics> <msub> <mi>x</mi> <mn>3</mn> </msub> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math>−<math display="inline"><semantics> <msub> <mi>x</mi> <mn>4</mn> </msub> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <msub> <mi>x</mi> <mn>2</mn> </msub> </semantics></math>−<math display="inline"><semantics> <msub> <mi>x</mi> <mn>3</mn> </msub> </semantics></math>.</p>
Full article ">Figure 8
<p>Phase portraits of the fractional-order system (<a href="#FD6-fractalfract-08-00628" class="html-disp-formula">6</a>) with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.97</mn> </mrow> </semantics></math> and initial conditions <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> for the blue color and <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mo>−</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> for the red color, where (<b>a</b>) represents <math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math>−<math display="inline"><semantics> <msub> <mi>x</mi> <mn>2</mn> </msub> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math>−<math display="inline"><semantics> <msub> <mi>x</mi> <mn>3</mn> </msub> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math>−<math display="inline"><semantics> <msub> <mi>x</mi> <mn>4</mn> </msub> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <msub> <mi>x</mi> <mn>2</mn> </msub> </semantics></math>−<math display="inline"><semantics> <msub> <mi>x</mi> <mn>3</mn> </msub> </semantics></math>.</p>
Full article ">Figure 9
<p>Complexity diagram for the fractional-order (<a href="#FD6-fractalfract-08-00628" class="html-disp-formula">6</a>) with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mrow> <mn>0.97</mn> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>∈</mo> <mrow> <mo>[</mo> <mo>−</mo> <mn>3</mn> <mo>,</mo> <mn>3</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>5</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>∈</mo> <mrow> <mo>[</mo> <mo>−</mo> <mn>3</mn> <mo>,</mo> <mn>3</mn> <mo>]</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p>Values of SE from the time series of <math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math> obtained via (<a href="#FD6-fractalfract-08-00628" class="html-disp-formula">6</a>), when <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.97</mn> </mrow> </semantics></math> and the initial conditions were set as <math display="inline"><semantics> <mrow> <mo>[</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>x</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>x</mi> <mn>5</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>]</mo> </mrow> </semantics></math>=<math display="inline"><semantics> <mrow> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </semantics></math>. (<b>a</b>) Varying the parameter <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>∈</mo> <mo>[</mo> <mn>0.1</mn> <mo>,</mo> <mn>3</mn> <mo>]</mo> </mrow> </semantics></math>. (<b>b</b>) Varying the parameter <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>∈</mo> <mo>[</mo> <mn>2</mn> <mo>,</mo> <mn>5</mn> <mo>]</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 11
<p>Experimental setup for the implementation of the proposed system: (<b>a</b>) IFM 127 VCA to 24 VDC, 30-watt power supply, model DN1020; (<b>b</b>) National Instruments sbRIO-9626 with XC6SLX45 FPGA; and (<b>c</b>) PROTEK 100 MHz oscilloscope, model P-2510.</p>
Full article ">Figure 12
<p>Block diagram description for the implementation of the proposed system using the GL integration method. This block description represents (<a href="#FD15-fractalfract-08-00628" class="html-disp-formula">15</a>), where blocks <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <msup> <mi>h</mi> <mi>α</mi> </msup> </mrow> </semantics></math> compute the dynamics of the <span class="html-italic">i</span>-th state and blocks FIR<sub><span class="html-italic">i</span></sub> compute the convolution between the <span class="html-italic">i</span>-th state and the binomial coefficient array <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>[</mo> <mi>k</mi> <mo>]</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 13
<p>Implementation of the convolution between the binomial coefficients and the most recent <math display="inline"><semantics> <msub> <mi>L</mi> <mi>m</mi> </msub> </semantics></math> samples from each state. The design utilizes a single Multiply–Accumulate (MAC) structure, where a mod-<math display="inline"><semantics> <msub> <mi>L</mi> <mi>m</mi> </msub> </semantics></math> counter, referred to as “coef_counter”, is employed to iterate through all the coefficients.</p>
Full article ">Figure 14
<p>Approximation to activation function by a piecewise approximation. (<b>a</b>) Hyperbolic tangent function <math display="inline"><semantics> <mrow> <mo form="prefix">tanh</mo> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </semantics></math> (black color continuous line) and its piecewise approximation <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </semantics></math> (red color dashed line) described in Equation (<a href="#FD17-fractalfract-08-00628" class="html-disp-formula">17</a>) for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>. (<b>b</b>) Magnitude of the error in the approximation <math display="inline"><semantics> <mrow> <mo>|</mo> <mo form="prefix">tanh</mo> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>−</mo> <mi>ϵ</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>|</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 15
<p>Phase portraits registered in the P-2510 scope for the implemented fractional-order system, where (<b>a</b>) represents <math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math>−<math display="inline"><semantics> <msub> <mi>x</mi> <mn>2</mn> </msub> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math>−<math display="inline"><semantics> <msub> <mi>x</mi> <mn>3</mn> </msub> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math>−<math display="inline"><semantics> <msub> <mi>x</mi> <mn>4</mn> </msub> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <msub> <mi>x</mi> <mn>2</mn> </msub> </semantics></math>−<math display="inline"><semantics> <msub> <mi>x</mi> <mn>3</mn> </msub> </semantics></math>.</p>
Full article ">
21 pages, 712 KiB  
Article
OPT-FRAC-CHN: Optimal Fractional Continuous Hopfield Network
by Karim El Moutaouakil, Zakaria Bouhanch, Abdellah Ahourag, Ahmed Aberqi and Touria Karite
Symmetry 2024, 16(7), 921; https://doi.org/10.3390/sym16070921 - 18 Jul 2024
Cited by 3 | Viewed by 925
Abstract
The continuous Hopfield network (CHN) is a common recurrent neural network. The CHN tool can be used to solve a number of ranking and optimization problems, where the equilibrium states of the ordinary differential equation (ODE) related to the CHN give the solution [...] Read more.
The continuous Hopfield network (CHN) is a common recurrent neural network. The CHN tool can be used to solve a number of ranking and optimization problems, where the equilibrium states of the ordinary differential equation (ODE) related to the CHN give the solution to any given problem. Because of the non-local characteristic of the “infinite memory” effect, fractional-order (FO) systems have been proved to describe more accurately the behavior of real dynamical systems, compared to the model’s ODE. In this paper, a fractional-order variant of a Hopfield neural network is introduced to solve a Quadratic Knap Sac Problem (QKSP), namely the fractional CHN (FRAC-CHN). Firstly, the system is integrated with the quadratic method for fractional-order equations whose trajectories have shown erratic paths and jumps to other basin attractions. To avoid these drawbacks, a new algorithm for obtaining an equilibrium point for a CHN is introduced in this paper, namely the optimal fractional CHN (OPT-FRAC-CHN). This is a variable time-step method that converges to a good local minima in just a few iterations. Compared with the non-variable time-stepping CHN method, the optimal time-stepping CHN method (OPT-CHN) and the FRAC-CHN method, the OPT-FRAC-CHN method, produce the best local minima for random CHN instances and for the optimal feeding problem. Full article
Show Figures

Figure 1

Figure 1
<p>Electronic diagram of equilibrium continuous Hopfield network.</p>
Full article ">Figure 2
<p>The methodology adopted to carry out this work.</p>
Full article ">Figure 3
<p>Electronic diagram of a discrete-time Hopfield lattice of order <math display="inline"><semantics> <mi>α</mi> </semantics></math>.</p>
Full article ">Figure 4
<p>CHN energy vs. iterations.</p>
Full article ">Figure 5
<p>OPT-CHN energy vs. iterations.</p>
Full article ">Figure 6
<p>FRAC-CHN energy vs. iterations for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>OPT-FRAC-CHN energy vs. iterations for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>CHN energy vs. iteration.</p>
Full article ">Figure 9
<p>OPT-CHN energy vs. iteration.</p>
Full article ">Figure 10
<p>FRAC-CHN energy vs. iteration for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 11
<p>OPT-FRAC-CHN energy vs. iteration for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 12
<p>The diet CHN energy vs. iteration.</p>
Full article ">Figure 13
<p>The diet OPT-CHN energy vs. iteration.</p>
Full article ">Figure 14
<p>The diet FRAC-CHN energy vs. iteration for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 15
<p>The diet OPT-FRAC-CHN energy vs. iteration for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>.</p>
Full article ">
19 pages, 6987 KiB  
Article
Multistable Memristor Synapse-Based Coupled Bi-Hopfield Neuron Model: Dynamic Analysis, Microcontroller Implementation and Image Encryption
by Victor Kamdoum Tamba, Arsene Loic Mbanda Biamou, Viet-Thanh Pham and Giuseppe Grassi
Electronics 2024, 13(12), 2414; https://doi.org/10.3390/electronics13122414 - 20 Jun 2024
Cited by 2 | Viewed by 1124
Abstract
The memristor, a revolutionary electronic component, mimics both neural synapses and electromagnetic induction phenomena. Recent study challenges are the development of effective neural models and discovering their dynamics. In this study, we propose a novel Hopfield neural network model leveraging multistable memristors, showcasing [...] Read more.
The memristor, a revolutionary electronic component, mimics both neural synapses and electromagnetic induction phenomena. Recent study challenges are the development of effective neural models and discovering their dynamics. In this study, we propose a novel Hopfield neural network model leveraging multistable memristors, showcasing its efficacy in encoding biomedical images. We investigate the equilibrium states and dynamic behaviors of our designed model through comprehensive numerical simulations, revealing a rich array of phenomena including periodic orbits, chaotic dynamics, and homogeneous coexisting attractors. The practical realization of our model is achieved using a microcontroller, with experimental results demonstrating strong agreement with theoretical analyses. Furthermore, harnessing the chaos inherent in the neural network, we develop a robust biomedical image encryption technique, validated through rigorous computational performance tests. Full article
Show Figures

Figure 1

Figure 1
<p>I-V characteristics of the considered memristor. (<b>a</b>) <span class="html-italic">A</span> = 1 V, 2 V, 3 V, 4 V and <span class="html-italic">f</span> = 1 Hz; (<b>b</b>) <span class="html-italic">f</span> = 1 Hz, 2 Hz, 3 Hz, 4 Hz and <span class="html-italic">A</span> = 4 V. The initial state <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>; (<b>c</b>) initial states: <span class="html-italic">x</span><sub>0</sub> = ±1, ±7, ±14, ±21, <span class="html-italic">A</span> = 4 V and <span class="html-italic">f</span> = 1 Hz.</p>
Full article ">Figure 2
<p>The designed multistable memristor synapse-based coupled bi-Hopfield neuron model.</p>
Full article ">Figure 3
<p>Determination of the equilibrium states <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>y</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, which are indicated by the intersections of two function curves.</p>
Full article ">Figure 4
<p>Influence of <math display="inline"><semantics> <mi>ρ</mi> </semantics></math> on the behaviors of the model: (<b>a</b>) bifurcation diagram (<b>b</b>) Lyapunov exponents for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mfenced> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo> </mo> <mi>y</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo> </mo> <mi>z</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </mfenced> <mo>=</mo> <mfenced> <mrow> <mn>0</mn> <mo>,</mo> <mo> </mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>9</mn> </mrow> </msup> <mo>,</mo> <mo> </mo> <mn>0</mn> </mrow> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Phase spaces confirming the occurrence of chaos in the system for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mfenced> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo> </mo> <mi>y</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo> </mo> <mi>z</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </mfenced> <mo>=</mo> <mfenced> <mrow> <mn>0</mn> <mo>,</mo> <mo> </mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>9</mn> </mrow> </msup> <mo>,</mo> <mo> </mo> <mn>0</mn> </mrow> </mfenced> </mrow> </semantics></math> and diverse selected values of <math display="inline"><semantics> <mi>ρ</mi> </semantics></math>: (<b>a</b>) period-1 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.087</mn> </mrow> </semantics></math>, (<b>b</b>) period-2 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.1</mn> </mrow> </semantics></math>, (<b>c</b>) period-3 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.105</mn> </mrow> </semantics></math>, (<b>d</b>) chaos for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.107</mn> </mrow> </semantics></math>, (<b>e</b>) period-3 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.13</mn> </mrow> </semantics></math>, (<b>f</b>) period-6 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.134</mn> </mrow> </semantics></math>, (<b>g</b>) chaos for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.14</mn> </mrow> </semantics></math>, (<b>h</b>) chaos for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.15</mn> </mrow> </semantics></math>, (<b>i</b>) chaos for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.4</mn> </mrow> </semantics></math>, (<b>j</b>) period-3 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.728</mn> </mrow> </semantics></math>, (<b>k</b>) period-6 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.972</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5 Cont.
<p>Phase spaces confirming the occurrence of chaos in the system for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mfenced> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo> </mo> <mi>y</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo> </mo> <mi>z</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </mfenced> <mo>=</mo> <mfenced> <mrow> <mn>0</mn> <mo>,</mo> <mo> </mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>9</mn> </mrow> </msup> <mo>,</mo> <mo> </mo> <mn>0</mn> </mrow> </mfenced> </mrow> </semantics></math> and diverse selected values of <math display="inline"><semantics> <mi>ρ</mi> </semantics></math>: (<b>a</b>) period-1 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.087</mn> </mrow> </semantics></math>, (<b>b</b>) period-2 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.1</mn> </mrow> </semantics></math>, (<b>c</b>) period-3 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.105</mn> </mrow> </semantics></math>, (<b>d</b>) chaos for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.107</mn> </mrow> </semantics></math>, (<b>e</b>) period-3 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.13</mn> </mrow> </semantics></math>, (<b>f</b>) period-6 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.134</mn> </mrow> </semantics></math>, (<b>g</b>) chaos for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.14</mn> </mrow> </semantics></math>, (<b>h</b>) chaos for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.15</mn> </mrow> </semantics></math>, (<b>i</b>) chaos for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.4</mn> </mrow> </semantics></math>, (<b>j</b>) period-3 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.728</mn> </mrow> </semantics></math>, (<b>k</b>) period-6 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.972</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Impact of the initial state <math display="inline"><semantics> <mrow> <mi>z</mi> <mfenced> <mn>0</mn> </mfenced> </mrow> </semantics></math> on the comportment of the model: (<b>a</b>) bifurcation diagram and (<b>b</b>) maximum Lyapunov exponent, for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.97</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mfenced> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo> </mo> <mi>y</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo> </mo> <mi>z</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </mfenced> <mo>=</mo> <mfenced> <mrow> <mn>0</mn> <mo>,</mo> <mo> </mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>9</mn> </mrow> </msup> <mo>,</mo> <mo> </mo> <mi>z</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>Several coexisting chaotic attractors at diverse positions for several value initial states <math display="inline"><semantics> <mrow> <mi>z</mi> <mfenced> <mn>0</mn> </mfenced> </mrow> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.97</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mfenced> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo> </mo> <mo> </mo> <mi>y</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </mfenced> <mo>=</mo> <mfenced> <mrow> <mn>0</mn> <mo>,</mo> <mo> </mo> <mo> </mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>9</mn> </mrow> </msup> </mrow> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>Cross section of the basin of attraction for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.97</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mfenced> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo> </mo> <mo> </mo> <mi>y</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </mfenced> <mo>=</mo> <mfenced> <mrow> <mn>0</mn> <mo>,</mo> <mo> </mo> <mo> </mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>9</mn> </mrow> </msup> </mrow> </mfenced> </mrow> </semantics></math>. Each domain of initial states leads to a color representing a particular phase space.</p>
Full article ">Figure 9
<p>Implementation procedure of the elaborated multistable memristor synapse-based coupled bi-Hopfield neuron model.</p>
Full article ">Figure 10
<p>Hardware implementation devices. The dual-channel digital oscilloscope displays a chaotic attractor in the plane (<math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>z</mi> </msub> <mo>−</mo> <msub> <mi>V</mi> <mi>y</mi> </msub> </mrow> </semantics></math>) for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.15</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mfenced> <mrow> <mi>x</mi> <mfenced> <mn>0</mn> </mfenced> <mo>,</mo> <mo> </mo> <mo> </mo> <mi>y</mi> <mfenced> <mn>0</mn> </mfenced> <mo>,</mo> <mo> </mo> <mo> </mo> <mi>z</mi> <mfenced> <mn>0</mn> </mfenced> </mrow> </mfenced> <mo>=</mo> <mfenced> <mrow> <mn>0</mn> <mo>,</mo> <mo> </mo> <mo> </mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>9</mn> </mrow> </msup> <mo>,</mo> <mo> </mo> <mo> </mo> <mn>0</mn> </mrow> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 11
<p>Phase portraits for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math> and specific values of the coupling strength <math display="inline"><semantics> <mi>ρ</mi> </semantics></math>: (<b>a</b>) period-1 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.087</mn> </mrow> </semantics></math>, (<b>b</b>) period-2 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.1</mn> </mrow> </semantics></math>, (<b>c</b>) period-3 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.105</mn> </mrow> </semantics></math>, (<b>d</b>) chaos for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.107</mn> </mrow> </semantics></math>, (<b>e</b>) period-3 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.13</mn> </mrow> </semantics></math>, (<b>f</b>) period-6 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.134</mn> </mrow> </semantics></math>, (<b>g</b>) chaos for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.14</mn> </mrow> </semantics></math>, (<b>h</b>) chaos for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.15</mn> </mrow> </semantics></math>, (<b>i</b>) chaos for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.4</mn> </mrow> </semantics></math>, (<b>j</b>) period-3 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.728</mn> </mrow> </semantics></math>, (<b>k</b>) period-6 for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.972</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mfenced> <mrow> <mi>x</mi> <mfenced> <mn>0</mn> </mfenced> <mo>,</mo> <mo> </mo> <mo> </mo> <mi>y</mi> <mfenced> <mn>0</mn> </mfenced> <mo>,</mo> <mo> </mo> <mo> </mo> <mi>z</mi> <mfenced> <mn>0</mn> </mfenced> </mrow> </mfenced> <mo>=</mo> <mfenced> <mrow> <mn>0</mn> <mo>,</mo> <mo> </mo> <mo> </mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>9</mn> </mrow> </msup> <mo>,</mo> <mo> </mo> <mo> </mo> <mn>0</mn> </mrow> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 12
<p>Complete diagram of the encryption algorithm.</p>
Full article ">Figure 13
<p>Numerical results: (<b>a</b>) initial image of cerebrovascular accident, (<b>b</b>) initial image of pulmonary fibrosis, (<b>c</b>) initial image of lung cancer, (<b>d</b>) encrypted image of cerebrovascular accident, (<b>e</b>) encrypted image of pulmonary fibrosis, (<b>f</b>) encrypted image of lung cancer, (<b>g</b>) decrypted image of cerebrovascular accident, (<b>h</b>) decrypted image of pulmonary fibrosis, (<b>i</b>) decrypted image of lung cancer.</p>
Full article ">Figure 13 Cont.
<p>Numerical results: (<b>a</b>) initial image of cerebrovascular accident, (<b>b</b>) initial image of pulmonary fibrosis, (<b>c</b>) initial image of lung cancer, (<b>d</b>) encrypted image of cerebrovascular accident, (<b>e</b>) encrypted image of pulmonary fibrosis, (<b>f</b>) encrypted image of lung cancer, (<b>g</b>) decrypted image of cerebrovascular accident, (<b>h</b>) decrypted image of pulmonary fibrosis, (<b>i</b>) decrypted image of lung cancer.</p>
Full article ">Figure 14
<p>Results of slight key modification: (<b>a</b>) correct keys, (<b>b</b>) <math display="inline"><semantics> <mrow> <mo> </mo> <mi>γ</mi> <mo>+</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>17</mn> </mrow> </msup> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mo> </mo> <mi>ρ</mi> <mo>+</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>17</mn> </mrow> </msup> </mrow> </semantics></math>, (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>17</mn> </mrow> </msup> </mrow> </semantics></math>, (<b>e</b>) <math display="inline"><semantics> <mrow> <mo> </mo> <mo> </mo> <mi>y</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>17</mn> </mrow> </msup> </mrow> </semantics></math>, and (<b>f</b>) <math display="inline"><semantics> <mrow> <mo> </mo> <mi>z</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>17</mn> </mrow> </msup> </mrow> </semantics></math>.</p>
Full article ">Figure 14 Cont.
<p>Results of slight key modification: (<b>a</b>) correct keys, (<b>b</b>) <math display="inline"><semantics> <mrow> <mo> </mo> <mi>γ</mi> <mo>+</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>17</mn> </mrow> </msup> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mo> </mo> <mi>ρ</mi> <mo>+</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>17</mn> </mrow> </msup> </mrow> </semantics></math>, (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>17</mn> </mrow> </msup> </mrow> </semantics></math>, (<b>e</b>) <math display="inline"><semantics> <mrow> <mo> </mo> <mo> </mo> <mi>y</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>17</mn> </mrow> </msup> </mrow> </semantics></math>, and (<b>f</b>) <math display="inline"><semantics> <mrow> <mo> </mo> <mi>z</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>17</mn> </mrow> </msup> </mrow> </semantics></math>.</p>
Full article ">Figure 15
<p>The distribution of the pixels of the unencrypted images (<b>a</b>), encrypted images (<b>b</b>), and decrypted images (<b>c</b>).</p>
Full article ">Figure 16
<p>Impacts of external perturbations and information loss on the performances of the algorithm: (<b>a</b>1(i)–<b>a</b>1(iii)) encrypted images with <math display="inline"><semantics> <mrow> <mn>0.001</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>0.005</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>0.01</mn> </mrow> </semantics></math> Gaussian noise, respectively. (<b>a</b>2(i)–<b>a</b>2(iii)) corresponding decrypted images. (<b>b</b>1(i)–<b>b</b>1(iii)) encrypted images with <math display="inline"><semantics> <mrow> <mn>0.001</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>0.005</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>0.01</mn> </mrow> </semantics></math> salt and pepper noise, respectively. <b>b</b>2(i)–<b>b</b>2(iii) corresponding decrypted images. (<b>c</b>1(i)–<b>c</b>1(iii)) encrypted image with <math display="inline"><semantics> <mrow> <mrow> <mn>1</mn> <mo>/</mo> <mrow> <mn>32</mn> </mrow> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mrow> <mn>1</mn> <mo>/</mo> <mrow> <mn>16</mn> <mo> </mo> </mrow> </mrow> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mo> </mo> <mrow> <mn>1</mn> <mo>/</mo> <mn>4</mn> </mrow> </mrow> </semantics></math> information loss, respectively. (<b>c</b>2(i)–<b>c</b>2(iii)) corresponding decrypted images.</p>
Full article ">Figure 16 Cont.
<p>Impacts of external perturbations and information loss on the performances of the algorithm: (<b>a</b>1(i)–<b>a</b>1(iii)) encrypted images with <math display="inline"><semantics> <mrow> <mn>0.001</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>0.005</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>0.01</mn> </mrow> </semantics></math> Gaussian noise, respectively. (<b>a</b>2(i)–<b>a</b>2(iii)) corresponding decrypted images. (<b>b</b>1(i)–<b>b</b>1(iii)) encrypted images with <math display="inline"><semantics> <mrow> <mn>0.001</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>0.005</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>0.01</mn> </mrow> </semantics></math> salt and pepper noise, respectively. <b>b</b>2(i)–<b>b</b>2(iii) corresponding decrypted images. (<b>c</b>1(i)–<b>c</b>1(iii)) encrypted image with <math display="inline"><semantics> <mrow> <mrow> <mn>1</mn> <mo>/</mo> <mrow> <mn>32</mn> </mrow> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mrow> <mn>1</mn> <mo>/</mo> <mrow> <mn>16</mn> <mo> </mo> </mrow> </mrow> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mo> </mo> <mrow> <mn>1</mn> <mo>/</mo> <mn>4</mn> </mrow> </mrow> </semantics></math> information loss, respectively. (<b>c</b>2(i)–<b>c</b>2(iii)) corresponding decrypted images.</p>
Full article ">
17 pages, 722 KiB  
Article
Dynamics of Symmetrical Discontinuous Hopfield Neural Networks with Poisson Stable Rates, Synaptic Connections and Unpredictable Inputs
by Marat Akhmet, Zakhira Nugayeva and Roza Seilova
Symmetry 2024, 16(6), 740; https://doi.org/10.3390/sym16060740 - 13 Jun 2024
Viewed by 774
Abstract
The purpose of this paper is to study the dynamics of Hopfield neural networks with impulsive effects, focusing on Poisson stable rates, synaptic connections, and unpredictable external inputs. Through the symmetry of impulsive and differential compartments of the model, we follow and extend [...] Read more.
The purpose of this paper is to study the dynamics of Hopfield neural networks with impulsive effects, focusing on Poisson stable rates, synaptic connections, and unpredictable external inputs. Through the symmetry of impulsive and differential compartments of the model, we follow and extend the principal dynamical ideas of the founder. Specifically, the research delves into the phenomena of unpredictability and Poisson stability, which have been examined in previous studies relating to models of continuous and discontinuous neural networks with constant components. We extend the analysis to discontinuous models characterized by variable impulsive actions and structural ingredients. The method of included intervals based on the B-topology is employed to investigate the networks. It is a novel approach that addresses the unique challenges posed by the sophisticated recurrence. Full article
(This article belongs to the Special Issue Application of Symmetry in Equations)
Show Figures

Figure 1

Figure 1
<p>The coordinates of function <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>The trajectory of function <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>.</p>
Full article ">
17 pages, 4804 KiB  
Article
Clearance Nonlinear Control Method of Electro-Hydraulic Servo System Based on Hopfield Neural Network
by Tao Wang and Jinchun Song
Machines 2024, 12(5), 329; https://doi.org/10.3390/machines12050329 - 11 May 2024
Cited by 2 | Viewed by 964
Abstract
The electro-hydraulic servo system has advantages such as high pressure, large flow, and high power, etc., which can also realize stepless regulation, so it is widely used in many engineering machineries. A linear model is sometimes only a simple approximation of an idealized [...] Read more.
The electro-hydraulic servo system has advantages such as high pressure, large flow, and high power, etc., which can also realize stepless regulation, so it is widely used in many engineering machineries. A linear model is sometimes only a simple approximation of an idealized model, but in an actual system, there may be nonlinear and transient variation characteristics in the systems. Coupling is reflected in the fact that the components or functional structures implemented by each system used for the design of hydraulic systems are not completely or independently related to each other, but affect each other. The nonlinear clearance between the actuator and the load reduces the control accuracy of the system and increases the impact, thus losing stable working conditions. In the paper, based on the nonlinear clearance problem of the electro-hydraulic servo system, a mathematical transfer model with clearance is established, and on this basis, a clearance compensation method based on the Hopfield neural network is proposed. In this way, clearance compensation can be realized by adjusting the parameters of neural network nodes, through simple and convenient operation. Finally, by setting different clearance values, the results of the step response and sine response curve before and after clearance compensation of the hydraulic system are compared, and the effectiveness of Hopfield neural network compensation clearance control is verified based on the comparison simulation results. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

Figure 1
<p>Input and output characteristic curve of clearance characteristic.</p>
Full article ">Figure 2
<p>Hysteresis model of clearance.</p>
Full article ">Figure 3
<p>The model of asymmetric cylinder system with flexible connection.</p>
Full article ">Figure 4
<p>Schematic diagram of rotating pair with clearance.</p>
Full article ">Figure 5
<p>Schematic diagram of clearance changes.</p>
Full article ">Figure 6
<p>Hopfield neural network.</p>
Full article ">Figure 7
<p>Mesh structure of Hopfield network.</p>
Full article ">Figure 8
<p>Process block diagram.</p>
Full article ">Figure 9
<p>Block diagram of an electro-hydraulic servo system with nonlinear clearance model control.</p>
Full article ">Figure 10
<p>Control system of electro-hydraulic servo system.</p>
Full article ">Figure 11
<p>Applied electro-hydraulic servo system.</p>
Full article ">Figure 12
<p>Comparison diagram of system step response curve between uncompensated clearance and compensated clearance during extension movement: (<b>a</b>) The clearance value is 0.1 mm; (<b>b</b>) the clearance value is 0.5 mm; (<b>c</b>) the clearance value is 1 mm.</p>
Full article ">Figure 13
<p>Comparison diagram of system step response curve between uncompensated clearance and compensated clearance during retraction movement: (<b>a</b>) The clearance value is 0.1 mm; (<b>b</b>) the clearance value is 0.5 mm; (<b>c</b>) the clearance value is 1 mm.</p>
Full article ">Figure 14
<p>Comparison of the sine signal curves (1 cm) of the system output between the uncompensated clearance and the compensated clearance: (<b>a</b>) The clearance value is 0.1 mm; (<b>b</b>) the clearance value is 0.5 mm; (<b>c</b>) the clearance value is 1 mm.</p>
Full article ">Figure 15
<p>Comparison of the sine signal curves (3 cm) of the system output between the uncompensated clearance and the compensated clearance: (<b>a</b>) The clearance value is 0.1 mm; (<b>b</b>) the clearance value is 0.5 mm; (<b>c</b>) the clearance value is 1 mm.</p>
Full article ">
15 pages, 1153 KiB  
Article
In Search of Dispersed Memories: Generative Diffusion Models Are Associative Memory Networks
by Luca Ambrogioni
Entropy 2024, 26(5), 381; https://doi.org/10.3390/e26050381 - 29 Apr 2024
Cited by 14 | Viewed by 3798
Abstract
Uncovering the mechanisms behind long-term memory is one of the most fascinating open problems in neuroscience and artificial intelligence. Artificial associative memory networks have been used to formalize important aspects of biological memory. Generative diffusion models are a type of generative machine learning [...] Read more.
Uncovering the mechanisms behind long-term memory is one of the most fascinating open problems in neuroscience and artificial intelligence. Artificial associative memory networks have been used to formalize important aspects of biological memory. Generative diffusion models are a type of generative machine learning techniques that have shown great performance in many tasks. Similar to associative memory systems, these networks define a dynamical system that converges to a set of target states. In this work, we show that generative diffusion models can be interpreted as energy-based models and that, when trained on discrete patterns, their energy function is (asymptotically) identical to that of modern Hopfield networks. This equivalence allows us to interpret the supervised training of diffusion models as a synaptic learning process that encodes the associative dynamics of a modern Hopfield network in the weight structure of a deep neural network. Leveraging this connection, we formulate a generalized framework for understanding the formation of long-term memory, where creative generation and memory recall can be seen as parts of a unified continuum. Full article
(This article belongs to the Special Issue Deep Generative Modeling: Theory and Applications)
Show Figures

Figure 1

Figure 1
<p>Visualization of different kinds of energy landscape and gradient vector fields corresponding to different forms of memory (in a two-dimensional space): (<b>a</b>) classical point-like memory; (<b>b</b>) extended localized memory; (<b>c</b>) non-localized (semantic) memory structure. The color denotes the probability density of the learned distribution while the lines represent the integral trajectories of the vector field oinduced by the score function.</p>
Full article ">Figure 2
<p>Qualitative analysis of the (marginal) denoising trajectories of a binary associative memory problem with four patterns in a five-dimensional space. (<b>a</b>) Comparison between denoising trajectories of diffusion models and modern Hopfield updates. The diffusion curves are integrated using the Euler method with 2000 steps. The trajectories are overlaid to four modern Hopfield updates. (<b>b</b>) Comparison between exact and learned deterministic denoising trajectories. The colors are used to identify individual trajectories.</p>
Full article ">Figure 3
<p>(<b>a</b>) Median error of exact diffusion model as function of the dimensionality. (<b>b</b>) Capacity of diffusion models and Hopfield networks in log scale. The shaded area denotes the estimated <math display="inline"><semantics> <mrow> <mn>95</mn> <mo>%</mo> </mrow> </semantics></math> intervals.</p>
Full article ">
40 pages, 23417 KiB  
Article
MTS-PRO2SAT: Hybrid Mutation Tabu Search Algorithm in Optimizing Probabilistic 2 Satisfiability in Discrete Hopfield Neural Network
by Ju Chen, Yuan Gao, Mohd Shareduwan Mohd Kasihmuddin, Chengfeng Zheng, Nurul Atiqah Romli, Mohd. Asyraf Mansor, Nur Ezlin Zamri and Chuanbiao When
Mathematics 2024, 12(5), 721; https://doi.org/10.3390/math12050721 - 29 Feb 2024
Cited by 4 | Viewed by 1304
Abstract
The primary objective of introducing metaheuristic algorithms into traditional systematic logic is to minimize the cost function. However, there is a lack of research on the impact of introducing metaheuristic algorithms on the cost function under different proportions of positive literals. In order [...] Read more.
The primary objective of introducing metaheuristic algorithms into traditional systematic logic is to minimize the cost function. However, there is a lack of research on the impact of introducing metaheuristic algorithms on the cost function under different proportions of positive literals. In order to fill in this gap and improve the efficiency of the metaheuristic algorithm in systematic logic, we proposed a metaheuristic algorithm based on mutation tabu search and embedded it in probabilistic satisfiability logic in discrete Hopfield neural networks. Based on the traditional tabu search algorithm, the mutation operators of the genetic algorithm were combined to improve its global search ability during the learning phase and ensure that the cost function of the systematic logic converged to zero at different proportions of positive literals. Additionally, further optimization was carried out in the retrieval phase to enhance the diversity of solutions. Compared with nine other metaheuristic algorithms and exhaustive search algorithms, the proposed algorithm was superior to other algorithms in terms of time complexity and global convergence, and showed higher efficiency in the search solutions at the binary search space, consolidated the efficiency of systematic logic in the learning phase, and significantly improved the diversity of the global solution in the retrieval phase of systematic logic. Full article
(This article belongs to the Special Issue Advances in Genetic Programming and Soft Computing)
Show Figures

Figure 1

Figure 1
<p>Generation process of neighborhood solution.</p>
Full article ">Figure 2
<p>Generation strategy to candidate solution.</p>
Full article ">Figure 3
<p>Flowchart of MTS.</p>
Full article ">Figure 4
<p><math display="inline"><semantics> <mrow> <mi>M</mi> <mi>A</mi> <msub> <mi>E</mi> <mrow> <mi>l</mi> <mi>e</mi> <mi>a</mi> <mi>r</mi> <mi>n</mi> </mrow> </msub> </mrow> </semantics></math> evaluation for all experimental models.</p>
Full article ">Figure 4 Cont.
<p><math display="inline"><semantics> <mrow> <mi>M</mi> <mi>A</mi> <msub> <mi>E</mi> <mrow> <mi>l</mi> <mi>e</mi> <mi>a</mi> <mi>r</mi> <mi>n</mi> </mrow> </msub> </mrow> </semantics></math> evaluation for all experimental models.</p>
Full article ">Figure 5
<p><math display="inline"><semantics> <mrow> <mi>G</mi> <mi>L</mi> <msub> <mi>I</mi> <mrow> <mi>a</mi> <mi>v</mi> <mi>g</mi> </mrow> </msub> </mrow> </semantics></math> evaluation for all experimental models.</p>
Full article ">Figure 5 Cont.
<p><math display="inline"><semantics> <mrow> <mi>G</mi> <mi>L</mi> <msub> <mi>I</mi> <mrow> <mi>a</mi> <mi>v</mi> <mi>g</mi> </mrow> </msub> </mrow> </semantics></math> evaluation for all experimental models.</p>
Full article ">Figure 6
<p><math display="inline"><semantics> <mrow> <mi>C</mi> <mi>T</mi> </mrow> </semantics></math> evaluation for all PRO2SAT embedded in metaheuristic algorithms.</p>
Full article ">Figure 6 Cont.
<p><math display="inline"><semantics> <mrow> <mi>C</mi> <mi>T</mi> </mrow> </semantics></math> evaluation for all PRO2SAT embedded in metaheuristic algorithms.</p>
Full article ">Figure 7
<p><math display="inline"><semantics> <mrow> <mi>A</mi> <mi>I</mi> </mrow> </semantics></math> evaluation for all PRO2SAT embedded in metaheuristic algorithms.</p>
Full article ">Figure 7 Cont.
<p><math display="inline"><semantics> <mrow> <mi>A</mi> <mi>I</mi> </mrow> </semantics></math> evaluation for all PRO2SAT embedded in metaheuristic algorithms.</p>
Full article ">Figure 8
<p><math display="inline"><semantics> <mrow> <mi>T</mi> <msub> <mi>V</mi> <mrow> <mi>s</mi> <mi>i</mi> <mi>m</mi> <mi>i</mi> <mi>l</mi> <mi>a</mi> <mi>r</mi> </mrow> </msub> </mrow> </semantics></math> evaluation for all experimental models.</p>
Full article ">Figure 8 Cont.
<p><math display="inline"><semantics> <mrow> <mi>T</mi> <msub> <mi>V</mi> <mrow> <mi>s</mi> <mi>i</mi> <mi>m</mi> <mi>i</mi> <mi>l</mi> <mi>a</mi> <mi>r</mi> </mrow> </msub> </mrow> </semantics></math> evaluation for all experimental models.</p>
Full article ">
20 pages, 4551 KiB  
Article
Impacts of Resampling and Downscaling Digital Elevation Model and Its Morphometric Factors: A Comparison of Hopfield Neural Network, Bilinear, Bicubic, and Kriging Interpolations
by Nguyen Quang Minh, Nguyen Thi Thu Huong, Pham Quoc Khanh, La Phu Hien and Dieu Tien Bui
Remote Sens. 2024, 16(5), 819; https://doi.org/10.3390/rs16050819 - 27 Feb 2024
Cited by 6 | Viewed by 2838
Abstract
The digital elevation model (DEM) and its derived morphometric factors, i.e., slope, aspect, profile and plan curvatures, and topographic wetness index (TWI), are essential for natural hazard modeling and prediction as they provide critical information about the terrain’s characteristics that can influence the [...] Read more.
The digital elevation model (DEM) and its derived morphometric factors, i.e., slope, aspect, profile and plan curvatures, and topographic wetness index (TWI), are essential for natural hazard modeling and prediction as they provide critical information about the terrain’s characteristics that can influence the likelihood and severity of natural hazards. Therefore, increasing the accuracy of the DEM and its derived factors plays a critical role. The primary aim of this study is to evaluate and compare the effects of resampling and downscaling the DEM from low to medium resolution and from medium to high resolutions using four methods: namely the Hopfield Neural Network (HNN), Bilinear, Bicubic, and Kriging, on five morphometric factors derived from it. A geospatial database was established, comprising five DEMs with different resolutions: specifically, a SRTM DEM with 30 m resolution, a 20 m resolution DEM derived from topographic maps at a scale of 50,000, a 10 m resolution DEM generated from topographic maps at a scale of 10,000, a 5 m resolution DEM created using surveying points with total stations, and a 5 m resolution DEM constructed through drone photogrammetry. The accuracy of the resampling and downscaling was assessed using Root Mean Square Error (RMSE) and mean absolute error (MAE) as statistical metrics. The results indicate that, in the case of downscaling from low to medium resolution, all four methods—HNN, Bilinear, Bicubic, and Kriging—significantly improve the accuracy of slope, aspect, profile and plan curvatures, and TWI. However, for the case of medium to high resolutions, further investigations are needed as the improvement in accuracy observed in the DEMs does not necessarily translate to the improvement of the second derivative morphometric factors such as plan and profile curvatures and TWI. While RMSEs of the first derivatives of DEMs, such as slope and aspect, reduced in a range of 8% to 55% in all five datasets, the RMSEs of curvatures and TWI slightly increased in cases of downscaling and resampling of Dataset 4. Among the four methods, the HNN method provides the highest accuracy, followed by the bicubic method. The statistics showed that in all five cases of the experiment, the HNN downscaling reduced the RMSE and MAE by 55% for the best case and 10% for the worst case for slope, and it reduced the RMSE by 50% for the best case of aspect. Both the HNN and the bicubic methods outperform the Kriging and bilinear methods. Therefore, we highly recommend using the HNN method for downscaling DEMs to produce more accurate morphometric factors, slope, aspect, profile and plan curvatures, and TWI. Full article
Show Figures

Figure 1

Figure 1
<p>Four datasets (<b>a</b>) DEM 20 m and 30 m in Nghe An Province; (<b>b</b>) DEM 5 m in Lang Son Province; (<b>c</b>) DEM 10 m in Kon Tum Province; (<b>d</b>) DEM 5 m in Cao Bang Province.</p>
Full article ">Figure 2
<p>Resampling and downscaling results: (<b>1a</b>–<b>1f</b>): Reference, Input and downscaled and resampled DEMs in Dataset 1; (<b>2a</b>–<b>2f</b>): Reference, Input and downscaled and resampled DEMs in Dataset 2; (<b>3a</b>–<b>3f</b>): Reference, Input and downscaled and resampled DEMs in Dataset 3; (<b>4a</b>–<b>4f</b>): Reference, Input and downscaled and resampled DEMs in Dataset 4; (<b>5a</b>–<b>5f</b>): Reference, Input and downscaled and resampled DEMs in Dataset 5.</p>
Full article ">Figure 2 Cont.
<p>Resampling and downscaling results: (<b>1a</b>–<b>1f</b>): Reference, Input and downscaled and resampled DEMs in Dataset 1; (<b>2a</b>–<b>2f</b>): Reference, Input and downscaled and resampled DEMs in Dataset 2; (<b>3a</b>–<b>3f</b>): Reference, Input and downscaled and resampled DEMs in Dataset 3; (<b>4a</b>–<b>4f</b>): Reference, Input and downscaled and resampled DEMs in Dataset 4; (<b>5a</b>–<b>5f</b>): Reference, Input and downscaled and resampled DEMs in Dataset 5.</p>
Full article ">Figure 3
<p>Histograms of the slopes obtained from the (<b>a</b>) Dataset 1: 30 m DEM in Nghean; (<b>b</b>) Dataset 2: 20 m DEM in Nghean; (<b>c</b>) Dataset 4: 10 m DEM in Daklak; (<b>d</b>) Dataset 5: 5 m DEM in Caobang.</p>
Full article ">Figure 4
<p>TWI calculated from resampled DEM in Dataset 5 (5 m resolution): (<b>a</b>) TWI from reference DEM; (<b>b</b>) TWI from “no resampling” 20 m DEM; (<b>c</b>) TWI from the DEM resampled by bilinear method; (<b>d</b>) TWI from the DEM resampled by bi-cubic method; (<b>e</b>) TWI from the DEM created by Kriging interpolation method; and (<b>f</b>) TWI from DEM generated by the HNN downscaling approach.</p>
Full article ">
12 pages, 829 KiB  
Article
Stochastic Antiresonance for Systems with Multiplicative Noise and Sector-Type Nonlinearities
by Adrian-Mihail Stoica and Isaac Yaesh
Entropy 2024, 26(2), 115; https://doi.org/10.3390/e26020115 - 26 Jan 2024
Viewed by 1115
Abstract
The paradigm of stochastic antiresonance is considered for a class of nonlinear systems with sector bounded nonlinearities. Such systems arise in a variety of situations such as in engineering applications, in physics, in biology, and in systems with more general nonlinearities, approximated by [...] Read more.
The paradigm of stochastic antiresonance is considered for a class of nonlinear systems with sector bounded nonlinearities. Such systems arise in a variety of situations such as in engineering applications, in physics, in biology, and in systems with more general nonlinearities, approximated by a wide neural network of a single hidden layer, such as the error equation of Hopfield networks with respect to equilibria or visuo-motor tasks. It is shown that driving such systems with a certain amount of state-multiplicative noise, one can stabilize noise-free unstable systems. Linear-Matrix-Inequality-based stabilization conditions are derived, utilizing a novel non-quadratic Lyapunov functional and a numerical example where state-multiplicative noise stabilizes a nonlinear system exhibiting chaotic behavior is demonstrated. Full article
(This article belongs to the Special Issue Information Theory in Control Systems, 2nd Edition)
Show Figures

Figure 1

Figure 1
<p>A scalar system that is unstable without state-multiplicative noise, (<b>top</b>) <math display="inline"><semantics> <mrow> <msup> <mi>σ</mi> <mn>2</mn> </msup> <mo>&lt;</mo> <mn>2</mn> <mi>a</mi> </mrow> </semantics></math> SAR not attained, (<b>bottom</b>) <math display="inline"><semantics> <mrow> <msup> <mi>σ</mi> <mn>2</mn> </msup> <mo>&gt;</mo> <mn>2</mn> <mi>a</mi> </mrow> </semantics></math> SAR attained.</p>
Full article ">Figure 2
<p>Second-order system subject to state-multiplicative noises of different intensities, (<b>top</b>) For <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>λ</mi> <mo>¯</mo> </mover> <mrow> <mo>(</mo> <mi>A</mi> <mo>+</mo> <msup> <mi>A</mi> <mi>T</mi> </msup> <mo>)</mo> </mrow> <mo>&gt;</mo> <msup> <mi>σ</mi> <mn>2</mn> </msup> </mrow> </semantics></math>, SAR not attained, (<b>bottom</b>) For <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>λ</mi> <mo>¯</mo> </mover> <mrow> <mo>(</mo> <mi>A</mi> <mo>+</mo> <msup> <mi>A</mi> <mi>T</mi> </msup> <mo>)</mo> </mrow> <mo>&lt;</mo> <msup> <mi>σ</mi> <mn>2</mn> </msup> </mrow> </semantics></math>, SAR attained.</p>
Full article ">Figure 3
<p><math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math> vs. <math display="inline"><semantics> <msub> <mi>x</mi> <mn>2</mn> </msub> </semantics></math>: Chaos stabilization using multiplicative noise, the original <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> jumps to <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>500</mn> </mrow> </semantics></math> s.</p>
Full article ">Figure 4
<p>States time responses before and after applying the state-multiplicative noise.</p>
Full article ">
18 pages, 14336 KiB  
Article
Dynamic Analysis and FPGA Implementation of a New Fractional-Order Hopfield Neural Network System under Electromagnetic Radiation
by Fei Yu, Yue Lin, Si Xu, Wei Yao, Yumba Musoya Gracia and Shuo Cai
Biomimetics 2023, 8(8), 559; https://doi.org/10.3390/biomimetics8080559 - 21 Nov 2023
Cited by 7 | Viewed by 1765
Abstract
Fractional calculus research indicates that, within the field of neural networks, fractional-order systems more accurately simulate the temporal memory effects present in the human brain. Therefore, it is worthwhile to conduct an in-depth investigation into the complex dynamics of fractional-order neural networks compared [...] Read more.
Fractional calculus research indicates that, within the field of neural networks, fractional-order systems more accurately simulate the temporal memory effects present in the human brain. Therefore, it is worthwhile to conduct an in-depth investigation into the complex dynamics of fractional-order neural networks compared to integer-order models. In this paper, we propose a magnetically controlled, memristor-based, fractional-order chaotic system under electromagnetic radiation, utilizing the Hopfield neural network (HNN) model with four neurons as the foundation. The proposed system is solved by using the Adomain decomposition method (ADM). Then, through dynamic simulations of the internal parameters of the system, rich dynamic behaviors are found, such as chaos, quasiperiodicity, direction-controllable multi-scroll, and the emergence of analogous symmetric dynamic behaviors in the system as the radiation parameters are altered, with the order remaining constant. Finally, we implement the proposed new fractional-order HNN system on a field-programmable gate array (FPGA). The experimental results show the feasibility of the theoretical analysis. Full article
(This article belongs to the Special Issue Bio-Inspired Neural Networks)
Show Figures

Figure 1

Figure 1
<p>The voltage-current trajectory diagram of Equation (<a href="#FD12-biomimetics-08-00559" class="html-disp-formula">12</a>). (<b>a</b>) Fixed <span class="html-italic">F</span> = 5, <span class="html-italic">q</span> = 0.9, voltage-current trajectories varying with <math display="inline"><semantics> <msub> <mi>A</mi> <mi>m</mi> </msub> </semantics></math>. (<b>b</b>) Fixed <math display="inline"><semantics> <msub> <mi>A</mi> <mi>m</mi> </msub> </semantics></math> = 30, <span class="html-italic">q</span> = 0.9, voltage-current trajectories varying with <span class="html-italic">F</span>. (<b>c</b>) Fixed <math display="inline"><semantics> <msub> <mi>A</mi> <mi>m</mi> </msub> </semantics></math> = 25, <span class="html-italic">F</span> = 5, voltage-current trajectories varying with <span class="html-italic">q</span>.</p>
Full article ">Figure 2
<p>The topology of the 4-dimensional HNN model based on memristors.</p>
Full article ">Figure 3
<p>Graphical method for solving equilibrium points.</p>
Full article ">Figure 4
<p>Order <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>∈</mo> <mo>(</mo> <mn>0.4</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Order <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>∈</mo> <mo>(</mo> <mn>0.475</mn> <mo>,</mo> <mn>0.485</mn> <mo>)</mo> </mrow> </semantics></math> (The red is the value of <span class="html-italic">LE</span><sub>1</sub>, the blue line is the value of <span class="html-italic">LE</span><sub>2</sub>, and the green line is the value of <span class="html-italic">LE</span><sub>3</sub>).</p>
Full article ">Figure 6
<p>Phase diagrams of each planar chaotic attractor with order <span class="html-italic">q</span> = 0.478.</p>
Full article ">Figure 7
<p>The phase portraits of different periodic attractors in the y-z plane with different values of the order <span class="html-italic">q</span>. (<b>a</b>) <span class="html-italic">q</span> = 0.481; (<b>b</b>) <span class="html-italic">q</span> = 0.482; (<b>c</b>) <span class="html-italic">q</span> = 0.4825.</p>
Full article ">Figure 8
<p>Order <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>∈</mo> <mo>(</mo> <mn>0.59</mn> <mo>,</mo> <mn>0.605</mn> <mo>)</mo> </mrow> </semantics></math> (The red is the value of LE1, the blue line is the value of LE2, and the green line is the value of LE3).</p>
Full article ">Figure 9
<p>Quasi-periodic attractor phase diagram with order <span class="html-italic">q</span> = 0.5906.</p>
Full article ">Figure 10
<p>The phase portraits of multi-scroll attractors in the y-z plane for different values of parameter <span class="html-italic">b</span>.</p>
Full article ">Figure 11
<p>Order <span class="html-italic">q</span> = 0.5 (The red is the value of LE1, the blue line is the value of LE2, and the green line is the value of LE3).</p>
Full article ">Figure 12
<p>Attractor phase diagrams with different values of <span class="html-italic">b</span> when order <span class="html-italic">q</span> is 0.5. (The red color is positive, and the blue is negative).</p>
Full article ">Figure 13
<p>Numerical solution once of system iteration in Matlab.</p>
Full article ">Figure 14
<p>Numerical solution once of system iteration in Vivado.</p>
Full article ">Figure 15
<p>Schematic diagram of the FOHNN hardware implementation.</p>
Full article ">Figure 16
<p>Experimental results of the FOHNN hardware implementation: (<b>a</b>) phase diagrams in the y-z plane; (<b>b</b>) phase diagrams in the x-z plane; (<b>c</b>) phase diagrams in the y-u plane.</p>
Full article ">Figure 17
<p>Results of directionally controllable multi-scroll hardware experiments.</p>
Full article ">
14 pages, 2507 KiB  
Article
Phase Synchronization and Dynamic Behavior of a Novel Small Heterogeneous Coupled Network
by Mengjiao Wang, Jiwei Peng, Shaobo He, Xinan Zhang and Herbert Ho-Ching Iu
Fractal Fract. 2023, 7(11), 818; https://doi.org/10.3390/fractalfract7110818 - 13 Nov 2023
Cited by 4 | Viewed by 3015
Abstract
Studying the firing dynamics and phase synchronization behavior of heterogeneous coupled networks helps us understand the mechanism of human brain activity. In this study, we propose a novel small heterogeneous coupled network in which the 2D Hopfield neural network (HNN) and the 2D [...] Read more.
Studying the firing dynamics and phase synchronization behavior of heterogeneous coupled networks helps us understand the mechanism of human brain activity. In this study, we propose a novel small heterogeneous coupled network in which the 2D Hopfield neural network (HNN) and the 2D Hindmarsh–Rose (HR) neuron are coupled through a locally active memristor. The simulation results show that the network exhibits complex dynamic behavior and is different from the usual phase synchronization. More specifically, the membrane potential of the 2D HR neuron exhibits five stable firing modes as the coupling parameter k1 changes. In addition, it is found that in the local region of k1, the number of spikes in bursting firing increases with the increase in k1. More interestingly, the network gradually changes from synchronous to asynchronous during the increase in the coupling parameter k1 but suddenly becomes synchronous around the coupling parameter k1 = 1.96. As far as we know, this abnormal synchronization behavior is different from the existing findings. This research is inspired by the fact that the episodic synchronous abnormal firing of excitatory neurons in the hippocampus of the brain can lead to diseases such as epilepsy. This helps us further understand the mechanism of brain activity and build bionic systems. Finally, we design the simulation circuit of the network and implement it on an STM32 microcontroller. Full article
Show Figures

Figure 1

Figure 1
<p>Pinched hysteresis loops with <span class="html-italic">A</span> = 1.9, <span class="html-italic">F</span> = 0.5, and different initial values.</p>
Full article ">Figure 2
<p>Topology diagram of the novel small heterogeneous coupled network.</p>
Full article ">Figure 3
<p>Bifurcation diagram and the two largest Lyapunov exponents of the coupled network controlled by <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math>, with initial states (0.1, 0, 0, 0, 0.1). (<b>a</b>) Bifurcation diagram; (<b>b</b>) Lyapunov exponents diagram.</p>
Full article ">Figure 4
<p>Multiple periodic burstings with different spikes of a small heterogeneous coupled network controlled by <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math>, and initial states (0.1, 0, 0, 0, 0.1). (<b>a</b>) period-3 bursting with <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 0.75; (<b>b</b>) period-4 bursting with <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 0.84; (<b>c</b>) period-5 bursting with <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 0.91; (<b>d</b>) Period-6 bursting with <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 0.99; (<b>e</b>) period-7 bursting with <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.083.</p>
Full article ">Figure 5
<p>The firing patterns of the membrane potential in a small heterogeneous coupled network controlled by <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math>, with initial states (0.1, 0, 0, 0, 0.1). (<b>a</b>) Periodic spiking mode with <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 0.63; (<b>b</b>) chaotic spiking mode with <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 0.71; (<b>c</b>) stochastic bursting mode with <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.178; (<b>d</b>) chaotic bursting mode with <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.39; (<b>e</b>) periodic bursting mode with <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.65.</p>
Full article ">Figure 6
<p>The phase diagrams of the coupled network controlled by <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math>, with initial states (0.1, 0, 0, 0, 0.1). (<b>a</b>) Periodic spiking mode with <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 0.63; (<b>b</b>) chaotic spiking mode with <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 0.71; (<b>c</b>) stochastic bursting mode with <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.178; (<b>d</b>) chaotic bursting mode with <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.39; (<b>e</b>) periodic bursting mode with <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.65.</p>
Full article ">Figure 7
<p>Coexistence behavior controlled by initial value, and <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 0.83. (<b>a</b>) The coexisting attractor phase diagram of the network; (<b>b</b>) the basin of attraction for the coexisting behavior.</p>
Full article ">Figure 8
<p>The phase synchronization in a small heterogeneous coupled network controlled by <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math>, with initial states (0.1, 0, 0, 0, 0.1). (<b>a</b>) <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 0.5; (<b>b</b>) <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 0.8; (<b>c</b>) <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.5; (<b>d</b>) <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.8; (<b>e</b>) <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.96; (<b>f</b>) <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.98.</p>
Full article ">Figure 9
<p>A circuit diagram of the hyperbolic tangent function.</p>
Full article ">Figure 10
<p>A circuit diagram of the coupled network.</p>
Full article ">Figure 11
<p>Simulation results of the small heterogeneous coupled network. (<b>a</b>). <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 0.63; (<b>b</b>). <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 0.71; (<b>c</b>). <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.178; (<b>d</b>). <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.39; (<b>e</b>). <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.65.</p>
Full article ">Figure 12
<p>STM32-based hardware layout diagram of the small heterogeneous coupled network.</p>
Full article ">Figure 13
<p>STM32-based flowchart of the fourth-order Runge–Kutta integration method.</p>
Full article ">Figure 14
<p>Microcontroller implementation of the small heterogeneous coupled network. (<b>a</b>). <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 0.63; (<b>b</b>). <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 0.71; (<b>c</b>). <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.178; (<b>d</b>). <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.39; (<b>e</b>). <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> = 1.65.</p>
Full article ">
17 pages, 4078 KiB  
Article
A Novel Real-Time Robust Controller of a Four-Wheel Independent Steering System for EV Using Neural Networks and Fuzzy Logic
by Alexis Kosmidis, Georgios Ioannidis, Georgios Vokas and Stavros Kaminaris
Mathematics 2023, 11(21), 4535; https://doi.org/10.3390/math11214535 - 3 Nov 2023
Viewed by 1228
Abstract
In this study a four-wheel independent steering (4WIS) system for an electric vehicle (EV) steered by stepper motors is presented as a revolutionary real-time control technique employing neural networks in combination with fuzzy logic, where the use of the neural network greatly simplifies [...] Read more.
In this study a four-wheel independent steering (4WIS) system for an electric vehicle (EV) steered by stepper motors is presented as a revolutionary real-time control technique employing neural networks in combination with fuzzy logic, where the use of the neural network greatly simplifies the computational process of fuzzy logic. The control of the four wheels is based on a variation of a Hopfield Neural Network (VHNN) method, in which the input is the error of each steering motor and the output is processed by a hyperbolic tangent function (HTF) feeding the fuzzy logic controller (FLC), which ultimately drives the stepper motor. The whole system consists of the four aforementioned blocks which work in sync and are inseparable from each other with the common goal of driving all the steering stepper motors at the same time. The novelty of this system is that each wheel monitors the condition of the others, so even in the case of the failure of one wheel, the vehicle does not veer off course. The results of the simulation show that the suggested control system is very resilient and workable at all angles and speeds. Full article
(This article belongs to the Special Issue Control, Optimization and Intelligent Computing in Energy)
Show Figures

Figure 1

Figure 1
<p>k ratio in relation to vehicle speed.</p>
Full article ">Figure 2
<p>Front left wheel angle.</p>
Full article ">Figure 3
<p>Front right wheel angle.</p>
Full article ">Figure 4
<p>Rear left wheel angle.</p>
Full article ">Figure 5
<p>Rear right wheel angle.</p>
Full article ">Figure 6
<p>Tangent function according to k value.</p>
Full article ">Figure 7
<p>Fuzzy logic process [<a href="#B22-mathematics-11-04535" class="html-bibr">22</a>,<a href="#B23-mathematics-11-04535" class="html-bibr">23</a>,<a href="#B24-mathematics-11-04535" class="html-bibr">24</a>].</p>
Full article ">Figure 8
<p>Control block diagram.</p>
Full article ">Figure 9
<p>(<b>a</b>) Input variable “PossitionError”; (<b>b</b>) Output variable “StepperPWM”; (<b>c</b>) Rule-based control.</p>
Full article ">Figure 9 Cont.
<p>(<b>a</b>) Input variable “PossitionError”; (<b>b</b>) Output variable “StepperPWM”; (<b>c</b>) Rule-based control.</p>
Full article ">Figure 10
<p>Βlock diagram of the proposed four stepper motor steering scheme in Matlab/Simulink platform.</p>
Full article ">Figure 11
<p>(<b>a</b>) Step response at 5 deg and 5 km/h; (<b>b</b>) Step response at 5 deg and 50 km/h; (<b>c</b>) Step response at 5 deg and 100 km/h; (<b>d</b>) Step response at 15 deg and 5 km/h; (<b>e</b>) Step response at 15 deg and 40 km/h; (<b>f</b>) Step response at 15 deg and 75 km/h.</p>
Full article ">Figure 12
<p>(<b>a</b>) Step response at 25 deg and 5 km/h; (<b>b</b>) Step response at 25 deg and 25 km/h; (<b>c</b>) Step response at 25 deg and 50 km/h; (<b>d</b>) Step response at 35 deg and 5 km/h; (<b>e</b>) Step response at 35 deg and 15 km/h; (<b>f</b>) Step response at 35 deg and 25 km/h.</p>
Full article ">Figure 13
<p>(<b>a</b>) Step response at 25 deg and 25 km/h—front left motor overloaded ×3 (0.3 Nm); (<b>b</b>) Step response at 25 deg and 25 km/h—rear left motor overloaded x3 (0.3 Nm); (<b>c</b>) Step response at 25 deg and 25 km/h—front right motor overloaded ×3 (0.3 Nm); (<b>d</b>) Step response at 25 deg and 25 km/h—rear right motor overloaded ×3 (0.3 Nm).</p>
Full article ">
17 pages, 13020 KiB  
Article
A Fractional-Order Memristive Two-Neuron-Based Hopfield Neuron Network: Dynamical Analysis and Application for Image Encryption
by Jayaraman Venkatesh, Alexander N. Pchelintsev, Anitha Karthikeyan, Fatemeh Parastesh and Sajad Jafari
Mathematics 2023, 11(21), 4470; https://doi.org/10.3390/math11214470 - 28 Oct 2023
Cited by 7 | Viewed by 1326
Abstract
This paper presents a study on a memristive two-neuron-based Hopfield neural network with fractional-order derivatives. The equilibrium points of the system are identified, and their stability is analyzed. Bifurcation diagrams are obtained by varying the magnetic induction strength and the fractional-order derivative, revealing [...] Read more.
This paper presents a study on a memristive two-neuron-based Hopfield neural network with fractional-order derivatives. The equilibrium points of the system are identified, and their stability is analyzed. Bifurcation diagrams are obtained by varying the magnetic induction strength and the fractional-order derivative, revealing significant changes in the system dynamics. It is observed that lower fractional orders result in an extended bistability region. Also, chaos is only observed for larger magnetic strengths and fractional orders. Additionally, the application of the fractional-order model for image encryption is explored. The results demonstrate that the encryption based on the fractional model is efficient with high key sensitivity. It leads to an encrypted image with high entropy, neglectable correlation coefficient, and uniform distribution. Furthermore, the encryption system shows resistance to differential attacks, cropping attacks, and noise pollution. The Peak Signal-to-Noise Ratio (PSNR) calculations indicate that using a fractional derivative yields a higher PSNR compared to an integer derivative. Full article
(This article belongs to the Special Issue Chaotic Systems and Their Applications)
Show Figures

Figure 1

Figure 1
<p>(<b>a</b>) Solutions of Equations (7a) (red color) and (7b) (blue color) with the intersection (0,0). The first equation is solved for <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mn>1.5</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>2</mn> </mrow> </semantics></math> and shown by different red tones. (<b>b</b>) The real part of the eigenvalues <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>λ</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow> <mi>λ</mi> </mrow> <mrow> <mn>3</mn> </mrow> </msub> </mrow> </semantics></math>. (<b>c</b>) The imaginary part of the eigenvalues <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>λ</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow> <mi>λ</mi> </mrow> <mrow> <mn>3</mn> </mrow> </msub> </mrow> </semantics></math>. (<b>d</b>) The argument of the eigenvalues <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>λ</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow> <mi>λ</mi> </mrow> <mrow> <mn>3</mn> </mrow> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>(<b>a</b>) Bifurcation diagrams of the system as a function of magnetic coupling strength <math display="inline"><semantics> <mrow> <mi>k</mi> </mrow> </semantics></math> for different derivative orders. (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.98</mn> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.96</mn> </mrow> </semantics></math>, (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.94</mn> </mrow> </semantics></math>. The orange and blue colors correspond to two initial conditions, <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0.1</mn> <mo>,</mo> <mo> </mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo>(</mo> <mo>−</mo> <mn>0.1</mn> <mo>,</mo> <mo> </mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Bifurcation diagram of the model as a function of <math display="inline"><semantics> <mrow> <mi>q</mi> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>1.2</mn> <mo>,</mo> <mn>1.4</mn> <mo>,</mo> <mn>1.6</mn> <mo>,</mo> <mn>1.8</mn> <mo>,</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>2</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>The attractors of the model for <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>2.1</mn> </mrow> </semantics></math> and two initial conditions <math display="inline"><semantics> <mrow> <mo>(</mo> <mo>±</mo> <mn>0.1</mn> <mo>,</mo> <mo> </mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math>. (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.98</mn> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.96</mn> </mrow> </semantics></math>, (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.94</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Time series corresponding to the attractors shown in <a href="#mathematics-11-04470-f004" class="html-fig">Figure 4</a> where <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>2.1</mn> </mrow> </semantics></math> and (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.98</mn> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.96</mn> </mrow> </semantics></math>, (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.94</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Basin of attraction of two chaotic attractors for (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.98</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>1.8</mn> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.96</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>2.1</mn> </mrow> </semantics></math>, (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.94</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>2.5</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>Flowchart of the encryption algorithm.</p>
Full article ">Figure 8
<p>Result of encryption method using the fractional-order system with <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.98</mn> </mrow> </semantics></math> and the initial condition <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0.1</mn> <mo>,</mo> <mo> </mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math>. (<b>a</b>,<b>d</b>) original images, (<b>b</b>,<b>e</b>) the encrypted images, (<b>c</b>,<b>f</b>) the decrypted images.</p>
Full article ">Figure 9
<p>Result of decryption with the wrong key. The encryption keys are <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.98</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow> <mi>y</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow> <mi>z</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mo>)</mo> <mo>=</mo> <mo>(</mo> <mn>0.1</mn> <mo>,</mo> <mo> </mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math>. (<b>a</b>,<b>d</b>) decrypted images with the correct key, (<b>b</b>,<b>e</b>) the decrypted images with <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow> <mi>y</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow> <mi>z</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mo>)</mo> <mo>=</mo> <mo>(</mo> <mn>0.100001</mn> <mo>,</mo> <mo> </mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math>, (<b>c</b>,<b>f</b>) the decrypted images with <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>1.99</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p>The histogram of the colors of the original and encrypted images. (<b>a</b>) original onion image, (<b>b</b>) encrypted onion image, (<b>c</b>) original cameraman image, (<b>d</b>) encrypted cameraman image.</p>
Full article ">Figure 11
<p>The correlation of the color depth of two adjacent pixels. (<b>a</b>) original onion image, (<b>b</b>) encrypted onion image, (<b>c</b>) original cameraman image, (<b>d</b>) encrypted cameraman image.</p>
Full article ">Figure 12
<p>The result of the decryption of cropped images. (<b>a</b>) 1/64 of the image is cropped, (<b>b</b>) 1/16 of the image is cropped, (<b>c</b>) 1/4 of the image is cropped.</p>
Full article ">Figure 13
<p>The decrypted images from the noisy encrypted images with different intensities. (<b>a</b>,<b>d</b>) noise intensity is 0.05, (<b>b</b>,<b>e</b>) noise intensity is 0.1, (<b>c</b>,<b>f</b>) noise intensity is 0.2.</p>
Full article ">Figure 14
<p>Peak Signal-to-Noise Ratio of the decrypted image to the original image for different derivative orders. For each <span class="html-italic">q</span>, a range of <span class="html-italic">k</span> with monostable chaotic dynamics is adopted.</p>
Full article ">
25 pages, 16543 KiB  
Article
Multi-Traveler Salesman Problem for Unmanned Vehicles: Optimization through Improved Hopfield Neural Network
by Song Liu, Xinhua Gao, Liu Chen, Sihui Zhou, Yong Peng, Dennis Z. Yu, Xianting Ma and Yan Wang
Sustainability 2023, 15(20), 15118; https://doi.org/10.3390/su152015118 - 21 Oct 2023
Cited by 2 | Viewed by 1806
Abstract
In response to the COVID-19 pandemic, communities utilize unmanned vehicles to minimize person-to-person contact and lower the risk of infection. This paper addresses the critical considerations of these unmanned vehicles’ maximum load capacity and service time, formulating them as constraints within a multi-traveling [...] Read more.
In response to the COVID-19 pandemic, communities utilize unmanned vehicles to minimize person-to-person contact and lower the risk of infection. This paper addresses the critical considerations of these unmanned vehicles’ maximum load capacity and service time, formulating them as constraints within a multi-traveling salesman problem (MTSP). We propose a comprehensive optimization approach that combines a genetic simulated annealing algorithm with clustering techniques and an improved Hopfield neural network (IHNN). First, the MTSP is decomposed into multiple independent TSPs using the fuzzy C-means clustering algorithm based on a genetic simulated annealing algorithm (SA-GA-FCM). Subsequently, the HNN is employed to introduce the data transformation technique and dynamic step factor to prepare more suitable inputs for the HNN training process to avoid the energy function from falling into local solutions, and the simulated annealing algorithm is introduced to solve multiple TSP separately. Finally, the effectiveness of the proposed algorithm is verified by small-scale and large-scale instances, and the results clearly demonstrate that each unmanned vehicle can meet the specified constraints and successfully complete all delivery tasks. Furthermore, to gauge the performance of our algorithm, we conducted ten simulation comparisons with other combinatorial optimization and heuristic algorithms. These comparisons indicate that IHNN outperforms the algorithms mentioned above regarding solution quality and efficiency and exhibits robustness against falling into local solutions. As presented in this paper, the solution to the unmanned vehicle traveling salesman problem facilitates contactless material distribution, reducing time and resource wastage while enhancing the efficiency of unmanned vehicle operations, which has profound implications for promoting low-carbon sustainable development, optimizing logistics efficiency, and mitigating the risk of pandemic spread. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

Figure 1
<p>Schematic diagram of unmanned vehicle delivery path.</p>
Full article ">Figure 2
<p>Flow diagrams for combinatorial optimization models.</p>
Full article ">Figure 3
<p>A neuron of CHNN.</p>
Full article ">Figure 4
<p>Three clustering centers.</p>
Full article ">Figure 5
<p>Four clustering centers.</p>
Full article ">Figure 6
<p>Five clustering centers.</p>
Full article ">Figure 7
<p>Three unmanned vehicle deliveries.</p>
Full article ">Figure 8
<p>Four unmanned vehicle deliveries.</p>
Full article ">Figure 9
<p>Five unmanned vehicle deliveries.</p>
Full article ">Figure 10
<p>Six clustering centers.</p>
Full article ">Figure 11
<p>Seven clustering centers.</p>
Full article ">Figure 12
<p>Eight clustering centers.</p>
Full article ">Figure 13
<p>Six unmanned vehicle deliveries.</p>
Full article ">Figure 14
<p>Seven unmanned vehicle deliveries.</p>
Full article ">Figure 15
<p>Eight unmanned vehicle deliveries.</p>
Full article ">Figure 16
<p>Parent chromosomes before partially matched crossover.</p>
Full article ">Figure 17
<p>Partial mapping after crossover.</p>
Full article ">Figure 18
<p>Chromosome sequences before mutation.</p>
Full article ">Figure 19
<p>Chromosome sequences after mutation.</p>
Full article ">Figure 20
<p>Small-scale shortest path length data.</p>
Full article ">Figure 21
<p>Large-scale shortest path length data.</p>
Full article ">Figure 22
<p>Average shortest path length for small scale.</p>
Full article ">Figure 23
<p>Average shortest path length for large scale.</p>
Full article ">Figure 24
<p>Graph of small-scale energy function curve.</p>
Full article ">Figure 25
<p>Graph of large-scale energy function curve.</p>
Full article ">
16 pages, 1570 KiB  
Review
The Application of Machine Learning Techniques in Geotechnical Engineering: A Review and Comparison
by Wei Shao, Wenhan Yue, Ye Zhang, Tianxing Zhou, Yutong Zhang, Yabin Dang, Haoyu Wang, Xianhui Feng and Zhiming Chao
Mathematics 2023, 11(18), 3976; https://doi.org/10.3390/math11183976 - 19 Sep 2023
Cited by 7 | Viewed by 3673
Abstract
With the development of data collection and storage capabilities in recent decades, abundant data have been accumulated in geotechnical engineering fields, providing opportunities for the usage of machine learning approaches. Thus, a rising number of scholars are adopting machine learning techniques to settle [...] Read more.
With the development of data collection and storage capabilities in recent decades, abundant data have been accumulated in geotechnical engineering fields, providing opportunities for the usage of machine learning approaches. Thus, a rising number of scholars are adopting machine learning techniques to settle geotechnical issues. In this paper, the application of three popular machine learning algorithms, support vector machine (SVM), artificial neural network (ANN), and decision tree (DT), as well as other representative algorithms in geotechnical engineering, is reviewed. Meanwhile, the applicability of diverse machine learning algorithms in settling specific geotechnical engineering issues is compared. The main findings are as follows: ANN, SVM, and DT have been widely adopted to solve a variety of geotechnical engineering issues, such as the classification of soil and rock types, predicting the properties of geotechnical materials, etc. Based on the collected relevant research, the performance of random forest (RF) in sorting soil types and assessing landslide susceptibility is satisfying; SVM has high precision in classifying rock types and forecasting rock deformation; and backpropagation ANNs and Hopfield ANNs are recommended to forecast rock compressive strength and soil settlement, respectively. Full article
Show Figures

Figure 1

Figure 1
<p>The mapping from low-dimensional spaces to high-dimensional spaces: (<b>A</b>) low-dimensional space; (<b>B</b>) high-dimensional space.</p>
Full article ">Figure 2
<p>The typical structure of BPANN.</p>
Full article ">Figure 3
<p>The typical structure of decision trees.</p>
Full article ">Figure 4
<p>The comparison of DT, SVM, and BPANN in forecasting the deformation of rock.</p>
Full article ">Figure 5
<p>The comparison of BPANN, Hopfield ANN, and DT in forecasting the rock compressive strength.</p>
Full article ">Figure 6
<p>The comparison of Hopfield ANN and MLP in predicting soil settlement.</p>
Full article ">
Back to TopTop