Modeling and Dynamical Analysis of a Fractional-Order Predator–Prey System with Anti-Predator Behavior and a Holling Type IV Functional Response
<p>(<b>a</b>) shows the trajectories of system (1.3) starting from points <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0.8</mn> <mo>,</mo> <mn>0.4</mn> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0.7</mn> <mo>,</mo> <mn>0.3</mn> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0.6</mn> <mo>,</mo> <mn>0.35</mn> <mo>)</mo> </mrow> </semantics></math>, respectively; (<b>b</b>) represents the streamline plots of system (1.3) at the origin.</p> "> Figure 1 Cont.
<p>(<b>a</b>) shows the trajectories of system (1.3) starting from points <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0.8</mn> <mo>,</mo> <mn>0.4</mn> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0.7</mn> <mo>,</mo> <mn>0.3</mn> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0.6</mn> <mo>,</mo> <mn>0.35</mn> <mo>)</mo> </mrow> </semantics></math>, respectively; (<b>b</b>) represents the streamline plots of system (1.3) at the origin.</p> "> Figure 2
<p>(<b>a</b>) The properties of system (1.3) at the boundary equilibrium point (10,0) for <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>></mo> <mfrac> <mrow> <mi>c</mi> <mi>b</mi> <mi>k</mi> </mrow> <mrow> <mi>h</mi> <mo>+</mo> <msup> <mi>k</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>−</mo> <mi>g</mi> <mi>k</mi> </mrow> </semantics></math>; (<b>b</b>) the quantities of prey and predators starting from the point <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>30</mn> <mo>,</mo> <mn>10</mn> <mo>)</mo> </mrow> </semantics></math> over time; (<b>c</b>) the properties of system (1.3) at the boundary equilibrium point (1,0) for <math display="inline"><semantics> <mrow> <mi>d</mi> <mo><</mo> <mfrac> <mrow> <mi>c</mi> <mi>b</mi> <mi>k</mi> </mrow> <mrow> <mi>h</mi> <mo>+</mo> <msup> <mi>k</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>−</mo> <mi>g</mi> <mi>k</mi> </mrow> </semantics></math>.</p> "> Figure 3
<p>The existence of a supercritical Hopf bifurcation of system (1.3) with the parameter values <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.98</mn> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> (<b>a</b>) and <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> (<b>b</b>).</p> "> Figure 4
<p>The existence of a period-doubling bifurcation of system (1.6) with the <span class="html-italic">k</span> taking values from 8 to <math display="inline"><semantics> <mrow> <mn>11.6</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>The existence of a Neimark–Sacker bifurcation of system (1.6) with the <span class="html-italic">k</span> taking values from <math display="inline"><semantics> <mrow> <mn>10.6</mn> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <mn>11.4</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>Phase portraits of system (1.6) with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.75</mn> <mo>,</mo> <mi>b</mi> <mo>=</mo> <mn>0.9</mn> <mo>,</mo> <mi>a</mi> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mi>k</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mi>h</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mi>c</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> and different <math display="inline"><semantics> <mi>ρ</mi> </semantics></math> when the initial value <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>0.5888</mn> <mo>,</mo> <mn>0.4324</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Preliminaries
- 1.
- and satisfy ;
- 2.
- ;
- 3.
- ,
3. Analysis of the Well-Posedness of System (1.3)
4. Local Stability of Systems (1.3) and (1.6)
4.1. Existence of an Equilibrium Point
- 1.
- Regardless of the value of the parameters, systems (1.3) and (1.6) always have a trivial equilibrium point and a boundary equilibrium point .
- 2.
- When , systems (1.3) and (1.6) do not have positive equilibrium points.
- 3.
- When , we further have the following conclusions.
- (a)
- If , then systems (1.3) and (1.6) do not have positive equilibrium points.
- (b)
- If , then, for , systems (1.3) and (1.6) do not have positive equilibrium points; for , systems (1.3) and (1.6) have one positive equilibrium point .
- (c)
- If , then, for , systems (1.3) and (1.6) do not have positive equilibrium points; for , systems (1.3) and (1.6) have only one positive equilibrium point ; for , systems (1.3) and (1.6) have two positive equilibrium points and .
4.2. Stability Analysis of Equilibrium Points of System (1.3)
4.2.1. The Stability of the Trivial Equilibrium Point
4.2.2. The Stability of Boundary Equilibrium Point
4.2.3. The Stability of Positive Equilibrium Points
4.3. Stability Analysis of the Equilibrium Points of System (1.6)
4.3.1. The Stability of Trivial Equilibrium Point
- If , then is a saddle.
- If , then is non-hyperbolic.
- If , then is a stable node.
4.3.2. The Stability of Boundary Equilibrium Point
- 1.
- If , then,
- (a)
- For or , is is a saddle;
- (b)
- For or , is non-hyperbolic;
- (c)
- For , is a stable node, i.e., a sink.
- 2.
- If , then is non-hyperbolic.
- 3.
- If , then,
- (a)
- For or , is an unstable node, i.e., a source;
- (b)
- For or , is non-hyperbolic;
- (c)
- For , is a saddle.
4.3.3. The Stability of Positive Equilibrium Points
5. Bifurcation Analysis
5.1. Bifurcation Analysis of the Positive Equilibrium Point in System (1.3)
5.2. Bifurcation Analysis of the Positive Equilibrium Point in System (1.6)
5.2.1. Neimark–Sacker Bifurcation at the Fixed Point
5.2.2. Period-Doubling Bifurcation at the Fixed Point
6. Numerical Simulation
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Berryman, A.A. The orgins and evolution of predator-prey theory. Ecology 1992, 73, 1530–1535. [Google Scholar] [CrossRef]
- Wang, W.; Chen, L. A Predator-Prey System with Stage-Structure for Predator. Comput. Math. Appl. 1997, 33, 83–91. [Google Scholar] [CrossRef]
- Ba, Z.; Li, X. Period-doubling bifurcation and Neimark-Sacker bifurcation of a discrete predator-prey model with Allee effect and cannibalism. Electron. Res. Arch. 2023, 31, 1405–1438. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X. Dynamics of a discrete predator-prey model with Holling-II functional response. Int. J. Biomath. 2021, 14, 2150068. [Google Scholar] [CrossRef]
- Qi, H.; Meng, X. Threshold behavior of a stochastic predator–prey system with prey refuge and fear effect. Appl. Math. Lett. 2021, 113, 106846. [Google Scholar] [CrossRef]
- Blasius, B.; Rudolf, L.; Weithoff, G.; Gaedke, U.; Fussmann, G.F. Long-term cyclic persistence in an experimental predator–prey system. Nature 2020, 577, 226–230. [Google Scholar] [CrossRef]
- Mukherjee, D. Role of fear in predator–prey system with intraspecific competition. Math. Comput. Simul. 2020, 177, 263–275. [Google Scholar] [CrossRef]
- Qiu, H.; Guo, S.; Li, S. Stability and Bifurcation in a Predator–Prey System with Prey-Taxis. Int. J. Bifurc. Chaos 2020, 30, 2050022. [Google Scholar] [CrossRef]
- Perc, M.; Grigolini, P. Collective behavior and evolutionary games–An introduction. Chaos Solitons Fractals 2013, 56, 1–5. [Google Scholar] [CrossRef]
- Lima, S.L. Stress and Decision Making under the Risk of Predation: Recent Developments from Behavioral, Reproductive, and Ecological Perspectives. Adv. Study Behav. 1998, 27, 215–290. [Google Scholar]
- Tollrian, R. Predator-Induced Morphological Defenses: Costs, Life History Shifts, and Maternal Effects in Daphnia Pulex. Ecology 1995, 76, 1691–1705. [Google Scholar] [CrossRef]
- Choh, Y.; Lgnacio, M.; Sabelis, M.W.; Janssen, A. Predator-prey role reversals, juvenile experience and adult antipredator behavior. Lab. Appl. Entomol. 2012, 2, 728. [Google Scholar]
- Janssen, A.; Faraji, F.; Hammen, T.V.D.; Magalhaes, S.; Sabelis, M.W. Interspecific infanticide deters predators. Ecol. Lett. 2002, 5, 490–494. [Google Scholar] [CrossRef]
- Saito, Y. Prey kills predator: Counter-attack success of a spider mite against its specific phytoseiid predator. Exp. Appl. Acarol. 1986, 2, 47–62. [Google Scholar] [CrossRef]
- Ives, A.; Dobson, A. Antipredator behavior and the population dynamics of simple predator-prey systems. Am. Nat. 1987, 130, 431–447. [Google Scholar] [CrossRef]
- Tang, B.; Xiao, Y. Bifurcation analysis of a predator–prey model with anti-predator behavior. Chaos Solitons Fractals 2015, 70, 58–68. [Google Scholar] [CrossRef]
- Sokol, W. Oxidation of an Inhibitory Substrate by Washed Celts (Oxidation of Phenol by Pseudornonas putida). Biotechnol. Bioeng. 1987, 30, 921–927. [Google Scholar] [CrossRef]
- Liouville, J. Troisième mémoire sur le développement des fonctions ou parties de fonctions en séries dont les divers termes sont assujettis à satisfaire à une même équation différentielle du second ordre, contenant un paramètre variable. J. Math. Pures Appl. 1837, 2, 418–436. [Google Scholar]
- Riesz, M. L’intégrale de Riemann–Liouville et le problème de Cauchy pour l’équation des ondes. Bull. Soc. Math. Fr. 1939, 67, 153–170. [Google Scholar] [CrossRef]
- Caputo, M. Linear Models of Dissipation whose Q is almost Frequency Independent-II. Geophys. J. R. Astron. Soc. 1976, 13, 529–539. [Google Scholar] [CrossRef]
- Debnath, S.; Majumdar, P.; Sarkar, S.; Ghosh, U. Memory effect on prey–predator dynamics: Exploring the role of fear effect, additional food and anti-predator behaviour of prey. J. Comput. Sci. 2023, 66, 101929. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, V.S. Bifurcations and chaos control in a discrete-time prey–predator model with Holling type-II functional response and prey refuge. J. Comput. Appl. Math. 2023, 418, 114666. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, R.; Cattani, C.; Samet, B. Chaotic behaviour of fractional predator-prey dynamical system. Chaos Solitons Fractals 2020, 135, 109811. [Google Scholar] [CrossRef]
- Das, M.; Samanta, G. A delayed fractional order food chain model with fear effect and prey refuge. Math. Comput. Simul. 2020, 178, 218–245. [Google Scholar] [CrossRef]
- Barman, D.; Roy, J.; Alrabaiah, H.; Panja, P.; Mondal, S.P.; Alam, S. Impact of predator incited fear and prey refuge in a fractional order prey predator model. Chaos Solitons Fractals 2021, 142, 110420. [Google Scholar] [CrossRef]
- Das, M.; Samanta, G. A prey-predator fractional order model with fear effect and group defense. Int. J. Dyn. Control 2021, 9, 334–349. [Google Scholar] [CrossRef]
- Yousef, F.; Yousef, A.; Maji, C. Effects of fear in a fractional-order predator-prey system with predator density-dependent prey mortality. Chaos Solitons Fractals 2021, 145, 110711. [Google Scholar] [CrossRef]
- Zhang, N.; Kao, Y.; Xie, B. Impact of fear effect and prey refuge on a fractional order prey–predator system with Beddington–DeAngelis functional response. Chaos 2022, 32, 043125. [Google Scholar] [CrossRef]
- Majumdar, P.; Mondal, B.; Debnath, S.; Ghosh, U. Controlling of periodicity and chaos in a three dimensional prey predator model introducing the memory effect. Chaos Solitons Fractals 2022, 164, 112585. [Google Scholar] [CrossRef]
- Xie, B.; Zhang, Z. Impact of Allee and fear effects in a fractional order prey–predator system incorporating prey refuge. Chaos 2023, 33, 013131. [Google Scholar] [CrossRef]
- Salmana, S.M.; Yousef, A.M.; Elsadanyc, A.A. Stability, bifurcation analysis and chaos control of a discrete predator-prey system with square root functional response. Chaos Solitons Fractals 2016, 93, 20–31. [Google Scholar] [CrossRef]
- Yousef, A.M.; Rida, S.Z.; Ali, H.M.; Zaki, A.S. Stability, co-dimension two bifurcations and chaos control of a host-parasitoid model with mutual interference. Chaos Solitons Fractals 2023, 166, 112923. [Google Scholar] [CrossRef]
- Yousef, A.M.; Rida, S.Z.; Gouda, Y.G.; Zaki, A.S. Dynamical Behaviors of a Fractional-Order Predator–Prey Model with Holling Type IV Functional Response and Its Discretization. Int. J. Nonlinear Sci. Numer. Simul. 2019, 20, 125–136. [Google Scholar] [CrossRef]
- Singh, A.; Elsadany, A.A.; Elsonbaty, A. Complex dynamics of a discrete fractional-order Leslie-Gower predator-prey model. Math. Methods Appl. Sci. 2019, 42, 3992–4007. [Google Scholar] [CrossRef]
- Elsonbaty, A.; Elsadany, A.A. On discrete fractional order Lotka Volterra model based on the Caputo diference discrete operator. Math. Sci. 2023, 17, 67–79. [Google Scholar] [CrossRef]
- Uddin, M.J.; Rana, S.M.S.; Işık, S.; Kangalgil, F. On the qualitative study of a discrete fractional order prey–predator model with the effects of harvesting on predator population. Chaos Solitons Fractals 2023, 175, 113932. [Google Scholar] [CrossRef]
- Kai, D. The Analysis of Fractional Differential Equations (An Application-Oriented Exposition Using Differential Operators of Caputo Type); Springer Scienc & Business Media: Berlin/Heidelberg, Germany, 2010; Volume 2004, pp. 237–244. [Google Scholar]
- Li, W.; Li, X.Y. Neimark–Sacker bifurcation of a semi-discrete hematopoiesis model. J. Appl. Anal. Comput. 2018, 8, 1679–1693. [Google Scholar]
- Cieck, M.; Yakar, C.; Oğur, B. Stability, Boundedness, and Lagrange Stability of Fractional Differential Equations with Initial Time Difference. Sci. World J. 2014, 2014, 939027. [Google Scholar]
- Odibat, Z.; Shawagfeh, N. Generalized Taylor’s formula. Appl. Math. Comput. 2007, 186, 286–293. [Google Scholar] [CrossRef]
- Wang, C.; Li, X.Y. Stability and Neimark–Sacker bifurcation of a semi-discrete population model. J. Appl. Anal. Comput. 2014, 4, 419–435. [Google Scholar]
- Liang, S.; Wu, R.; Chen, L. Laplace transform of fractional order differential equations. Electron. J. Differ. Equ. 2015, 2015, 1–15. [Google Scholar]
- Kexue, L.; Jigen, P. Laplace transform and fractional differential equations. Appl. Math. Lett. 2011, 24, 2019–2023. [Google Scholar] [CrossRef]
- Petráš, I. Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Deshpande, A.; Daftardar-Gejji, V.; Sukale, Y.V. On Hopf bifurcation in fractional dynamical systems. Chaos Solitons Fractals 2017, 98, 189–198. [Google Scholar] [CrossRef]
Parameter | Meaning |
---|---|
x | Prey population density |
y | Predator population density |
Natality of prey population | |
Carrying capacity of the environment to prey | |
Cost incurred by the prey as a result of anti-predator behavior | |
Effects resulting from the anti-predator behavior of prey | |
Holling II functional response function | |
Conversion rate of prey consumed by predator | |
Death rate of predator population |
Parameter | Meaning |
---|---|
u | Prey population density |
v | Predator population density |
Natality of prey population | |
Carrying capacity of the environment to prey | |
Predator’s capture rate | |
Conversion rate of prey into predator | |
Holling type IV functional response function | |
Death rate of predator | |
Mortality rate of predator due to the anti-predator effects of prey | |
Order of fractional-order derivative |
Point | Conditions | Properties |
---|---|---|
saddle | ||
stable | ||
saddle | ||
unstable | ||
stable | ||
saddle |
Conditions | Eigenvalues | Properties | ||
---|---|---|---|---|
sink | ||||
or | non-hyperbolic | |||
source | ||||
sink | ||||
or | non-hyperbolic | |||
source | ||||
>0 | source | |||
, | sink | |||
, | non-hyperbolic | |||
, | saddle | |||
, | non-hyperbolic | |||
, | source |
Conditions | Eigenvalues | Properties |
---|---|---|
, | saddle | |
, | non-hyperbolic | |
, | source |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Li, X. Modeling and Dynamical Analysis of a Fractional-Order Predator–Prey System with Anti-Predator Behavior and a Holling Type IV Functional Response. Fractal Fract. 2023, 7, 722. https://doi.org/10.3390/fractalfract7100722
Wang B, Li X. Modeling and Dynamical Analysis of a Fractional-Order Predator–Prey System with Anti-Predator Behavior and a Holling Type IV Functional Response. Fractal and Fractional. 2023; 7(10):722. https://doi.org/10.3390/fractalfract7100722
Chicago/Turabian StyleWang, Baiming, and Xianyi Li. 2023. "Modeling and Dynamical Analysis of a Fractional-Order Predator–Prey System with Anti-Predator Behavior and a Holling Type IV Functional Response" Fractal and Fractional 7, no. 10: 722. https://doi.org/10.3390/fractalfract7100722
APA StyleWang, B., & Li, X. (2023). Modeling and Dynamical Analysis of a Fractional-Order Predator–Prey System with Anti-Predator Behavior and a Holling Type IV Functional Response. Fractal and Fractional, 7(10), 722. https://doi.org/10.3390/fractalfract7100722