Exploring Families of Solitary Wave Solutions for the Fractional Coupled Higgs System Using Modified Extended Direct Algebraic Method
<p>Graph of (28) in which (<bold>a</bold>,<bold>b</bold>) present 3D and contour plots of real part respectively while (<bold>c</bold>,<bold>d</bold>) present 3D and contour plots of imaginary part respectively for <inline-formula><mml:math id="mm352"><mml:semantics><mml:mrow><mml:mi>a</mml:mi><mml:mo>=</mml:mo><mml:mn>3</mml:mn><mml:mo>,</mml:mo><mml:mspace width="0.166667em"/><mml:mi>b</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mspace width="0.166667em"/><mml:mi>c</mml:mi><mml:mo>=</mml:mo><mml:mn>5</mml:mn><mml:mo>,</mml:mo><mml:mspace width="0.166667em"/><mml:mi>A</mml:mi><mml:mo>=</mml:mo><mml:mi>e</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm353"><mml:semantics><mml:mrow><mml:msub><mml:mi>a</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mn>1000</mml:mn><mml:mo>,</mml:mo><mml:mspace width="0.166667em"/><mml:msub><mml:mi>b</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mspace width="0.166667em"/><mml:mi>γ</mml:mi><mml:mo>=</mml:mo><mml:mi>δ</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>.</p> "> Figure 2
<p>Graph of (46) in which (<bold>a</bold>,<bold>b</bold>) present 3D and contour plots of real part respectively while (<bold>c</bold>,<bold>d</bold>) and present 3D and contour plots of imaginary part respectively for <inline-formula><mml:math id="mm354"><mml:semantics><mml:mrow><mml:mi>a</mml:mi><mml:mo>=</mml:mo><mml:mn>3</mml:mn><mml:mo>,</mml:mo><mml:mspace width="0.166667em"/><mml:mi>b</mml:mi><mml:mo>=</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mspace width="0.166667em"/><mml:mi>c</mml:mi><mml:mo>=</mml:mo><mml:mn>5</mml:mn><mml:mo>,</mml:mo><mml:mspace width="0.166667em"/><mml:mi>A</mml:mi><mml:mo>=</mml:mo><mml:mi>e</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm355"><mml:semantics><mml:mrow><mml:msub><mml:mi>a</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mn>1000</mml:mn><mml:mo>,</mml:mo><mml:mspace width="0.166667em"/><mml:msub><mml:mi>b</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mspace width="0.166667em"/><mml:mi>γ</mml:mi><mml:mo>=</mml:mo><mml:mi>δ</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>.</p> "> Figure 3
<p>Graph of the real part of (136) in which (<bold>a</bold>,<bold>b</bold>) present 3D and contour plots of real part respectively for <inline-formula><mml:math id="mm356"><mml:semantics><mml:mrow><mml:mi>a</mml:mi><mml:mo>=</mml:mo><mml:mn>3</mml:mn><mml:mo>,</mml:mo><mml:mi>b</mml:mi><mml:mo>=</mml:mo><mml:mn>10</mml:mn><mml:mo>,</mml:mo><mml:mi>c</mml:mi><mml:mo>=</mml:mo><mml:mn>5</mml:mn><mml:mo>,</mml:mo><mml:mi>A</mml:mi><mml:mo>=</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:msub><mml:mi>a</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mn>1000</mml:mn><mml:mo>,</mml:mo><mml:msub><mml:mi>b</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mi>γ</mml:mi><mml:mo>=</mml:mo><mml:mi>δ</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>.</p> "> Figure 4
<p>Graph of (204) in which (<bold>a</bold>,<bold>b</bold>) present 3D and contour plots of real part respectively while (<bold>c</bold>,<bold>d</bold>) present 3D and contour plots of imaginary part respectively for <inline-formula><mml:math id="mm357"><mml:semantics><mml:mrow><mml:mi>a</mml:mi><mml:mo>=</mml:mo><mml:mn>3</mml:mn><mml:mo>,</mml:mo><mml:mi>b</mml:mi><mml:mo>=</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mi>c</mml:mi><mml:mo>=</mml:mo><mml:mo>−</mml:mo><mml:mn>3</mml:mn><mml:mo>,</mml:mo><mml:mi>A</mml:mi><mml:mo>=</mml:mo><mml:mi>e</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm358"><mml:semantics><mml:mrow><mml:msub><mml:mi>a</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mn>1000</mml:mn><mml:mo>,</mml:mo><mml:msub><mml:mi>b</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mrow><mml:mn>10</mml:mn><mml:mo>,</mml:mo><mml:mn>000</mml:mn></mml:mrow><mml:mo>,</mml:mo><mml:mi>γ</mml:mi><mml:mo>=</mml:mo><mml:mi>δ</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>.</p> "> Figure 5
<p>Depicts graph of the squared norm of (44). The 3D graph in (<bold>a</bold>) is plotted for <inline-formula><mml:math id="mm359"><mml:semantics><mml:mrow><mml:mi>a</mml:mi><mml:mo>=</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm360"><mml:semantics><mml:mrow><mml:mi>b</mml:mi><mml:mo>=</mml:mo><mml:mn>10</mml:mn><mml:mo>,</mml:mo><mml:mi>c</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mi>A</mml:mi><mml:mo>=</mml:mo><mml:mi>e</mml:mi><mml:mo>,</mml:mo><mml:msub><mml:mi>a</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:msub><mml:mi>b</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mn>25</mml:mn><mml:mo>,</mml:mo><mml:mi>γ</mml:mi><mml:mo>=</mml:mo><mml:mi>δ</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> while the 2D graph in (<bold>b</bold>) is drawn for <inline-formula><mml:math id="mm361"><mml:semantics><mml:mrow><mml:mi>t</mml:mi><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> and the similar values of involved parameters.</p> "> Figure 6
<p>Depicts graph of the squared norm of (62). The 3D graph in (<bold>a</bold>) is plotted for <inline-formula><mml:math id="mm362"><mml:semantics><mml:mrow><mml:mi>a</mml:mi><mml:mo>=</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm363"><mml:semantics><mml:mrow><mml:mi>b</mml:mi><mml:mo>=</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mi>c</mml:mi><mml:mo>=</mml:mo><mml:mo>−</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mi>A</mml:mi><mml:mo>=</mml:mo><mml:mi>e</mml:mi><mml:mo>,</mml:mo><mml:msub><mml:mi>a</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:msub><mml:mi>b</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mi>γ</mml:mi><mml:mo>=</mml:mo><mml:mi>δ</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> while the 2D graph in (<bold>b</bold>) is drawn for <inline-formula><mml:math id="mm364"><mml:semantics><mml:mrow><mml:mi>t</mml:mi><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> and the similar values of involved parameters.</p> ">
Abstract
:1. Introduction
2. Methodology of mEDAM
- 1.
- We start by transforming the variables into , where is specified in a variety of ways. Equation (5) is changed by this transformation into a nonlinear ODE of the following form:
- 2.
- Next, we assume that (6) has the following solution:
- 3.
- Establishing the homogeneous balance between the greatest nonlinear term and the highest-order derivative in (6) yields the positive integer m given in (7). More precisely the balance number can be estimated by using the given two formulas [33]:
- 4.
- Then, we put (7) into (6) or the equation that comes from integrating (6), and arrange all of the terms of in the same order. The subsequent polynomial’s coefficients are then all set to zero, resulting in a system of algebraic equations for and additional parameters.
- 5.
- To solve this set of algebraic equations, we use MAPLE.
- 6.
- The analytical solutions to (5) are then obtained by determining the unknown values and inserting them into (7) together with the (solution of Equation (8)). Using the general solution of (8), we may produce the following families of solutions.
3. Execution of the Approach
Implementation of mEDAM to the Problem
4. Discussion and Graphs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abro, K.A.; Atangana, A. Dual fractional modeling of rate type fluid through non-local differentiation. Numer. Methods Partial Differ. Equ. 2020, 38, 390–405. [Google Scholar] [CrossRef]
- Metzler, R.; Glöckle, W.G.; Nonnenmacher, T.F. Fractional model equation for anomalous diffusion. Phys. Stat. Mech. Its Appl. 1994, 211, 13–24. [Google Scholar] [CrossRef]
- Tarasov, V.E.; Zaslavsky, G.M. Fractional dynamics of systems with long-range interaction. Commun. Nonlinear Sci. Numer. Simul. 2006, 11, 885–898. [Google Scholar] [CrossRef]
- Su, N. Random fractional partial differential equations and solutions for water movement in soils: Theory and applications. Hydrol. Process. 2023, 37, e14844. [Google Scholar] [CrossRef]
- Che, J.; Guan, Q.; Wang, X. Image denoising based on adaptive fractional partial differential equations. In Proceedings of the 2013 6th International Congress on Image and Signal Processing (CISP), Hangzhou, China, 16–18 December 2013; Volume 1, pp. 288–292. [Google Scholar]
- Kachhia, K.B.; Prajapati, J.C. Solution of fractional partial differential equation aries in study of heat transfer through diathermanous materials. J. Interdiscip. Math. 2015, 18, 125–132. [Google Scholar] [CrossRef]
- Zhang, Y. A finite difference method for fractional partial differential equation. Appl. Math. Comput. 2009, 215, 524–529. [Google Scholar] [CrossRef]
- Ford, N.J.; Xiao, J.; Yan, Y. A finite element method for time fractional partial differential equations. Fract. Calc. Appl. Anal. 2011, 14, 454–474. [Google Scholar] [CrossRef]
- Lyu, W.; Wang, Z.A. Global classical solutions for a class of reaction-diffusion system with density-suppressed motility. arXiv 2021, arXiv:2102.08042. [Google Scholar] [CrossRef]
- Li, C.; Chen, A. Numerical methods for fractional partial differential equations. Int. J. Comput. Math. 2018, 95, 1048–1099. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, F.; Turner, I. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 2010, 34, 200–218. [Google Scholar] [CrossRef]
- Lin, X.; Liu, Y.; Yu, J.; Yu, R.; Zhang, J.; Wen, H. Stability analysis of three-phase grid-connected inverter under the weak grids with asymmetrical grid impedance by LTP theory in time domain. Int. J. Electr. Power Energy Syst. 2022, 142, 108244. [Google Scholar] [CrossRef]
- Naeem, M.; Azhar, O.F.; Zidan, A.M.; Nonlaopon, K.; Shah, R. Numerical analysis of fractional-order parabolic equations via Elzaki transform. J. Funct. Spaces 2021, 2021, 3484482. [Google Scholar] [CrossRef]
- Liu, X.; Shi, T.; Zhou, G.; Liu, M.; Yin, Z.; Yin, L.; Zheng, W. Emotion classification for short texts: An improved multi-label method. Humanit. Soc. Sci. Commun. 2023, 10, 306. [Google Scholar] [CrossRef]
- Al-Sawalha, M.M.; Ababneh, O.Y.; Shah, R.; Nonlaopon, K. Numerical analysis of fractional-order Whitham-Broer-Kaup equations with non-singular kernel operators. Aims Math. 2023, 8, 2308–2336. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, G.; Kong, M.; Yin, Z.; Li, X.; Yin, L.; Zheng, W. Developing Multi-Labelled Corpus of Twitter Short Texts: A Semi-Automatic Method. Systems 2023, 11, 390. [Google Scholar] [CrossRef]
- Chen, D.; Wang, Q.; Li, Y.; Li, Y.; Zhou, H.; Fan, Y. A general linear free energy relationship for predicting partition coefficients of neutral organic compounds. Chemosphere 2020, 247, 125869. [Google Scholar] [CrossRef]
- Elagan, S.K.; Sayed, M.; Higazy, M. An analytical study on fractional partial differential equations by Laplace transform operator method. Int. J. Appl. Eng. Res. 2018, 13, 545–549. [Google Scholar]
- Mahor, T.C.; Mishra, R.; Jain, R. Analytical solutions of linear fractional partial differential equations using fractional Fourier transform. J. Comput. Appl. Math. 2021, 385, 113202. [Google Scholar] [CrossRef]
- Thabet, H.; Kendre, S. New modification of Adomian decomposition method for solving a system of nonlinear fractional partial differential equations. Int. J. Adv. Appl. Math. Mech. 2019, 6, 1–13. [Google Scholar]
- Duran, S. Exact solutions for time-fractional Ramani and Jimbo—Miwa equations by direct algebraic method. Adv. Sci. Eng. Med. 2020, 12, 982–988. [Google Scholar] [CrossRef]
- Momani, S.; Odibat, Z. Homotopy perturbation method for nonlinear partial differential equations of fractional order. Phys. Lett. A 2007, 365, 345–350. [Google Scholar] [CrossRef]
- Odibat, Z.; Momani, S. The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics. Comput. Math. Appl. 2009, 58, 2199–2208. [Google Scholar] [CrossRef]
- Mirhosseini-Alizamini, S.M.; Rezazadeh, H.; Eslami, M.; Mirzazadeh, M.; Korkmaz, A. New extended direct algebraic method for the Tzitzica type evolution equations arising in nonlinear optics. Comput. Methods Differ. Equ. 2020, 8, 28–53. [Google Scholar]
- Yasmin, H.; Aljahdaly, N.H.; Saeed, A.M.; Shah, R. Investigating Symmetric Soliton Solutions for the Fractional Coupled Konno–Onno System Using Improved Versions of a Novel Analytical Technique. Mathematics 2023, 11, 2686. [Google Scholar] [CrossRef]
- Yasmin, H.; Aljahdaly, N.H.; Saeed, A.M.; Shah, R. Probing Families of Optical Soliton Solutions in Fractional Perturbed Radhakrishnan–Kundu–Lakshmanan Model with Improved Versions of Extended Direct Algebraic Method. Fractal Fract. 2023, 7, 512. [Google Scholar] [CrossRef]
- Rezazadeh, H.; Mirhosseini-Alizamini, S.M.; Neirameh, A.; Souleymanou, A.; Korkmaz, A.; Bekir, A. Fractional Sine–Gordon equation approach to the coupled higgs system defined in time-fractional form. Iran. J. Sci. Technol. Trans. A Sci. 2019, 43, 2965–2973. [Google Scholar] [CrossRef]
- Jabbari, A.; Kheiri, H.; Bekir, A. Exact solutions of the coupled Higgs equation and the Maccari system using He’s semi-inverse method and (G’/G)-expansion method. Comput. Math. Appl. 2011, 62, 2177–2186. [Google Scholar] [CrossRef]
- Atas, S.S.; Ali, K.K.; Sulaiman, T.A.; Bulut, H. Invariant optical soliton solutions to the Coupled-Higgs equation. Opt. Quantum Electron. 2022, 54, 754. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Lu, D.; Khater, M.M. Bifurcations of traveling wave solutions for Dodd–Bullough–Mikhailov equation and coupled Higgs equation and their applications. Chin. J. Phys. 2017, 55, 1310–1318. [Google Scholar] [CrossRef]
- Mu, G.; Qin, Z. Rogue waves for the coupled Schrödinger–Boussinesq equation and the coupled Higgs equation. J. Phys. Soc. Jpn. 2012, 81, 084001. [Google Scholar] [CrossRef]
- Sikora, B. Remarks on the Caputo fractional derivative. MINUT 2023, 5, 76–84. [Google Scholar]
- Khan, H.; Barak, S.; Kumam, P.; Arif, M. Analytical Solutions of Fractional Klein-Gordon and Gas Dynamics Equations, via the (G′/G)-Expansion Method. Symmetry 2019, 11, 566. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilal, M.; Iqbal, J.; Ali, R.; Awwad, F.A.; Ismail, E.A.A. Exploring Families of Solitary Wave Solutions for the Fractional Coupled Higgs System Using Modified Extended Direct Algebraic Method. Fractal Fract. 2023, 7, 653. https://doi.org/10.3390/fractalfract7090653
Bilal M, Iqbal J, Ali R, Awwad FA, Ismail EAA. Exploring Families of Solitary Wave Solutions for the Fractional Coupled Higgs System Using Modified Extended Direct Algebraic Method. Fractal and Fractional. 2023; 7(9):653. https://doi.org/10.3390/fractalfract7090653
Chicago/Turabian StyleBilal, Muhammad, Javed Iqbal, Rashid Ali, Fuad A. Awwad, and Emad A. A. Ismail. 2023. "Exploring Families of Solitary Wave Solutions for the Fractional Coupled Higgs System Using Modified Extended Direct Algebraic Method" Fractal and Fractional 7, no. 9: 653. https://doi.org/10.3390/fractalfract7090653
APA StyleBilal, M., Iqbal, J., Ali, R., Awwad, F. A., & Ismail, E. A. A. (2023). Exploring Families of Solitary Wave Solutions for the Fractional Coupled Higgs System Using Modified Extended Direct Algebraic Method. Fractal and Fractional, 7(9), 653. https://doi.org/10.3390/fractalfract7090653