Bioconversion of Agro-Industrial Byproducts Using Bacillus sp. CL18: Production of Feather Hydrolysates for Development of Bioactive Polymeric Nanofibers
<p>Soluble protein contents (<b>A</b>) and ABTS radical-scavenging activity (<b>B</b>) during submerged cultivations with <span class="html-italic">Bacillus</span> sp. CL18 in media containing whole feathers (●), milled feathers (○), fish scales (▼), soybean meal (SBM, △), soy protein isolate (SPI, ■), casein (□), whey protein isolate (WPI, ◆), and lyophilized sweet whey (LSW, ◇).</p> "> Figure 2
<p>Feather degradation by <span class="html-italic">Bacillus</span> sp. CL18. Bottom views of Erlenmeyer flasks containing mineral medium and feathers (10 g/L), incubated with <span class="html-italic">Bacillus</span> sp. CL18 for (<b>A</b>) 0 h and (<b>B</b>) 120 h (5 days).</p> "> Figure 3
<p>Scanning electron microscopy (upper panels) and histograms of diameter distribution (lower panels) of PVA nanofibers. Control 10% PVA (<b>a</b>), 10% PVA + 5% BFH (<b>b</b>), control 15% PVA (<b>c</b>), and 15% PVA + 5% BFH (<b>d</b>).</p> "> Figure 4
<p>Scanning electron microscopy (upper panels) and histograms of diameter distribution (lower panels) of PCL nanofibers. Control 10% PCL (<b>a</b>), 10% PCL + 5% BFH, (<b>b</b>), control 15% PCL (<b>c</b>), and 15% PCL + 5% BFH (<b>d</b>).</p> "> Figure 5
<p>Thermogravimetric analysis of nanofibers. (<b>a</b>) TGA 10% PVA, (<b>b</b>) DTG 10% PVA, (<b>c</b>) TGA 10% PCL, and (<b>d</b>) DTG 10% PCL. The evaluation was performed in nanofibers functionalized with bioactive feather hydrolysate (5% BFH) and control nanofibers (without BFH).</p> "> Figure 6
<p>Differential scanning calorimetry (DSC) analysis of nanofibers composed of 10% PCL (<b>a</b>) and 10% PVA (<b>b</b>). The evaluation was performed in nanofibers functionalized with bioactive feather hydrolysate (5% BFH) and control nanofibers (without BFH).</p> "> Figure 7
<p>FTIR spectra of nanofibers composed of 10% PVA (<b>a</b>) and 10% PCL (<b>b</b>). The evaluation was performed in nanofibers functionalized with bioactive feather hydrolysate (5% BFH) and control nanofibers (without BFH).</p> "> Figure 8
<p>Mechanical properties of poly-ε-caprolactone (PCL) and poly(vinyl alcohol) (PVA) nanofibers. Values of Young’s modulus (<b>a</b>), tensile strength (<b>b</b>), and elongation at break (<b>c</b>) were determined for control (blue bars) and functionalized nanofibers with 5% BFH (red bars). Data represent mean ± standard deviation of three independent experiments. Distinct letters indicate significant differences (<span class="html-italic">p</span> < 0.05).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Microorganism and Inoculum Preparation
2.3. Submerged Cultivations of Bacillus sp. CL18 in Different Substrates
2.4. Production of Bioactive Feather Hydrolysate (BFH)
2.5. Nanofibers Manufacturing
2.6. Biological Activities of Nanofibers
2.6.1. Antioxidant Activity
2.6.2. Hemolytic Activity
2.7. Physicochemical and Structural Characterization of Nanofibers
2.7.1. Scanning Electron Microscopy (SEM)
2.7.2. Thermal Analyses
2.7.3. Fourier Transform Infrared Spectroscopy (FTIR)
2.7.4. Mechanical Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Soluble Protein and Antioxidant Activity During SmF
3.2. Antioxidant Activity of Nanofibers
3.3. Hemolytic Activity of Nanofibers
3.4. Scanning Electron Microscopy
3.5. Thermal Analysis
3.6. Fourier Transform Infrared Spectroscopy (FTIR)
3.7. Mechanical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pope, M.; Borg, B.; Boyd, R.D.; Holzgraefe, D.; Rush, C.; Sifri, M. Quantifying the value of soybean meal in poultry and swine diets. J. Appl. Poultry Res. 2023, 32, 100337. [Google Scholar] [CrossRef]
- Battacchi, D.; Verkerk, R.; Pellegrini, N.; Fogliano, V.; Steenbekkers, B. The state of the art of food ingredients’ naturalness evaluation: A review of proposed approaches and their relation with consumer trends. Trends Food Sci. Technol. 2020, 106, 434–444. [Google Scholar] [CrossRef]
- Barba, F.J. An integrated approach for the valorization of cheese whey. Foods 2021, 10, 564. [Google Scholar] [CrossRef] [PubMed]
- Coppola, D.; Lauritano, C.; Palma Esposito, F.; Riccio, G.; Rizzo, C.; de Pascale, D. Fish waste: From problem to valuable resource. Mar. Drugs 2021, 19, 116. [Google Scholar] [CrossRef] [PubMed]
- Callegaro, K.; Brandelli, A.; Daroit, D.J. Beyond plucking: Feathers bioprocessing into valuable protein hydrolysates. Waste Manag. 2019, 95, 399–415. [Google Scholar] [CrossRef]
- Sadh, P.K.; Kumar, S.; Chawla, P.; Duhan, J.S. Fermentation: A boon for production of bioactive compounds by processing of food industries wastes (by-products). Molecules 2018, 23, 2560. [Google Scholar] [CrossRef]
- Pereira, A.S.; Souza, C.P.L.; Franson, R.C.B.; Ferreira, T.F.; Amaral, P.F.F. From agri-food wastes to enzyme production: A systematic review with Methodi Ordinatio. Waste Biomass Valor. 2024, 15, 5843–5870. [Google Scholar] [CrossRef]
- Tropea, A. Food waste valorization. Fermentation 2022, 8, 168. [Google Scholar] [CrossRef]
- Aguilar-Paredes, A.; Valdés, G.; Araneda, N.; Valdebenito, E.; Hansen, F.; Nuti, M. Microbial community in the composting process and its positive impact on the soil biota in sustainable agriculture. Agronomy 2023, 13, 542. [Google Scholar] [CrossRef]
- Malik, K.; Capareda, S.C.; Kamboj, B.R.; Malik, S.; Singh, K.; Arya, S.; Bishnoi, D.K. Biofuels production: A review on sustainable alternatives to traditional fuels and energy sources. Fuels 2024, 5, 157–175. [Google Scholar] [CrossRef]
- Ruan, S.; Li, Y.; Wang, Y.; Huang, S.; Luo, J.; Ma, H. Analysis in protein profile, antioxidant activity and structure-activity relationship based on ultrasound-assisted liquid-state fermentation of soybean meal with Bacillus subtilis. Ultrasonics Sonochem. 2020, 64, 104846. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sun, X.; Li, W.; Huang, X.; Tao, L.; Li, T.; Li, S. In vitro and in vivo antioxidant activities of soy protein isolate fermented with Bacillus subtilis Natto. J. Food Sci. Technol. 2021, 58, 3199–3204. [Google Scholar] [CrossRef] [PubMed]
- Begunova, A.V.; Savinova, O.S.; Glazunova, O.A.; Moiseenko, K.V.; Rozhkova, I.V.; Fedorova, T.V. Development of antioxidant and antihypertensive properties during growth of Lactobacillus helveticus, Lactobacillus rhamnosus and Lactobacillus reuteri on cow’s milk: Fermentation and peptidomics study. Foods 2021, 10, 17. [Google Scholar] [CrossRef] [PubMed]
- Solieri, L.; Valentini, M.; Cattivelli, A.; Sola, L.; Helal, A.; Martini, S.; Tagliazucchi, D. Fermentation of whey protein concentrate by Streptococcus thermophilus strains releases peptides with biological activities. Process Biochem. 2022, 121, 590–600. [Google Scholar] [CrossRef]
- Xiao, X.; Liao, B.; Li, T.; Chen, Y.; Zhou, J.; Li, X.; Rao, H.; Li, W.; Bian, F.; Liu, Q.; et al. Fermentation of feathers with Bacillus sp. TC5 to simultaneous obtain keratinase and antioxidant-rich peptide products. Biomass Conv. Bioref. 2024. [Google Scholar] [CrossRef]
- de Menezes, C.L.A.; Boscolo, M.; da Silva, R.; Gomes, E.; da Silva, R.R. The Degradation of chicken feathers by Ochrobactrum intermedium results in antioxidant and metal chelating hydrolysates and proteolytic enzymes for staphylococcal biofilm dispersion. 3 Biotech 2023, 13, 202. [Google Scholar] [CrossRef]
- Gottardi, D.; Ciccone, M.; Siroli, L.; Lanciotti, R.; Patrignani, F. Use of Yarrowia lipolytica to obtain fish waste functional hydrolysates rich in flavoring compounds. Fermentation 2022, 8, 708. [Google Scholar] [CrossRef]
- Liu, L.; Qin, J.; Lan, B.; Hu, X.; Liao, T.; Tian, X.; Wu, Z. Functional improvement and characterization of protein hydrolysates prepared by the fermentation of irradiated tilapia skin. Food Bioprod. Process. 2024, 147, 219–229. [Google Scholar] [CrossRef]
- Martí-Quijal, F.J.; Khubber, S.; Remize, F.; Tomasevic, I.; Roselló-Soto, E.; Barba, F.J. Obtaining antioxidants and natural preservatives from food by-products through fermentation: A review. Fermentation 2021, 7, 106. [Google Scholar] [CrossRef]
- Pedro, A.C.; Paniz, O.G.; Fernandes, I.d.A.A.; Bortolini, D.G.; Rubio, F.T.V.; Haminiuk, C.W.I.; Maciel, G.M.; Magalhães, W.L.E. The importance of antioxidant biomaterials in human health and technological innovation: A review. Antioxidants 2022, 11, 1644. [Google Scholar] [CrossRef]
- Vilchez, A.; Acevedo, F.; Cea, M.; Seeger, M.; Navia, R. Applications of electrospun nanofibers with antioxidant properties: A review. Nanomaterials 2020, 10, 175. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yan, L.; Zhou, M.; Ma, J.; Wang, K.; Zhang, Y.; Drioli, E.; Cheng, X. Recent progress on functional electrospun polymeric nanofiber membranes. Mater. Today Commun. 2024, 41, 110530. [Google Scholar] [CrossRef]
- Min, T.; Zhou, L.; Sun, X.; Du, H.; Zhu, Z.; Wen, Y. Electrospun functional polymeric nanofibers for active food packaging: A review. Food Chem. 2022, 391, 133239. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Si, Y.; Guo, C.; Hu, J. Recent advances of electrospun strategies in topical products encompassing skincare and dermatological treatments. Adv. Colloid Interface Sci. 2024, 103236. [Google Scholar] [CrossRef]
- Rajanna, D.; Pushpadass, H.A.; Emerald, F.M.E.; Padaki, N.V.; Nath, B.S. Nanoencapsulation of casein-derived peptides within electrospun nanofibres. J. Sci. Food Agric. 2022, 102, 1684–1698. [Google Scholar] [CrossRef]
- Clerici, N.J.; Vencato, A.A.; Helm Júnior, R.; Daroit, D.J.; Brandelli, A. Electrospun poly-ε-caprolactone nanofibers incorporating keratin hydrolysates as innovative antioxidant scaffolds. Pharmaceuticals 2024, 17, 1016. [Google Scholar] [CrossRef]
- Sobucki, L.; Ramos, R.F.; Daroit, D.J. Protease production by the keratinolytic Bacillus sp. CL18 through feather bioprocessing. Environ. Sci. Pollut. Res. 2017, 24, 23125–23132. [Google Scholar] [CrossRef]
- Callegaro, K.; Welter, N.; Daroit, D.J. Feathers as bioresource: Microbial conversion into bioactive protein hydrolysates. Process Biochem. 2018, 75, 1–9. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Mosayebi, V.; Fathi, M.; Shahedi, M.; Soltanizadeh, N.; Emam-Djomeh, Z. Fast-dissolving antioxidant nanofibers based on Spirulina protein concentrate and gelatin developed using needleless electrospinning. Food Biosci. 2022, 47, 101759. [Google Scholar] [CrossRef]
- Vencato, A.A.; Clerici, N.J.; Juchem, A.L.M.; Veras, F.F.; Rolla, H.C.; Brandelli, A. Electrospun nanofibers incorporating lactobionic acid as novel active packaging materials: Biological activities and toxicological evaluation. Discover Nano 2024, 19, 135. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, B.S.; Kopplin, B.W.; Daroit, D.J. Bioconversion of fish scales and feather wastes by Bacillus sp. CL18 to obtain protease and bioactive hydrolysates. Waste Biomass Valor. 2023, 14, 1045–1056. [Google Scholar] [CrossRef]
- Gulsunoglu-Konuskan, Z.; Kilic-Akyilmaz, M. Microbial bioconversion of phenolic compounds in agro-industrial wastes: A review of mechanisms and effective factors. J. Agric. Food Chem. 2022, 70, 6901–6910. [Google Scholar] [CrossRef]
- Ciurko, D.; Łaba, W.; Żarowska, B.; Janek, T. Enzymatic hydrolysis using bacterial cultures as a novel method for obtaining antioxidant peptides from brewers’ spent grain. RSC Adv. 2021, 11, 4688–4700. [Google Scholar] [CrossRef]
- Lemes, A.C.; Egea, M.B.; Oliveira Filho, J.G.d.; Gautério, G.V.; Ribeiro, B.D.; Coelho, M.A.Z. Biological approaches for extraction of bioactive compounds from agro-industrial by-products: A review. Front. Bioeng. Biotechnol. 2022, 9, 802543. [Google Scholar] [CrossRef]
- He, S.; Jiang, L.; Liu, J.; Zhang, J.; Shao, W. Electrospun PVA/gelatin based nanofiber membranes with synergistic antibacterial performance. Colloids Surf. A 2022, 637, 128196. [Google Scholar] [CrossRef]
- Hosseini, S.F.; Nahvi, Z.; Zandi, M. Antioxidant peptide-loaded electrospun chitosan/poly(vinyl alcohol) nanofibrous mat intended for food biopackaging purposes. Food Hydrocoll. 2019, 89, 637–648. [Google Scholar] [CrossRef]
- Chuysinuan, P.; Thanyacharoen, T.; Techasakul, S.; Ummartyotin, S. Electrospun characteristics of gallic acid-loaded poly vinyl alcohol fibers: Release characteristics and antioxidant properties. J. Sci. Adv. Mater. Devices 2018, 3, 175–180. [Google Scholar] [CrossRef]
- Thakur, M.; Majid, I.; Hussain, S.; Nanda, V. Poly(ε-caprolactone): A potential polymer for biodegradable food packaging applications. Packag. Technol. Sci. 2021, 34, 449–461. [Google Scholar] [CrossRef]
- Zhang, W.; Khan, A.; Ezati, P.; Priyadarshi, R.; Sani, M.A.; Rathod, N.B.; Goksen, G.; Rhim, J.W. Advances in sustainable food packaging applications of chitosan/polyvinyl alcohol blend films. Food Chem. 2024, 443, 138506. [Google Scholar] [CrossRef] [PubMed]
- Brandelli, A. Nanocomposites and their applications in antimicrobial packaging. Front. Chem. 2024, 12, 1356304. [Google Scholar] [CrossRef] [PubMed]
- ASTM F756-17; Standard Practice for Assessment of Hemolytic Properties of Materials. American Standard for Testing Materials (ASTM): West Conshohocken, PA, USA, 2017.
- Sæbø, I.P.; Bjørås, M.; Franzyk, H.; Helgesen, E.; Booth., J.A. Optimization of the hemolysis assay for the assessment of cytotoxicity. Int. J. Mol. Sci. 2023, 24, 2914. [Google Scholar] [CrossRef]
- Phulmogare, G.; Rani, S.; Lodhi, S.; Patil, U.K.; Sinha, S.; Ajazuddin, S.; Gupta, U. Fucoidan loaded PVA/dextran blend electrospun nanofibers for the effective wound healing. Int. J. Pharm. 2024, 650, 123722. [Google Scholar] [CrossRef]
- Bucci, R.; Georgilis, E.; Bittner, A.M.; Gelmi, M.L.; Clerici, F. Peptide-based electrospun fibers: Current status and emerging developments. Nanomaterials 2021, 11, 1262. [Google Scholar] [CrossRef]
- Keirouz, A.; Wang, Z.; Reddy, V.S.; Nagy, Z.K.; Vass, P.; Buzgo, M.; Ramakrishna, S.; Radacsi, N. The history of electrospinning: Past, present, and future developments. Adv. Mater. Technol. 2023, 8, 2201723. [Google Scholar] [CrossRef]
- Ilhan, E.; Cesur, S.; Sulutas, R.B.; Pilavci, E.; Dalbayrak, B.; Kaya, E.; Arisan, E.D.; Tinaz, G.B.; Sengor, M.; Kijeńska-Gawrońska, E.; et al. The role of multilayer electrospun poly(vinyl alcohol)/gelatin nanofibers loaded with fluconazole and cinnamaldehyde in the potential treatment of fungal keratitis. Eur. Polym. J. 2022, 176, 111390. [Google Scholar] [CrossRef]
- Baykara, T.; Taylan, G. Coaxial electrospinning of PVA/Nigella seed oil nanofibers: Processing and morphological characterization. Mater. Sci. Eng. B 2021, 265, 115012. [Google Scholar] [CrossRef]
- Jiang, B.; Yang, Z.; Shi, H.; Turki Jalil, A.; Mahmood Saleh, M.; Mi, W. Potentiation of curcumin-loaded zeolite Y nanoparticles/PCL-gelatin electrospun nanofibers for postsurgical glioblastoma treatment. J. Drug Deliv. Sci. Technol. 2023, 80, 104105. [Google Scholar] [CrossRef]
- Cerqueira, G.R.C.; Gomes, D.S.; Victor, R.S.; Figueiredo, L.R.F.; Medeiros, E.S.; Neves, G.A.; Menezes, R.R.; Silva, S.M.L. Development of PVA/chitosan nanofibers by a green route using solution blow spinning. J. Polym. Environ. 2024, 32, 1489–1499. [Google Scholar] [CrossRef]
- Darshan, T.G.; Chen, C.-H.; Kuo, C.-Y.; Shalumon, K.T.; Chien, Y.-M.; Kao, H.-H.; Chen, J.-P. Development of high resilience spiral wound suture-embedded gelatin/PCL/heparin nanofiber membrane scaffolds for tendon tissue engineering. Int. J. Biol. Macromol. 2022, 221, 314–333. [Google Scholar]
- Sharma, S.; Gupta, A.; Kumar, A.; Kee, C.G.; Kamyab, H.; Saufi, S.M. An efficient conversion of waste feather keratin into ecofriendly bioplastic film. Clean Technol. Environ. Policy 2018, 20, 2157–2167. [Google Scholar] [CrossRef]
- Kim, T.-H.; Kim, S.-C.; Park, W.S.; Choi, I.-W.; Kim, H.-W.; Kang, H.W.; Kim, Y.-M.; Jung, W.-K. PCL/gelatin nanofibers incorporated with starfish polydeoxyribonucleotides for potential wound healing applications. Mater. Des. 2023, 229, 111912. [Google Scholar] [CrossRef]
- Ahmady, A.R.; Solouk, A.; Saber-Samandari, S.; Akbari, S.; Ghanbari, H.; Brycki, B.E. Capsaicin-loaded alginate nanoparticles embedded polycaprolactone-chitosan nanofibers as a controlled drug delivery nanoplatform for anticancer activity. J. Colloid Interface Sci. 2023, 638, 616–628. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, C.; Wang, P.; Zhang, Y.; Zhang, H. Electrospun chitosan/polycaprolactone nanofibers containing chlorogenic acid-loaded halloysite nanotube for active food packaging. Carbohydr. Polym. 2020, 247, 116711. [Google Scholar] [CrossRef]
- Matloub, A.A.; AbouSamra, M.M.; Salama, A.H.; Rizk, M.Z.; Aly, H.F.; Fouad, G.I. Cubic liquid crystalline nanoparticles containing a polysaccharide from Ulva fasciata with potent antihyperlipidaemic activity. Saudi Pharm. J. 2018, 26, 224–231. [Google Scholar] [CrossRef]
- Shanks, R.A.; Gunaratne, L.M.W.K. Gelatinization and retrogradation of thermoplastic starch characterized using modulated temperature differential scanning calorimetry. J. Therm. Anal. Calorim. 2011, 106, 93–99. [Google Scholar] [CrossRef]
- Okoro, O.V.; Jafari, H.; Hobbi, P.; Nie, L.; Alimoradi, H.; Shavandi, A. Enhanced keratin extraction from wool waste using a deep eutectic solvent. Chem. Pap. 2022, 76, 2637–2648. [Google Scholar] [CrossRef]
- Chaudhary, P.K.; Saini, D.; Mishra, P.; Pandav, K.; Prasad, R. Essential oil active constituents loaded PVA nanofibers enhance antibiofilm activity against Candida albicans and Candida tropicalis. J. Drug Deliv. Sci. Technol. 2024, 98, 105871. [Google Scholar] [CrossRef]
- Khasteband, M.; Sharifi, Y.; Akbari, A. Chrysin loaded polycaprolactone-chitosan electrospun nanofibers as potential antimicrobial wound dressing. Int. J. Biol. Macromol. 2024, 263, 130250. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Sheng, D.; Jiang, L.; Shafiq, M.; Khan, A.u.R.; Hashim, R.; Chen, Y.; Li, B.; Xie, X.; Chen, J.; et al. Vascular endothelial growth factor-capturing aligned electrospun polycaprolactone/gelatin nanofibers promote patellar ligament regeneration. Acta Biomater. 2022, 140, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Sengor, M.; Ozgun, A.; Gunduz, O.; Altintas, S. Aqueous electrospun core/shell nanofibers of PVA/microbial transglutaminase cross-linked gelatin composite scaffolds. Mater. Lett. 2020, 263, 127233. [Google Scholar] [CrossRef]
- Alharbi, N.; Daraei, A.; Lee, H.; Guthold, M. The Effect of molecular weight and fiber diameter on the mechanical properties of single, electrospun PCL nanofibers. Mater. Today Commun. 2023, 35, 105773. [Google Scholar] [CrossRef]
- Rashtchian, M.; Hivechi, A.; Bahrami, S.H.; Milan, P.B.; Simorgh, S. Fabricating alginate/poly(caprolactone) nanofibers with enhanced bio-mechanical properties via cellulose nanocrystal incorporation. Carbohydr. Polym. 2020, 233, 115873. [Google Scholar] [CrossRef]
- Li, X.; Sun, S.; Yang, A.; Li, X.; Jiang, Z.; Wu, S.; Zhou, F. Dual-crosslinked methacrylamide chitosan/poly(ε-caprolactone) nanofibers sequential releasing of tannic acid and curcumin drugs for accelerating wound healing. Int. J. Biol. Macromol. 2023, 253, 127601. [Google Scholar] [CrossRef]
- Ji, X.; Guo, J.; Guan, F.; Liu, Y.; Yang, Q.; Zhang, X.; Xu, Y. Preparation of electrospun polyvinyl alcohol/nanocellulose composite film and evaluation of its biomedical performance. Gels 2021, 7, 223. [Google Scholar] [CrossRef]
- Cui, Z.; Zheng, Z.; Lin, L.; Si, J.; Wang, Q.; Peng, X.; Chen, W. Electrospinning and crosslinking of polyvinyl alcohol/chitosan composite nanofiber for transdermal drug delivery. Adv. Polym. Technol. 2018, 37, 1917–1928. [Google Scholar] [CrossRef]
Nanofiber | DPPH (%) | DPPH (μM) 2 | ABTS (%) | ABTS (μM) 2 |
---|---|---|---|---|
PCL (control) | nd 3 | nd | nd | nd |
PCL + 1% BFH | 48.7 ± 1.0 | 967.7 ± 12.5 a | 50.8 ± 1.4 | 1118.7 ± 31.1 b |
PCL + 2.5% BFH | 49.4 ± 0.6 | 977.7 ± 6.7 a | 49.7 ± 2.5 | 1093.1 ± 57.0 b |
PCL + 5% BFH | 49.6 ± 0.2 | 979.7 ± 2.5 a | 55.0 ± 3.9 | 1213.1 ± 89.6 b |
PVA (control) | nd | nd | nd | nd |
PVA + 1% BFH | 35.2 ± 1.2 | 808.2 ± 16.2 c | 45.6 ± 4.1 | 999.8 ± 91.8 b |
PVA + 2.5% BFH | 34.3 ± 1.3 | 797.2 ± 19.1 c | 54.4 ± 1.1 | 1199.8 ± 25.2 b |
PVA + 5% BFH | 38.7 ± 0.5 | 850.2 ± 6.4 b | 76.3 ± 2.5 | 1694.2 ± 56.3 a |
Average Diameter (nm) 1 | ||
---|---|---|
Formulation | Control | 5% BFH |
10% PVA | 196.5 ± 75.6 | 282.6 ± 75.88 |
15% PVA | 350.79 ± 99.85 | 358.15 ± 80.49 |
10% PCL | 328.76 ± 79.8 | 960.74 ± 354.96 |
15% PCL | 1512.0 ± 458.98 | 500.52 ± 135.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clerici, N.J.; Daroit, D.J.; Vencato, A.A.; Brandelli, A. Bioconversion of Agro-Industrial Byproducts Using Bacillus sp. CL18: Production of Feather Hydrolysates for Development of Bioactive Polymeric Nanofibers. Fermentation 2024, 10, 615. https://doi.org/10.3390/fermentation10120615
Clerici NJ, Daroit DJ, Vencato AA, Brandelli A. Bioconversion of Agro-Industrial Byproducts Using Bacillus sp. CL18: Production of Feather Hydrolysates for Development of Bioactive Polymeric Nanofibers. Fermentation. 2024; 10(12):615. https://doi.org/10.3390/fermentation10120615
Chicago/Turabian StyleClerici, Naiara Jacinta, Daniel Joner Daroit, Aline Aniele Vencato, and Adriano Brandelli. 2024. "Bioconversion of Agro-Industrial Byproducts Using Bacillus sp. CL18: Production of Feather Hydrolysates for Development of Bioactive Polymeric Nanofibers" Fermentation 10, no. 12: 615. https://doi.org/10.3390/fermentation10120615
APA StyleClerici, N. J., Daroit, D. J., Vencato, A. A., & Brandelli, A. (2024). Bioconversion of Agro-Industrial Byproducts Using Bacillus sp. CL18: Production of Feather Hydrolysates for Development of Bioactive Polymeric Nanofibers. Fermentation, 10(12), 615. https://doi.org/10.3390/fermentation10120615