The Importance of Antioxidant Biomaterials in Human Health and Technological Innovation: A Review
"> Figure 1
<p>Primary natural sources of biomaterials.</p> "> Figure 2
<p>(<b>A</b>) Percentage of publications about biomaterials in research fields of Web of Science. (<b>B</b>) Publications on biomaterials field (18 April 2022).</p> "> Figure 3
<p>Natural antioxidant biomaterials with important biological functions.</p> "> Figure 4
<p>Controlled release mechanisms of antioxidants incorporated into biomaterials.</p> "> Figure 5
<p>Important biological properties attributed to antioxidant biomaterials.</p> ">
Abstract
:1. Introduction
2. Biomaterials
2.1. Antioxidant Biomaterials
2.1.1. Carriers and Antioxidants
Marine Organisms
2.1.2. Antioxidants
Microorganisms and/or Plant Extracts
Nanoparticles
Other Antioxidant Sources
3. Biological Properties and Release of Antioxidants from Biomaterials
4. Industrial and Technological Applications
4.1. Active Packaging
4.2. Biomedical Applications
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lynch, R.I.; Lavelle, E.C. Immuno-modulatory biomaterials as anti-inflammatory therapeutics. Biochem. Pharmacol. 2022, 197, 114890. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Tang, Z.; Liu, W.; Chen, K.; Liang, J.; Yuan, B.; Lin, H.; Zhu, X.; Fan, Y.; Shi, X. Biomaterialsand regulatory science. J. Mater. Sci. Technol. 2022, 128, 221–227. [Google Scholar] [CrossRef]
- Zhang, K.; Ma, B.; Hu, K.; Yuan, B.; Sun, X.; Song, X.; Tang, Z.; Lin, H.; Zhu, X.; Zheng, Y.J. Evidence-based biomaterials research. Bioact. Mater. 2022, 15, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Van Lith, R.; Ameer, G.A. Antioxidant Polymers as Biomaterial. In Oxidative Stress and Biomaterials; Academic Press: Cambridge, MA, USA, 2016; Volume 251, pp. 251–296. [Google Scholar] [CrossRef]
- Cerqueni, G.; Scalzone, A.; Licini, C.; Gentile, P.; Mattioli-Belmonte, M. Insights into oxidative stress in bone tissue and novel challenges for biomaterials. Mater. Sci. Eng. C. 2021, 130, 112433. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Iordache, F.; Stanca, L.; Predoi, G.; Serban, A.I. Oxidative stress mitigation by antioxidants—An overview on their chemistry and influences on health status. Eur. J. Med. Chem. 2021, 209, 112891. [Google Scholar] [CrossRef]
- Insuasti-Cruz, E.; Suárez-Jaramillo, V.; Urresta, K.A.M.; Pila-Varela, K.O.; Fiallos-Ayala, X.; Dahoumane, S.A.; Alexis, F. Natural biomaterials from biodiversity for healthcare applications. Adv. Healthc. Mater. 2022, 11, 2101389. [Google Scholar] [CrossRef]
- Zheng, M.; Chen, J.; Tan, K.B.; Chen, M.; Zhu, Y. Development of hydroxypropyl methylcellulose film with xanthan gum and its application as an excellent food packaging bio-material in enhancing the shelf life of banana. Food Chem. 2022, 374, 131794. [Google Scholar] [CrossRef]
- Thakker, A.M.; Sun, D. Ecological application of natural biomllaterial on natural fibres. Clean. Mater. 2022, 3, 100038. [Google Scholar] [CrossRef]
- Gundu, S.; Varshney, N.; Sahi, A.K.; Mahto, S.K. Recent developments of biomaterial scaffolds and regeneratve approaches for craniomaxillofacial bone tissue engineering. J. Polym. Res. 2022, 29, 73. [Google Scholar] [CrossRef]
- Rezvani Ghomi, E.; Nourbakhsh, N.; Akbari Kenari, M.; Zare, M.; Ramakrishna, S. Collagen-based biomaterials for biomedical applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021, 109, 1986–1999. [Google Scholar] [CrossRef]
- Chilakamarry, C.R.; Mahmood, S.; Saffe, S.N.B.M.; Bin Arifin, M.A.; Gupta, A.; Sikkandar, M.Y.; Begum, S.S.; Narasaiah, B. Extraction and application of keratin from natural resources: A review. 3 Biotech. 2021, 11, 220. [Google Scholar] [CrossRef] [PubMed]
- Abedinia, A.; Mohammadi Nafchi, A.; Sharifi, M.; Ghalambor, P.; Oladzadabbasabadi, N.; Ariffin, F.; Huda, N. PoultryGelatin: Characteristics, developments, challenges, and future outlooks as a sustainable alternative for mammalian gelatin. Trends Food Sci. Technol. 2020, 104, 14–26. [Google Scholar] [CrossRef]
- Arun, A.; Malrautu, P.; Laha, A.; Ramakrishna, S. Gelatin nanofibers in drug delivery systems and tissue engineering. Eng. Sci. 2021, 16, 71–81. [Google Scholar] [CrossRef]
- Khongkaew, P.; Chaemsawang, W. Development and characterization of stingless bee propolis properties for the development of solid lipid nanoparticles for loading lipophilic substances. Int. J. Biomater. 2021, 2021, 6662867. [Google Scholar] [CrossRef] [PubMed]
- de Andrade Arruda Fernandes, I.; Pedro, A.C.; Ribeiro, V.R.; Bortolini, D.G.; Ozaki, M.S.C.; Maciel, G.M.; Haminiuk, C.W.I. Bacterial cellulose: From production optimization to new applications. Int. J. Biol. Macromol. 2020, 164, 2598–2611. [Google Scholar] [CrossRef] [PubMed]
- Marques, S.; Moreno, A.D.; Ballesteros, M.; Gírio, F. Starch biomass for biofuels, biomaterials, and chemicals. In Biomass and Green Chemistry; Springer: Berlin/Heidelberg, Germany, 2017; pp. 69–94. [Google Scholar] [CrossRef]
- Bakshi, P.S.; Selvakumar, D.; Kadirvelu, K.; Kumar, N.S. Chitosan as an environment friendly biomaterial—A review on recent odifications and applications. Int. J. Biol. Macromol. 2020, 150, 1072–1083. [Google Scholar] [CrossRef]
- Qin, Y. Applications of bioactive seaweed substances in functional food products. In Bioactive Seaweeds for Food Applications: Natural Ingredients for Healthy Diets; Academic Press: Cambridge, MA, USA, 2018; pp. 111–134. [Google Scholar] [CrossRef]
- Lafarga, T.; Acién-Fernández, F.G.; Garcia-Vaquero, M. Bioactive peptides and carbohydrates from seaweed for food applications: Natural occurrence, isolation, purification, and identification. Algal Res. 2020, 48, 101909. [Google Scholar] [CrossRef]
- Web of Science Database. Web of Science Core Collection for Biomaterials. Available online: http://ezl.periodicos.capes.gov.br/connect?session=r21JnqZpD9SYjtw0&qurl=https%3A%2F%2Fwww.webofscience.com%2Fwos%2Fwoscc%2Fsummary%2F5d47a72f-3884-479e-acfe-4f11b03dbe8d-31d78537%2Frelevance%2F1 (accessed on 18 April 2022).
- Ivanova, D.G.; Yaneva, Z.L. Antioxidant properties and redox-modulating activity of chitosan and its derivatives: Biomaterials with application in cancer therapy. BioRes. Open Access 2020, 9, 64–72. [Google Scholar] [CrossRef]
- Li, C.W.; Li, L.L.; Chen, S.; Zhang, J.X.; Lu, W.L. Antioxidant nanotherapies for the treatment of inflammatory diseases. Front. Bioeng. Biotechnol. 2020, 8, 200. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, L.; Xiong, Y.; Panayi, A.C.; Abududilibaier, A.; Hu, Y.; Yu, C.; Zhou, W.; Sun, Y.; Liu, M.; et al. Antioxidant therapy and antioxidant-related bionanomaterials in diabetic wound healing. Front. Bioeng. Biotechnol. 2021, 9, 554. [Google Scholar] [CrossRef]
- Zawani, M.; Fauzi, M.B. Epigallocatechin gallate: The emerging wound healing potential of multifunctional biomaterials for future precision medicine treatment strategies. Polymers 2021, 13, 3656. [Google Scholar] [CrossRef] [PubMed]
- Bergonzi, C.; d’Ayala, G.G.; Elviri, L.; Laurienzo, P.; Bandiera, A.; Catanzano, O. alginate/human elastin-like polypeptide composite films with antioxidant properties for potential wound healing application. Int. J. Biol. Macromol. 2020, 164, 586–596. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.P.J.; Byun, M.J.; Kim, S.N.; Park, W.; Park, H.H.; Kim, T.H.; Lee, J.S.; Park, C.G. Biomaterials as therapeutic drug carriers for inflammatory bowel disease treatment. J. Control. Release 2022, 345, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Wan, M.-c.; Qin, W.; Lei, C.; Li, Q.-h.; Meng, M.; Fang, M.; Song, W.; Chen, J.-h.; Tay, F.; Niu, L.-n. Biomaterials from the sea: Future building blocks for biomedical applications. Bioact. Mater. 2021, 6, 4255–4285. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, X.; Xu, P.; Yan, J.; Zhang, Y.; Su, H.; Sun, C.; Lu, Q.; Liu, W. Exploration of sea anemone-inspired high-performance biomaterials with enhanced antioxidant activity. Bioact. Mater. 2022, 10, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek-Szczepańska, B.; Pin, J.M.; Zasada, L.; Sonne, M.M.; Reiter, R.J.; Slominski, A.T.; Steinbrink, K.; Kleszczyński, K. Assessment of melatonin-cultured collagen/chitosan scaffolds cross-linked by a glyoxal solution as biomaterials for wound healing. Antioxidants 2022, 11, 570. [Google Scholar] [CrossRef] [PubMed]
- Davoodbasha, M.A.; Lee, S.Y.; Kim, J.W. Solution plasma mediated formation of low molecular weight chitosan and its application as a biomaterial. Int. J. Biol. Macromol. 2018, 118, 1511–1517. [Google Scholar] [CrossRef]
- Ali, M.A.; Musthafa, S.A.; Munuswamy-Ramanujam, G.; Jaisankar, V. 3-formylindole-based chitosan schiff base polymer: Antioxidant and in vitro cytotoxicity studies on TPH-1 cells. Carbohydr. Polym. 2022, 119501. [Google Scholar] [CrossRef]
- Jafari, H.; Delporte, C.; Bernaerts, K.V.; De Leener, G.; Luhmer, M.; Nie, L.; Shavandi, A. Development of marine oligosaccharides for potential wound healing biomaterials engineering. Chem. Eng. J. Adv. 2021, 7, 100113. [Google Scholar] [CrossRef]
- Zhou, Q.; Cui, L.; Ren, L.; Wang, P.; Deng, C.; Wang, Q.; Fan, X. Preparation of a multifunctional fibroin-based biomaterial via laccase-assisted grafting of chitooligosaccharide. Int. J. Biol. Macromol. 2018, 113, 1062–1072. [Google Scholar] [CrossRef]
- Tan, W.; Zhang, J.; Mi, Y.; Li, Q.; Guo, Z. Synthesis and characterization of α-lipoic acid grafted chitosan derivatives with antioxidant activity. React. Funct. Polym. 2022, 172, 105205. [Google Scholar] [CrossRef]
- Don, T.M.; Liu, L.M.; Chen, M.; Huang, Y.C. Crosslinked complex films based on chitosan and ulvan with antioxidant and whitening activities. Algal Res. 2021, 58, 102423. [Google Scholar] [CrossRef]
- Tan, W.; Zhang, J.; Zhao, X.; Li, Q.; Dong, F.; Guo, Z. Preparation and physicochemical properties of antioxidant chitosan ascorbate/methylcellulose composite films. Int. J. Biol. Macromol. 2020, 146, 53–61. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Wadhwa, P.; Hong, J.W.; Hong, Y.G.; Jeon, J.M.; Lee, E.S.; Yang, Y.H. Lipase mediated functionalization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with ascorbic acid into an antioxidant active biomaterial. Int. J. Biol. Macromol. 2019, 123, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Rhim, J.W. Preparation of bioactive functional poly(lactic acid)/curcumin composite film for food packaging application. Int. J. Biol. Macromol. 2020, 162, 1780–1789. [Google Scholar] [CrossRef] [PubMed]
- de Andrade Arruda Fernandes, I.; Maciel, G.M.; Ribeiro, V.R.; Rossetto, R.; Pedro, A.C.; Haminiuk, C.W.I. The role of bacterial cellulose loaded with plant phenolics in prevention of uv-induced skin damage. Carbohydr. Polym. Technol. Appl. 2021, 2, 100122. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, Z. Effects of gelatin-polyphenol and gelatin–genipin cross-linking on the structure of gelatin hydrogels. Int. J. Food Prop. 2017, 20 (Suppl. 3), S2822–S2832. [Google Scholar] [CrossRef]
- Zhao, X.; Pei, D.; Yang, Y.; Xu, K.; Yu, J.; Zhang, Y.; Chen, X. Green tea derivative driven smart hydrogels with desired functions for chronic diabetic wound treatment. Adv. Funct. Mater. 2021, 31, 2009442. [Google Scholar] [CrossRef]
- Latos-Brozio, M.; Masek, A.; Piotrowska, M. Novel polymeric biomaterial based on naringenin. Materials 2021, 14, 2142. [Google Scholar] [CrossRef]
- Lee, S.; Lee, J.; Byun, H.; Kim, S.J.; Joo, J.; Park, H.H. Evaluation of the anti-oxidative and ROS scavenging properties of biomaterials coated with epigallocatechin gallate for tissue engineering. Acta Biomater. 2021, 124, 166–178. [Google Scholar] [CrossRef]
- Hasheminya, S.M.; Dehghannya, J. Novel ultrasound-assisted extraction of kefiran biomaterial, a prebiotic exopolysaccharide, and investigation of its physicochemical, antioxidant and antimicrobial properties. Mater. Chem. Phys. 2020, 243, 122645. [Google Scholar] [CrossRef]
- Wei, L.; Sui, H.; Zhang, J.; Guo, Z. Synthesis and antioxidant activity of the inulin derivative bearing 1,2,3-triazole and diphenyl phosphate. Int. J. Biol. Macromol. 2021, 186, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Bonifacio, M.A.; Cerqueni, G.; Cometa, S.; Licini, C.; Sabbatini, L.; Mattioli-Belmonte, M.; De Giglio, E. Insights into Arbutin effects on bone cells: Towards the development of antioxidant titanium implants. Antioxidants 2020, 9, 579. [Google Scholar] [CrossRef] [PubMed]
- Sebastiammal, S.; Lesly Fathima, A.S.; Devanesan, S.; AlSalhi, M.S.; Henry, J.; Govindarajan, M.; Vaseeharan, B. Curcumin-encased hydroxyapatite nanoparticles as novel biomaterials for antimicrobial, antioxidant and anticancer applications: A perspective of nano-based drug delivery. J. Drug Deliv. Sci. Technol. 2020, 57, 101752. [Google Scholar] [CrossRef]
- Vinay, S.P.; Udayabhanu; Sumedha, H.N.; Shashank, M.; Nagaraju, G.; Chandrasekhar, N. In-vitro antibacterial, antioxidant and cytotoxic potential of gold nanoparticles synthesized using novel elaeocarpus ganitrus seeds extract. J. Sci. Adv. Mater. Devices 2021, 6, 127–133. [Google Scholar] [CrossRef]
- Gong, X.; Chen, M.; Lei, B.; Xia, W.; Zhang, X. Antioxidant and antibacterial phytate hydrogel for mrsa infected wound healing. Mater. Lett. 2022, 312, 131690. [Google Scholar] [CrossRef]
- Fan, Y.; Wu, W.; Lei, Y.; Gaucher, C.; Pei, S.; Zhang, J.; Xia, X. Edaravone-loaded alginate-based nanocomposite hydrogel accelerated chronic wound healing in diabetic mice. Mar. Drugs 2019, 17, 285. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.; Shaitan, K.; Qu, X.; Bonartsev, A.P.; Lei, B. Bioactive rare earth-based inorganic-organic hybrid biomaterials for wound healing and repair. Appl. Mater. Today 2022, 26, 101304. [Google Scholar] [CrossRef]
- Demir, D.; Özdemir, S.; Gonca, S.; Bölgen, N. Novel styrax liquidus loaded chitosan/polyvinyl alcohol cryogels with antioxidant and antimicrobial properties. J. Appl. Polym. Sci. 2022, 139, 52033. [Google Scholar] [CrossRef]
- Wang, C.; Liang, Y.; Huang, Y.; Li, M.; Guo, B. Porous photothermal antibacterial antioxidant dual-crosslinked cryogel based on hyaluronic acid/ polydopamine for non-compressible hemostasis and infectious wound repair. J. Mater. Sci. Technol. 2022, 121, 207–219. [Google Scholar] [CrossRef]
- Gao, W.; Xiao, Y. Advances in cell membrane-encapsulated biomaterials for tissue repair and regeneration. Appl. Mater. Today 2022, 26, 101389. [Google Scholar] [CrossRef]
- Ma, Y.; Gao, L.; Tian, Y.; Chen, P.; Yang, J.; Zhang, L. Advanced biomaterials in cell preservation: Hypothermic preservation and cryopreservation. Acta Biomater. 2021, 131, 97–116. [Google Scholar] [CrossRef] [PubMed]
- Marrazzo, P.; O’Leary, C. Repositioning natural antioxidants for therapeutic applications in tissue engineering. Bioengineering 2020, 7, 104. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, Z.; Wang, J.; Li, R.; Li, T.; Chang, M.; Wang, Y. Encapsulation of curcumin nanoparticles with MMP9 responsive and thermos-sensitive hydrogel improves diabetic wound healing. ACS Appl. Mater. Interfaces 2018, 10, 16315–16326. [Google Scholar] [CrossRef]
- Wu, X.; Dai, H.; Xu, C.; Liu, L.; Li, S. Citric acid modification of a polymer exhibits antioxidant and anti-inflammatory properties in stem cells and tissues. J. Biomed. Mater. 2021, 107, 2414–2424. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xing, X.; Tan, H.; Jia, Y.; Zhou, T.; Chen, Y.; Hu, X. Covalently antibacterial alginate chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing. Mater. Sci. Eng. C 2017, 70, 287–295. [Google Scholar] [CrossRef]
- Lee, H.; Vilian, A.E.; Kim, J.Y.; Chun, M.H.; Suh, J.S.; Seo, H.H.; Huh, Y.S. Design and development of caffeic acid conjugated with Bombyx mori derived peptide biomaterials for anti-aging skin care applications. RSC Adv. 2017, 7, 30205–30213. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Chen, L.; Gu, Z.; Wu, J. Red jujube-incorporated gelatin methacryloyl (GelMA) hydrogels with anti-oxidation and immunoregulation activity for wound healing. J. Biomed. Nanotechnol. 2019, 15, 1357–1370. [Google Scholar] [CrossRef]
- De Masi, A.; Tonazzini, I.; Masciullo, C.; Mezzena, R.; Chiellini, F.; Puppi, D.; Cecchini, M. Chitosan films for regenerative medicine: Fabrication methods and mechanical characterization of nanostructured chitosan films. Biophys. Rev. 2019, 11, 807–815. [Google Scholar] [CrossRef]
- Liu, L.; Shi, H.; Yu, H.; Zhou, R.; Yin, J.; Luan, S. One-step hydrophobization of tannic acid for antibacterial coating on catheters to prevent catheter-associated infections. Biomater. Sci. 2019, 7, 5035–5043. [Google Scholar] [CrossRef]
- Xu, J.; Xu, J.J.; Lin, Q.; Jiang, L.; Zhang, D.; Li, Z.; Loh, X.J. Lignin-incorporated nanogel serving as an antioxidant biomaterial for wound healing. ACS Appl. BioMater. 2020, 4, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Yang, L.; Yang, P.; Jiang, S.; Liu, X.; Li, Y. Polydopamine free radical scavengers. Biomater. Sci. 2020, 8, 4940–4950. [Google Scholar] [CrossRef] [PubMed]
- Fakhri, E.; Eslami, H.; Maroufi, P.; Pakdel, F.; Taghizadeh, S.; Ganbarov, K.; Kafil, H.S. Chitosan biomaterials application in dentistry. Int. J. Biol. Macromol. 2020, 162, 956–974. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, A.; Uy, L.; Frank-Kamenetskii, A.; Strizzi, L.; Booth, B.W. The in vivo biocompatibility of novel tannic acid-collagen type I injectable bead scaffold material for breast reconstruction post-lumpectomy. J. Biomater. Appl. 2020, 34, 1315–1329. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Chen, M.; Liu, Z. Local biomaterials-assisted cancer immunotherapy to trigger systemic antitumor responses. Chem. Soc. Rev. 2019, 48, 5506–5526. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Shi, K.; Jia, Y.P.; Hao, Y.; Peng, J.R.; Qian, Z.Y. Advanced biomaterials for cancer immunotherapy. Acta Pharmacol. Sin. 2020, 41, 911–927. [Google Scholar] [CrossRef]
- Brito, J.; Hlushko, H.; Abbott, A.; Aliakseyeu, A.; Hlushko, R.; Sukhishvili, S.A. Integrating antioxidant functionality into polymer materials: Fundamentals, strategies, and applications. ACS Appl. Mater. Interfaces 2021, 13, 41372–41395. [Google Scholar] [CrossRef]
- Huang, X.; Ji, Y.; Guo, L.; Xu, Q.; Jin, L.; Fu, Y.; Wang, Y. Incorporating tannin onto regenerated cellulose film towards sustainable active packaging. Ind. Crops Prod. 2022, 180, 114710. [Google Scholar] [CrossRef]
- Philip, E.R.R.; Madhavan, A.; Sindhu, R.; Pugazhendhi, A.; Binod, P.; Sirohi, R.; Awasthi, M.K.; Tarafdar, A.; Pandey, A. Advanced biomaterials for sustainable applications in the food industry: Updates and challenges. Environ. Pollut. 2021, 283, 117071. [Google Scholar] [CrossRef]
- Ait Ouahioune, L.; Wrona, M.; Becerril, R.; Salafranca, J.; Nerín, C.; Djenane, D. Ceratonia siliqua L. kibbles, seeds and leaves as a source of volatile bioactive compounds for antioxidant food biopackaging applications. Food Packag. Shelf Lif. 2022, 31, 100764. [Google Scholar] [CrossRef]
- Fontes, M.R.V.; da Rosa, M.P.; Fonseca, L.M.; Beck, P.H.; da Rosa Zavareze, E.; Dias, A.R.G. Thermal stability, hydrophobicity and antioxidant potential of ultrafine poly (lactic acid)/rice husk lignin fibers. Braz. J. Chem. Eng. 2021, 38, 133–144. [Google Scholar] [CrossRef]
- da Cruz, E.P.; Fonseca, L.M.; Radünz, M.; da Silva, F.T.; Gandra, E.A.; da Rosa Zavareze, E.; Borges, C.D. Pinhão coat extract encapsulated in starch ultrafine fibers: Thermal, antioxidant, and antimicrobial properties and in vitro biological digestion. J. Food Sci. 2021, 86, 2886–2897. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, L.M.; da Silva, F.T.; Bruni, G.P.; Borges, C.D.; da Rosa Zavareze, E.; Dias, A.R.G. Aerogels based on corn starch as carriers for pinhão coat extract (Araucaria angustifolia) rich in phenolic compounds for active packaging. Int. J. Biol. Macromol. 2021, 169, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Barra, A.; Ferreira, N.M.; Martins, M.A.; Lazar, O.; Pantazi, A.; Jderu, A.A.; Neumayer, S.M.; Rodriguez, B.J.; Enăchescu, M.; Ferreira, P.; et al. Eco-friendly preparation of electrically conductive chitosan-reduced graphene oxide flexible bionanocomposites for food packaging and biological applications. Compos. Sci. Technol. 2019, 173, 53–60. [Google Scholar] [CrossRef]
- Soni, B.; Mahmoud, B.; Chang, S.; El-Giar, E.M.; Hassan, E.B. Physicochemical, antimicrobial and antioxidant properties of chitosan/tempo biocomposite packaging films. Food Packag. Shelf Life 2018, 17, 73–79. [Google Scholar] [CrossRef]
- Tian, B.; Xu, D.; Cheng, J.; Liu, Y. Chitosan-silica with hops β-acids added films as prospective food packaging materials: Preparation, characterization, and properties. Carbohydr. Polym. 2021, 272, 118457. [Google Scholar] [CrossRef]
- Yong, H.; Bi, F.; Liu, J.; Qin, Y.; Bai, R.; Liu, J. Preparation and characterization of antioxidant packaging by chitosan, d-α-tocopheryl polyethylene glycol 1000 succinate and Baicalein. Int. J. Biol. Macromol. 2020, 153, 836–845. [Google Scholar] [CrossRef]
- Bhat, V.G.; Narasagoudr, S.S.; Masti, S.P.; Chougale, R.B.; Vantamuri, A.B.; Kasai, D. Development and evaluation of moringa extract incorporated chitosan/guar gum/poly (vinyl alcohol) active films for food packaging applications. Int. J. Biol. Macromol. 2022, 200, 50–60. [Google Scholar] [CrossRef]
- Eze, F.N.; Jayeoye, T.J.; Singh, S. Fabrication of intelligent ph-sensing films with antioxidant potential for monitoring shrimp freshness via the fortification of chitosan matrix with broken rice berry phenolic extract. Food Chem. 2022, 366, 130574. [Google Scholar] [CrossRef]
- Shen, W.; Yan, M.; Wu, S.; Ge, X.; Liu, S.; Du, Y.; Zheng, Y.; Wu, L.; Zhang, Y.; Mao, Y. Chitosan nanoparticles embedded with curcumin and its application in pork antioxidant edible coating. Int. J. Biol. Macromol. 2022, 204, 410–418. [Google Scholar] [CrossRef]
- Velásquez, P.; Montenegro, G.; Valenzuela, L.M.; Giordano, A.; Cabrera-Barjas, G.; Martin-Belloso, O. K-carrageenan edible films for beef: Honey and bee pollen phenolic compounds improve their antioxidant capacity. Food Hydrocoll. 2022, 124, 107250. [Google Scholar] [CrossRef]
- Sadeghi, A.; Razavi, S.M.A.; Shaharampour, D. Fabrication and characterization of biodegradable active films with modified morphology based on polycaprolactone-polylactic acid-green tea extract. Int. J. Biol. Macromol. 2022, 205, 341–356. [Google Scholar] [CrossRef] [PubMed]
- Arciello, A.; Panzella, L.; Dell’Olmo, E.; Abdalrazeq, M.; Moccia, F.; Gaglione, R.; Agustin-Salazar, S.; Napolitano, A.; Mariniello, L.; Giosafatto, C.V.L. Development and characterization of antimicrobial and antioxidant whey protein-based films functionalized with pecan (Carya illinoinensis) nut shell extract. Food Packag. Shelf Life 2021, 29, 100710. [Google Scholar] [CrossRef]
- Joanne Kam, W.Y.; Mirhosseini, H.; Abas, F.; Hussain, N.; Hedayatnia, S.; Florence Chong, H.L. Antioxidant activity enhancement of biodegradable film as active packaging utilizing crude extract from durian leaf waste. Food Control 2018, 90, 66–72. [Google Scholar] [CrossRef]
- Beikzadeh, S.; Hosseini, S.M.; Mofid, V.; Ramezani, S.; Ghorbani, M.; Ehsani, A.; Mortazavian, A.M. Electrospun ethyl cellulose/poly caprolactone/gelatin nanofibers: The investigation of mechanical, antioxidant, and antifungal properties for food packaging. Int. J. Biol. Macromol. 2021, 191, 457–464. [Google Scholar] [CrossRef]
- Istiqomah, A.; Prasetyo, W.E.; Firdaus, M.; Kusumaningsih, T. Valorisation of lemongrass essential oils onto chitosan-starch film for sustainable active packaging: Greatly enhanced antibacterial and antioxidant activity. Int. J. Biol. Macromol. 2022, 210, 669–681. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, X.; Zhang, G.L.; Hao, H.; Hou, H.M.; Bi, J. Preparation of chitosan-cellulose-benzyl isothiocyanate nanocomposite film for food packaging applications. Carbohydr. Polym. 2022, 285, 119234. [Google Scholar] [CrossRef]
- Lukic, I.; Vulic, J.; Ivanovic, J. Antioxidant activity of PLA/PCL films loaded with thymol and/or carvacrol using scco2 for active food packaging. Food Packag. Shelf Life 2020, 26, 100578. [Google Scholar] [CrossRef]
- Silva, N.H.C.S.; Vilela, C.; Almeida, A.; Marrucho, I.M.; Freire, C.S.R. Pullulan-based nanocomposite films for functional food packaging: Exploiting lysozyme nanofibers as antibacterial and antioxidant reinforcing additives. Food Hydrocoll. 2018, 77, 921–930. [Google Scholar] [CrossRef]
- Xu, Z.; Han, S.; Gu, Z.; Wu, J. Advances and impact of antioxidant hydrogel in chronic wound healing. Adv. Healthc. Mater. 2020, 9, 1901502. [Google Scholar] [CrossRef]
- Ho, Y.S.; Wu, J.Y.; Chang, C.Y. A new natural antioxidant biomaterial from Cinnamomum osmophloeum Kanehira leaves represses melanogenesis and protects against DNA damage. Antioxidants 2019, 8, 474. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tian, L.; Luo, B.; Ramakrishna, S.; Kai, D.; Loh, X.J.; Yang, I.H.; Deen, G.R.; Mo, X. Engineering PCL/lignin nanofibers as an antioxidant scaffold for the growth of neuron and schwann cell. Colloids Surf. B Biointerfaces 2018, 169, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Liang, R.; Zhao, J.; Li, B.; Cai, P.; Loh, X.J.; Xu, C.; Chen, P.; Kai, D.; Zheng, L. Implantable and degradable antioxidant poly(ε-caprolactone)-lignin nanofiber membrane for effective osteoarthritis treatment. Biomaterials 2020, 230, 119601. [Google Scholar] [CrossRef]
- Gwak, M.A.; Hong, B.M.; Park, W.H. Hyaluronic acid/tannic acid hydrogel sunscreen with excellent anti-UV, antioxidant, and cooling effects. Int. J. Biol. Macromol. 2021, 191, 918–924. [Google Scholar] [CrossRef] [PubMed]
- Puertas-Bartolomé, M.; Benito-Garzón, L.; Fung, S.; Kohn, J.; Vázquez-Lasa, B.; San Román, J. Bioadhesive functional hydrogels: Controlled release of catechol species with antioxidant and anti-inflammatory behavior. Mater. Sci. Eng. C 2019, 105, 110040. [Google Scholar] [CrossRef]
- Subha, V.; Ranu, A.; Shankar, A.; Kirubanandan, S.; Satheeshkumar, E.; Suresh, S.; Pugazhendhi, A.; Ilangovan, R. Functionalization of spray coated cellulose nanofiber sheet with montmorillonite (MMT) and silver nanoparticles (AGNPS) to biomedical nanocomposite as wound regeneration scaffold. Prog. Org. Coat. 2022, 166, 106782. [Google Scholar] [CrossRef]
- Dharmalingam, K.; Anandalakshmi, R. Functionalization of cellulose-based nanocomposite hydrogel films with zinc oxide complex and grapefruit seed extract for potential applications in treating chronic wounds. Polymers 2020, 202, 122620. [Google Scholar] [CrossRef]
- Radwan-Pragłowska, J.; Piątkowski, M.; Janus, Ł.; Bogdał, D.; Matysek, D.; Cablik, V. Microwave-assisted synthesis and characterization of antioxidant chitosan-based aerogels for biomedical applications. Int. J. Polym. Anal. Charact. 2018, 23, 721–729. [Google Scholar] [CrossRef]
- Zheng, Z.; Qi, J.; Hu, L.; Ouyang, D.; Wang, H.; Sun, Q.; Lin, L.; You, L.; Tang, B. A Cannabidiol-containing alginate based hydrogel as novel multifunctional wound dressing for proomoting wound healing. Mater. Sci. Eng. C 2022, 134, 112560. [Google Scholar] [CrossRef]
- Contardi, M.; Kossyvaki, D.; Picone, P.; Summa, M.; Guo, X.; Heredia-Guerrero, J.A.; Giacomazza, D.; Carzino, R.; Goldoni, L.; Scoponi, G.; et al. Electrospun polyvinylpyrrolidone (PVP) hydrogels containing hydroxycinnamic acid derivatives as potential wound dressings. Chem. Eng. J. 2021, 409, 128144. [Google Scholar] [CrossRef]
- Hajji, S.; Ben Khedir, S.; Hamza-Mnif, I.; Hamdi, M.; Jedidi, I.; Kallel, R.; Boufi, S.; Nasri, M. Biomedical potential of chitosan-silver nanoparticles with special reference to antioxidant, antibacterial, hemolytic and in vivo cutaneous wound healing effects. Biochim. Biophys. Acta Gen. Subj. 2019, 1863, 241–254. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Xiao, K.; He, Y.; Du, B.; Hong, J.; Yin, H.; Lu, D.; Luo, F.; Li, Z.; Li, J.; et al. Tough and biodegradable polyurethane-curcumin composited hydrogel with antioxidant, antibacterial and antitumor properties. Mater. Sci. Eng. C 2021, 121, 111820. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Du, Z.; Wei, P.; Chen, F.; Guan, B.; Zhao, Z.; Zhang, X.; Cai, Q.; Mao, J.; Leng, H.; et al. Biodegradable microspheres made of conductive polyorganophosphazene showing antioxidant capacity for improved bone regeneration. Chem. Eng. J. 2020, 397, 125352. [Google Scholar] [CrossRef]
Source of Biomaterial | Type of Biomaterial | Function/Effect | References |
---|---|---|---|
Alginate-chitosan and tetracycline gelatin | Hydrogel | Wound healing and antimicrobial activity against Escherichia coli and Staphylococcus aureus | Chen et al. [60] |
Peptide conjugated with caffeic acid | Biocosmetic | Slows down the natural aging process | Lee et al. [61] |
Curcumin | Hydrogel | Wound healing in diabetics | Liu et al. [58] |
Jujube extract | Hydrogel | Wound healing in diabetics | Huang et al. [62] |
Polyvinyl alcohol modified with citric acid (PVA-C) | Films | Inhibition of oxidative stress and lipopolysaccharide-induced inflammatory reactions | Wu et al. [59] |
Alginate with Edaravone® | Hydrogel nanocomposite | Antioxidant effect and wound healing in diabetic mice | Fan et al. [51] |
Chitosan | Film | Antimicrobial effect against Staphylococcus aureus and Escherichia coli | De Masi et al. [63] |
Tannic acid and benzalkonium chloride | Catheters | Bactericidal activity against Staphylococcus aureus and Escherichia coli | Liu et al. [64] |
Curcumin-encased hydroxyapatite nanoparticles | Encapsulated | Antimicrobial, antioxidant, and anticancer effects | Sebastianmmal et al. [48] |
PEG, PPG e PDMS with lignin extracted from coconut husk | Nanogel | Accelerated healing of burns, reduced active oxygen level, and protected human hepatocyte cells against apoptosis | Xu et al. [65] |
Modified dopamine | Hydrogel | Wound healing and skin burns in diabetics | Hu et al. [66] |
Chitosan | Biopolymer | Anticarcinogenic and immunostimulating activity | Ivanova and Yaneva [22] |
Chitosan | Hydrogel | Dentin-pulp regeneration of teeth and treatment of periodontitis | Fakhri et al. [67] |
Tannic acid and collagen | Injectable spheres | Post-lumpectomy breast tissue reconstruction | Baldwin et al. [68] |
Carrageenan | Film | Hydrophilicity and high ester sulfate content; anti-inflammatory, antitumor, antimicrobial, antioxidant, anti-hyperlipemic, anticoagulant and immunomodulatory properties | Wan et al. [28] |
Ulvan | Hydrogel | Anti-coagulation, antioxidant, antibacterial, and anti-tumor properties | Wang et al. [27] |
Chitosan with ulvan | Film | Antioxidant and whitening ability | Don et al. [36] |
Chitooligosaccharide | Film | Antibacterial and antioxidant properties for wound healing | Jafari et al. [33] |
Elaeocarpus ganitrus extract | Gold nanoparticles | Antibacterial, antioxidant and cytotoxic against a prostate cancer cell line | Vinay et al. [49] |
Thrombospondin protein | Hydrogel | Resists oxidative stress damage, antioxidant, anti-photoaging, and wound healing effects | Wang et al. [29] |
Chitosan with 3-Formylindole | Polymer | Intracellular ROS reducer, antioxidant, and antimicrobial properties | Ali et al. [32] |
α-lipoic acid grafted with chitosan | Film | Antioxidant activity | Tan et al. [34] |
Antioxidant Additive | Source | Applications | References | |
---|---|---|---|---|
Tannins | Acacia | Regenerated cellulose | Active packaging films | Huang et al. [72] |
Phenolic compounds | Honey and pollen | K-carrageenan | Edible films for meat | Velásquez et al. [85] |
Lignin | Rice husk | Poly(lactic acid) | Ultra-thin membranes for active packaging | Fontes et al. [75] |
Hop | Chitosan-silica | Functional films with active ingredient release for soybean oil storage packaging | Tian et al. [80] | |
Ceratonia siliqua L. | Cellulose | Multi-layer packaging | Ait Ouahioune et al. [74] | |
Pine nut shell | Maize starch | Aerogels for water absorption in packaging | Fonseca et al. [77] | |
Moringa | Chitosan-guar gum-polyvinyl alcohol blends | Active films for packaging | Bhat et al. [82] | |
Green tea | Polycaprolactone/poly(lactic acid) | Biodegradable active films for packaging | Sadeghi, Razavi, and Shaharampour [86] | |
Pecan nut shell | Whey protein | Active films for packaging | Arciello et al. [87] | |
Durian | Gelatin | Active films for packaging | Joanne Kam et al. [88] | |
Essential oils | Zataria | Ethyl cellulose/polycaprolactone/gelatin | Nanofibers for food packaging | Beikzadeh et al. [89] |
Lemon grass | Chitosan and starch | Biodegradable active film for packaging | Istiqomah et al. [90] | |
Others | Chitosan | Oxidized cellulose nanofiber | Active films for packaging | Soni et al. [79] |
Graphene oxide | Chitosan | Food packaging and biological applications | Barra et al. [78] | |
Curcumin | Chitosan | Edible coating for pork | Shen et al. [84] | |
Benzyl-isocyanate | Chitosan-cellulose nanocomposite | Active films for packaging | Jiang et al. [91] | |
Thymol and/or carvacrol | Poly(lactic acid)/poly(ε-caprolactone) | Biodegradable films for active food packaging | Lukic, Vulic, and Ivanovic [92] | |
Lysozyme | Pullulan | Functional food packaging films | Silva et al. [93] |
Antioxidant Additive | Matrix | Applications | References | |
---|---|---|---|---|
Lignin | Lignin | Polyurethane copolymers of polyethylene glycol/polypropylene glycol/polydimethylsiloxane | Nanogel for wound healing | Xu et al. [94] |
Lignin | Poly(ε-caprolactone) nanofibers | Membrane for effective treatment of osteoarthritis | Liang et al. [97] | |
Plant extracts | Leaves of Cinnamomum osmophloeum Kanehira | - | Suppresses melanogenesis and protects against DNA damage | Ho, Wu, and Chang [95] |
Cassia alata extract nanocomposite/silver nanoparticle/montmorillonite | Cellulose nanofiber | Scaffold for wound regeneration | Subha et al. [100] | |
Zinc oxide complex and grapefruit seed extract | Cellulose | Nanocomposite hydrogel films for potential applications in the treatment of chronic wounds | Dharmalingam and Anandalakshmi [101] | |
Tiliaplatyphyllos | Chitosan | Scaffolds in tissue engineering | Radwan-Pragłowska et al. [102] | |
Cannabidiol | Alginate/zinc | Multifunctional dressing to promote wound healing | Zheng et al. [103] | |
Others | Citric acid | Polyvinyl alcohol | Modification of polymers to biomaterial | Wu et al. [59] |
Derivatives of hydroxycinnamic acid (p-coumaric acid and ferulic acid) | Polyvinylpyrrolidone | Hydrogels as possible wound dressings | Contardi et al. [104] | |
Silver nanoparticles | Chitosan/polyvinyl alcohol | Nanoparticles for skin healing dressings | Hajji et al. [105] | |
Curcumin | Polyurethane | Hydrogel for potential use as dressings or tumor isolation membranes | Feng et al. [106] | |
Polyorganophophazene | - | Microspheres for bone regeneration | Huang et al. [107] | |
Hydroxyapatite/curcumin nanoparticles | - | Biomedical applications | Sebastiammal et al. [48] | |
Hyaluronic acid/tannic acid | - | Hydrogel sunscreen | Gwak, Hong, and Park [98] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedro, A.C.; Paniz, O.G.; Fernandes, I.d.A.A.; Bortolini, D.G.; Rubio, F.T.V.; Haminiuk, C.W.I.; Maciel, G.M.; Magalhães, W.L.E. The Importance of Antioxidant Biomaterials in Human Health and Technological Innovation: A Review. Antioxidants 2022, 11, 1644. https://doi.org/10.3390/antiox11091644
Pedro AC, Paniz OG, Fernandes IdAA, Bortolini DG, Rubio FTV, Haminiuk CWI, Maciel GM, Magalhães WLE. The Importance of Antioxidant Biomaterials in Human Health and Technological Innovation: A Review. Antioxidants. 2022; 11(9):1644. https://doi.org/10.3390/antiox11091644
Chicago/Turabian StylePedro, Alessandra Cristina, Oscar Giordani Paniz, Isabela de Andrade Arruda Fernandes, Débora Gonçalves Bortolini, Fernanda Thaís Vieira Rubio, Charles Windson Isidoro Haminiuk, Giselle Maria Maciel, and Washington Luiz Esteves Magalhães. 2022. "The Importance of Antioxidant Biomaterials in Human Health and Technological Innovation: A Review" Antioxidants 11, no. 9: 1644. https://doi.org/10.3390/antiox11091644
APA StylePedro, A. C., Paniz, O. G., Fernandes, I. d. A. A., Bortolini, D. G., Rubio, F. T. V., Haminiuk, C. W. I., Maciel, G. M., & Magalhães, W. L. E. (2022). The Importance of Antioxidant Biomaterials in Human Health and Technological Innovation: A Review. Antioxidants, 11(9), 1644. https://doi.org/10.3390/antiox11091644