Multi-Model Estimation of Forest Canopy Closure by Using Red Edge Bands Based on Sentinel-2 Images
<p>Overview of the study area and distribution of sampling sites.</p> "> Figure 2
<p>Measured CC frequency distribution diagram.</p> "> Figure 3
<p>Importance of feature variables.</p> "> Figure 4
<p>Scatter plots of measured values of canopy cover and estimated values of modeling points.</p> "> Figure 5
<p>CC inversion results obtained using the Li–Strahler geometric-optical (<b>A</b>), multiple stepwise regression (<b>B</b>) and back propagation neural network (<b>C</b>) models.</p> "> Figure 6
<p>Scatter plot of the measured values of canopy cover and estimated values of test points.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Remote Sensing Data
2.2.2. Field Data
2.3. Methods
2.3.1. Remote Sensing Variable Extraction
2.3.2. Canopy Closure Estimation Models
Multiple Stepwise Regression (MSR) Model
Back Propagation Neural Network (BPNN) Model
Li–Strahler Geometric-Optical (Li–Strahler GO) Model
2.4. Model Inspection
3. Results
3.1. Feature Selection
3.2. The Modeling Results Obtained Using MSR and BPNN Models
3.3. The Modeling Results Obtained Using Li–Strahler GO Models
3.4. Evaluation of the Accuracy of the Three Models
3.5. Comparative Experiments
4. Discussion
4.1. The Accuracy of the Three Types of Models
4.2. The Applicability of Red Edge Bands
5. Conclusions
- Red edge bands can be used in forest canopy closure estimation models. According to the correlation coefficient matrix and the ranking results of the importance of characteristic variables, it can be seen that spectrum features are the most important features with respect to canopy closure among the five types of feature factors extracted in this study, followed by red edge vegetation indices. Moreover, the model estimation results indicate that Sentinel-2 data have potential utility with respect to the estimation of forest canopy closure based on our findings that the multiple stepwise regression model incorporating red edge indices had an R2 value of 0.75 and a relative error value of 20.76%, whereas the back propagation neural network model incorporating red edge indices had an R2 of 0.811 and relative error of 16.97%. In addition, the Li–Strahler geomatic optical model constructed by the synthetic images within red edge bands showed a certain reliability as well, with a relative error value of 24.83%. Compared with comparative experiments and previous research into the construction of canopy closure estimation models based on multispectral images, this paper used the red edge indices calculated by red edge bands in the construction of the models and obtained better accuracy results.
- Although red edge bands can effectively improve the accuracy of forest canopy closure estimation models, they have different effects on different types of models. The multiple stepwise regression model was most affected by red edge bands. Compared with the model without red edge vegetation indices, the accuracy of the multiple stepwise regression model with red edge vegetation indices improved by 13.07%, which shows that, out of the three models, red edge bands have the best adaptability and effectiveness in the multiple stepwise regression model. The second is the Li–Strahler geometric-optical model. The canopy closure result of image inversion with red edge bands was 4% higher than without red edge bands, which also shows that red edge bands can be better applied to this kind of model and can improve accuracy. Finally, red edge bands contribute the least improvement to the back propagation neural network model, and improved the model accuracy by only 1.22%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jennings, S. Assessing Forest Canopies and Understorey Illumination: Canopy Closure, Canopy Cover and Other Measures. Forestry 1999, 72, 59–74. [Google Scholar] [CrossRef]
- Wilkinson, M.; Eaton, E.L.; Morison, J.I.L. Can Upward-Facing Digital Camera Images Be Used for Remote Monitoring of Forest Phenology? For. Int. J. For. Res. 2018, 91, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Lof, M.; Karlsson, M.; Sonesson, K.; Welander, T.N.; Collet, C. Growth and Mortality in Underplanted Tree Seedlings in Response to Variations in Canopy Closure of Norway Spruce Stands. Forestry 2007, 80, 371–383. [Google Scholar] [CrossRef]
- Buskey, T.M.; Maloney, M.E.; Chapman, J.I.; McEwan, R.W. Herb-Layer Dynamics in an Old-Growth Forest: Vegetation–Environment Relationships and Response to Invasion-Related Perturbations. Forests 2020, 11, 1069. [Google Scholar] [CrossRef]
- Caselli, M.; Urretavizcaya, M.F.; Loguercio, G.Á.; Contardi, L.; Gianolini, S.; Defossé, G.E. Effects of Canopy Cover and Neighboring Vegetation on the Early Development of Planted Austrocedrus Chilensis and Nothofagus Dombeyi in North Patagonian Degraded Forests. For. Ecol. Manag. 2021, 479, 118543. [Google Scholar] [CrossRef]
- Schumacher, J.; Christiansen, J.R. Forest Canopy Water Fluxes Can Be Estimated Using Canopy Structure Metrics Derived from Airborne Light Detection and Ranging (LiDAR). Agric. For. Meteorol. 2015, 203, 131–141. [Google Scholar] [CrossRef]
- Narine, L.L.; Popescu, S.; Neuenschwander, A.; Zhou, T.; Srinivasan, S.; Harbeck, K. Estimating Aboveground Biomass and Forest Canopy Cover with Simulated ICESat-2 Data. Remote Sens. Environ. 2019, 224, 1–11. [Google Scholar] [CrossRef]
- Næsset, E.; McRoberts, R.E.; Pekkarinen, A.; Saatchi, S.; Santoro, M.; Trier, Ø.D.; Zahabu, E.; Gobakken, T. Use of Local and Global Maps of Forest Canopy Height and Aboveground Biomass to Enhance Local Estimates of Biomass in Miombo Woodlands in Tanzania. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102138. [Google Scholar] [CrossRef]
- Parmehr, E.G.; Amati, M.; Taylor, E.J.; Livesley, S.J. Estimation of Urban Tree Canopy Cover Using Random Point Sampling and Remote Sensing Methods. Urban For. Urban Green. 2016, 20, 160–171. [Google Scholar] [CrossRef]
- Hadi; Korhonen, L.; Hovi, A.; Rönnholm, P.; Rautiainen, M. The Accuracy of Large-Area Forest Canopy Cover Estimation Using Landsat in Boreal Region. Int. J. Appl. Earth Obs. Geoinf. 2016, 53, 118–127. [Google Scholar] [CrossRef]
- Jin, X.; Li, Z.; Feng, H.; Ren, Z.; Li, S. Estimation of Maize Yield by Assimilating Biomass and Canopy Cover Derived from Hyperspectral Data into the AquaCrop Model. Agric. Water Manag. 2020, 227, 105846. [Google Scholar] [CrossRef]
- Wolter, P.T.; Townsend, P.A.; Sturtevant, B.R. Estimation of Forest Structural Parameters Using 5 and 10 Meter SPOT-5 Satellite Data. Remote Sens. Environ. 2009, 113, 2019–2036. [Google Scholar] [CrossRef]
- Chen, G.; Lou, T.; Jing, W.; Wang, Z. Sparkpr: An Efficient Parallel Inversion of Forest Canopy Closure. IEEE Access 2019, 7, 135949–135956. [Google Scholar] [CrossRef]
- Liu, S.S.; Chen, D.H.; Li, S.X.; Liu, C.F.; Li, H. Quantitative estimation of stand closure density of Larix sibirica by remote sensing based on GF-1 PMS. J. Northwest A F Univ. (Nat. Sci. Edi.) 2020, 48, 57–66. [Google Scholar]
- Korhonen, L.; Korpela, I.; Heiskanen, J.; Maltamo, M. Airborne Discrete-Return LIDAR Data in the Estimation of Vertical Canopy Cover, Angular Canopy Closure and Leaf Area Index. Remote Sens. Environ. 2011, 115, 1065–1080. [Google Scholar] [CrossRef]
- Halperin, J.; LeMay, V.; Coops, N.; Verchot, L.; Marshall, P.; Lochhead, K. Canopy Cover Estimation in Miombo Woodlands of Zambia: Comparison of Landsat 8 OLI versus RapidEye Imagery Using Parametric, Nonparametric, and Semiparametric Methods. Remote Sens. Environ. 2016, 179, 170–182. [Google Scholar] [CrossRef]
- Li, J.; Mao, X. Comparison of Canopy Closure Estimation of Plantations Using Parametric, Semi-Parametric, and Non-Parametric Models Based on GF-1 Remote Sensing Images. Forests 2020, 11, 597. [Google Scholar] [CrossRef]
- Sun, S.; Li, Z.; Tian, X.; Gao, Z.; Wang, C.; Gu, C. Forest Canopy Closure Estimation in Greater Khingan Forest Based on Gf-2 Data. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 6640–6643. [Google Scholar]
- Wang, C.; Du, H.Q.; Zhou, G.M.; Xu, X.J.; Sun, S.B.; Gao, G.L. Retrieval of crown closure of moso bamboo forest using unmanned aerial vehicle (UAV) remotely sensed imagery based on geometric-optical model. Chin. J. Appl. Ecol. 2015, 26, 1501–1509. [Google Scholar]
- Tian, H.; Cao, C.; Bao, D.; Dang, Y.; Xu, M. Temporal Changing Analysis of Forest Crown Closure of Anshan City Based on Spectral Mixture Analysis. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium—IGARSS, Melbourne, Australia, 21–26 July 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 3809–3812. [Google Scholar]
- Kang, Y.; Meng, Q.; Liu, M.; Zou, Y.; Wang, X. Crop Classification Based on Red Edge Features Analysis of GF-6 WFV Data. Sensors 2021, 21, 4328. [Google Scholar] [CrossRef]
- Kim, H.-O.; Yeom, J.-M. Effect of Red-Edge and Texture Features for Object-Based Paddy Rice Crop Classification Using RapidEye Multi-Spectral Satellite Image Data. Int. J. Remote Sens. 2014, 35, 7046–7068. [Google Scholar] [CrossRef]
- Forkuor, G.; Dimobe, K.; Serme, I.; Tondoh, J.E. Landsat-8 vs. Sentinel-2: Examining the Added Value of Sentinel-2’s Red-Edge Bands to Land-Use and Land-Cover Mapping in Burkina Faso. GIScience Remote Sens. 2018, 55, 331–354. [Google Scholar] [CrossRef]
- Kaplan, G.; Avdan, U. Evaluating the Utilization of the Red Edge and Radar Bands from Sentinel Sensors for Wetland Classification. CATENA 2019, 178, 109–119. [Google Scholar] [CrossRef]
- Griffiths, P.; Nendel, C.; Hostert, P. Intra-Annual Reflectance Composites from Sentinel-2 and Landsat for National-Scale Crop and Land Cover Mapping. Remote Sens. Environ. 2019, 220, 135–151. [Google Scholar] [CrossRef]
- Ren, H.; Zhou, G.; Zhang, X. Estimation of Green Aboveground Biomass of Desert Steppe in Inner Mongolia Based on Red-Edge Reflectance Curve Area Method. Biosyst. Eng. 2011, 109, 385–395. [Google Scholar] [CrossRef]
- Adam, E.M.I.; Mutanga, O. Estimation of High Density Wetland Biomass: Combining Regression Model with Vegetation Index Developed from Worldview-2 Imagery; Neale, C.M.U., Maltese, A., Eds.; International Society for Optics and Photonics: Edinburgh, UK, 2012; p. 85310V. [Google Scholar]
- Sibanda, M.; Mutanga, O.; Rouget, M.; Kumar, L. Estimating Biomass of Native Grass Grown under Complex Management Treatments Using WorldView-3 Spectral Derivatives. Remote Sens. 2017, 9, 55. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Qin, Q.; Ren, H.; Zhang, T.; Chen, S. Red-Edge Band Vegetation Indices for Leaf Area Index Estimation From Sentinel-2/MSI Imagery. IEEE Trans. Geosci. Remote Sens. 2020, 58, 826–840. [Google Scholar] [CrossRef]
- Pu, R.; Gong, P.; Biging, G.S.; Larrieu, M.R. Extraction of Red Edge Optical Parameters from Hyperion Data for Estimation of Forest Leaf Area Index. IEEE Trans. Geosci. Remote Sens. 2003, 41, 916–921. [Google Scholar] [CrossRef] [Green Version]
- Shamsoddini, A.; Raval, S. Mapping Red Edge-Based Vegetation Health Indicators Using Landsat TM Data for Australian Native Vegetation Cover. Earth Sci. Inform. 2018, 11, 545–552. [Google Scholar] [CrossRef]
- Adelabu, S.; Mutanga, O.; Adam, E. Evaluating the Impact of Red-Edge Band from Rapideye Image for Classifying Insect Defoliation Levels. ISPRS J. Photogramm. Remote Sens. 2014, 95, 34–41. [Google Scholar] [CrossRef]
- Lin, S.; Li, J.; Liu, Q.; Li, L.; Zhao, J.; Yu, W. Evaluating the Effectiveness of Using Vegetation Indices Based on Red-Edge Reflectance from Sentinel-2 to Estimate Gross Primary Productivity. Remote Sens. 2019, 11, 1303. [Google Scholar] [CrossRef] [Green Version]
- Gara, T.W.; Murwira, A.; Ndaimani, H. Predicting Forest Carbon Stocks from High Resolution Satellite Data in Dry Forests of Zimbabwe: Exploring the Effect of the Red-Edge Band in Forest Carbon Stocks Estimation. Geocarto Int. 2016, 31, 176–192. [Google Scholar] [CrossRef]
- Waśniewski, A.; Hościło, A.; Zagajewski, B.; Moukétou-Tarazewicz, D. Assessment of Sentinel-2 Satellite Images and Random Forest Classifier for Rainforest Mapping in Gabon. Forests 2020, 11, 941. [Google Scholar] [CrossRef]
- Dong, T.; Liu, J.; Qian, B.; He, L.; Liu, J.; Wang, R.; Jing, Q.; Champagne, C.; McNairn, H.; Powers, J.; et al. Estimating Crop Biomass Using Leaf Area Index Derived from Landsat 8 and Sentinel-2 Data. ISPRS J. Photogramm. Remote Sens. 2020, 168, 236–250. [Google Scholar] [CrossRef]
- Astola, H.; Häme, T.; Sirro, L.; Molinier, M.; Kilpi, J. Comparison of Sentinel-2 and Landsat 8 Imagery for Forest Variable Prediction in Boreal Region. Remote Sens. Environ. 2019, 223, 257–273. [Google Scholar] [CrossRef]
- Lee, A.H.; Fung, W.K. Confirmation of Multiple Outliers in Generalized Linear and Nonlinear Regressions. Comput. Stat. Data Anal. 1997, 25, 55–65. [Google Scholar] [CrossRef]
- Verger, A.; Baret, F.; Camacho, F. Optimal Modalities for Radiative Transfer-Neural Network Estimation of Canopy Biophysical Characteristics: Evaluation over an Agricultural Area with CHRIS/PROBA Observations. Remote Sens. Environ. 2011, 115, 415–426. [Google Scholar] [CrossRef]
- Chen, G.; Wulder, M.A.; White, J.C.; Hilker, T.; Coops, N.C. Lidar Calibration and Validation for Geometric-Optical Modeling with Landsat Imagery. Remote Sens. Environ. 2012, 124, 384–393. [Google Scholar] [CrossRef]
- Gemmell, F. An Investigation of Terrain Effects on the Inversion of a Forest Reflectance Model. Remote Sens. Environ. 1998, 65, 155–169. [Google Scholar] [CrossRef]
- Wolf, A.; Berry, J.A.; Asner, G.P. Allometric Constraints on Sources of Variability in Multi-Angle Reflectance Measurements. Remote Sens. Environ. 2010, 114, 1205–1219. [Google Scholar] [CrossRef]
- Franklin, J.; Duncan, J. Testing the Li-Strahler Four-Component Canopy Reflec Rance Model in The Hapex-Sahel Shrub Savanna Sites Using Ground Reflectance Data. In Proceedings of the [Proceedings] IGARSS ’92 International Geoscience and Remote Sensing Symposium, Houston, TX, USA, 26–29 May 1992; IEEE: Piscataway, NJ, USA, 1992; pp. 200–202. [Google Scholar]
- Peddle, D. Spectral Mixture Analysis and Geometric-Optical Reflectance Modeling of Boreal Forest Biophysical Structure. Remote Sens. Environ. 1999, 67, 288–297. [Google Scholar] [CrossRef]
- Wu, J.; Gao, Z.; Liu, Q.; Li, Z.; Zhong, B. Methods for Sandy Land Detection Based on Multispectral Remote Sensing Data. Geoderma 2018, 316, 89–99. [Google Scholar] [CrossRef]
Data | Resolution | Study Area | Modeling Approach | R2 | RMSE | References |
---|---|---|---|---|---|---|
SPOT-5 | 10 m | Northeast Minnesota | Statistical model (PLS regression) | 0.68 | 0.06 | Wolter et al. (2009) [12] |
GF-1 | 8 m | Qingdao City, China | Statistical model (improved Multiple linear regression) | 0.651 | 0.023 | Chen et al. (2019) [13] |
GF-1 | 8 m | Xinjiang Province, China | Statistical model (MSR model) | 0.692 | 0.085 | Liu Saisai et al. (2020) [14] |
Landsat 8 | 30 m | Southern Finland | Machine learning (generalized additive model) | 0.7 | 0.1 | Korhonen et al. (2011) [15] |
Landsat 8 | 30 m | Republic of Zambia | Machine learning (K-NN algorithm) | 0.13 | Halperin et al. (2016) [16] | |
RapidEye | 5 m | Republic of Zambia | Machine learning (K-NN algorithm) | 0.11 | Halperin et al. (2016) [16] | |
GF-1 | 8 m | Karakqin Banner, China | Machine learning (generalized additive model) | 0.76 | 0.063 | Li et al. (2020) [17] |
GF-1 | 8 m | Xinjiang Province, China | Machine learning (BPNN) | 0.713 | 0.082 | Liu Saisai et al. (2020) [14] |
GF-2 | 4 m | Genhe City, China | Machine learning (support vector machine) | 0.65 | 0.12 | Sun Shanshan et al. (2019) [18] |
UAV | 0.15 m | Zhejiang Province, China | Physical model (Li–Strahler geometric-optical model) | 0.63 | 0.006 | Wang Cong et al. (2015) [19] |
Landsat 5 | 30 m | Anshan City, China | Physical model (mixed pixel decomposition) | 0.694 | 0.158 | Tian Haijing et al. (2013) [20] |
Number | Imaging Time | Tile ID | Cloud Cover (%) | Mean Solar Zenith Angle (°) | Mean Solar Azimuth Angle (°) |
---|---|---|---|---|---|
1 | 26 July 2019 | T51TUG | 0.0 | 26.349 | 143.380 |
2 | 31 July 2019 | T50TQM | 0.018 | 27.865 | 142.449 |
3 | 2 September 2019 | T50TPL | 0.011 | 35.423 | 154.654 |
4 | 5 September 2019 | T50TNN | 0.047 | 37.712 | 158.487 |
5 | 7 September 2019 | T50TNM | 0.179 | 38.254 | 154.894 |
6 | 22 September 2019 | T50TQN | 0.0 | 43.619 | 163.009 |
7 | 22 September 2019 | T50TPN | 0.0 | 43.917 | 161.313 |
8 | 22 September 2019 | T50TPM | 0.0 | 43.057 | 161.055 |
Group | Features Variables | Description | Author and Age |
---|---|---|---|
Spectrum features | B2 | Blue band | |
B3 | Green band | ||
B4 | Red band | ||
B5 | Red edge 1 band | ||
B6 | Red edge 2 band | ||
B7 | Red edge 3 band | ||
B8 | NIR band | ||
B8A | Narrow NIR band | ||
B11 | SWIR1 band | ||
B12 | SWIR2 band | ||
Vegetation indices without red edge | Enhanced vegetation index (EVI) | Huete et al. (2002) | |
Ratio vegetation index (RVI) | Pearson et al. (1972) | ||
Difference vegetation index (DVI) | Richardson et al. (1977) | ||
Normalized difference vegetation index (NDVI) | Rouse et al. (1974) | ||
Soil-adjusted vegetation index (SAVI) | Huete et al. (1988) | ||
Modified soil-adjusted vegetation index (MSAVI) | |||
Red edge indices | Red edge chlorophyll index (CIre) | Gitelson et al. (2003) | |
Red edge simple ratio index1 (SRre1) | |||
Red edge simple ratio index2 (SRre2) | Zarco-Tejada et al. (2013) | ||
Modified simple ratio red edge narrow (MSRren) | Chen et al. (1996) | ||
Red edge-NIR NDVI1 (NDVIre1) | Gitelson and Merzlyak (1997) | ||
Red edge-NIR NDVI2 (NDVIre2) | |||
Red edge-NIR NDVI3 (NDVIre3) | |||
Texture features | Mean (Mea) | The mean of the grayscale co-occurrence matrix; | |
Variance (Var) | The variance of the grayscale co-occurrence matrix; | ||
Homogeneity (Hom) | Measures the local variation of image texture, and the larger the value is, the more uniform the image is; | ||
Contrast (Con) | Reflects the depth of texture; texture depth image clear; | ||
Dissimilarity (Dis) | Measures local change and local contrast; the greater the value, the greater the comparability; | ||
Entropy (Ent) | Measures the amount of information in an image | ||
Second Moment (SM) | Reflects the uniformity of image gray distribution and texture thickness; | ||
Correlation (Cor) | Reflects the local grayscale correlation in the image; | ||
Terrain factors | Slope | Identifies the slope from each cell of a raster surface; | |
Aspect | Identifies the downslope direction of the maximum rate of change in value from each cell to its neighbors; | ||
Elevation | The distance from the absolute base plane of a point along the plumb line | ||
Curvature | Measures the bending and undulating state of the earth’s surface | ||
Plan_Curve | Reflects the change rate of aspect | ||
Profile_Curve | Reflects the change rate of slope |
Blue | Green | Red | RE1 | RE2 | RE3 | NIR | NIR_narrow | SWIR1 | SWIR2 | |
---|---|---|---|---|---|---|---|---|---|---|
Pearson correlation coefficient | −0.761 ** | −0.721 ** | −0.744 ** | −0.684 ** | −0.220 | −0.088 | −0.007 | −0.061 | −0.616 ** | −0.689 ** |
DVI | EVI | NDVI | RVI | SAVI | MSAVI | |
---|---|---|---|---|---|---|
Pearson correlation coefficient | 0.242 * | 0.601 ** | 0.703 ** | 0.628 ** | 0.703 ** | 0.708 ** |
EVI | NDVI | RVI | SAVI | MSAVI | |
---|---|---|---|---|---|
Pearson correlation coefficient | 0.549 ** | 0.414 ** | 0.441 ** | 0.414 ** | 0.405 ** |
CIre | SRre1 | SRre2 | MSRren | NDVIre1 | NDVIre2 | NDVIre3 | |
---|---|---|---|---|---|---|---|
Pearson correlation coefficient | 0.602 ** | 0.602 ** | 0.605 ** | 0.622 ** | 0.648 ** | 0.323 ** | −0.357 ** |
Slope | Aspect | Elevation | Curvature | Plan_Curve | Profile_Curve | |
---|---|---|---|---|---|---|
Pearson correlation coefficient | 0.414 ** | 0.201 | 0.529 ** | 0.051 | 0.049 | −0.004 |
Con | Cor | Dis | Ent | Hom | Mea | SM | Var | |
---|---|---|---|---|---|---|---|---|
Blue band (1) | 0.047 | 0.043 | 0.072 | 0.127 | −0.077 | −0.681 ** | −0.430 ** | 0.073 |
Green band (2) | −0.059 | 0.258 * | −0.059 | −0.103 | 0.059 | −0.741 ** | 0.108 | −0.067 |
Red band (3) | −0.172 | 0.327 ** | −0.297 * | −0.382 ** | 0.325 ** | −0.734 ** | 0.380 ** | −0.471 ** |
RE1 band (4) | −0.141 | 0.252 * | −0.147 | −0.088 | 0.145 | −0.691 ** | 0.117 | −0.143 |
RE2 band (5) | 0.200 | −0.122 | 0.237 * | 0.300 * | −0.241 * | −0.180 | −0.274 * | 0.230 |
RE3 band (6) | 0.219 | 0.144 | 0.181 | 0.162 | −0.145 | −0.068 | −0.123 | 0.225 |
NIR band (7) | 0.182 | 0.284 * | 0.133 | −0.016 | −0.091 | −0.032 | 0.087 | 0.238 * |
NIR_Narrow band (8) | 0.422 ** | −0.361 ** | 0.442** | 0.464 ** | −0.435 ** | −0.064 | −0.432 ** | 0.332 ** |
SWIR1 band (9) | 0.190 | −0.043 | 0.208 | 0.279 * | −0.200 | −0.620 ** | −0.249 * | 0.118 |
SWIR2 band (10) | 0.141 | 0.014 | 0.084 | 0.036 | −0.018 | −0.687 ** | 0.004 | 0.055 |
Dis5 | Ent5 | Hom5 | SM5 | |
---|---|---|---|---|
Dis5 | 1 | 0.865 ** | −0.984 ** | −0.847 ** |
Ent5 | 0.865 ** | 1 | −0.880 ** | −0.975 ** |
Hom5 | −0.984 ** | −0.880 ** | 1 | 0.888 ** |
SM5 | −0.847 ** | −0.975 ** | 0.888 ** | 1 |
Ent9 | SM9 | Mea9 | |
---|---|---|---|
Ent9 | 1 | −0.974 ** | 0.014 |
SM9 | −0.974 ** | 1 | −0.046 |
Mea9 | 0.014 | −0.046 | 1 |
Cor3 | Dis3 | Ent3 | Hom3 | Mea3 | SM3 | Var3 | |
---|---|---|---|---|---|---|---|
Cor3 | 1 | −0.663 ** | −0.666 ** | 0.709 ** | −0.297 * | 0.693 ** | −0.601 ** |
Dis3 | −0.663 ** | 1 | 0.898 ** | −0.990 ** | 0.309 ** | −0.898 ** | 0.737 ** |
Ent3 | −0.666 ** | 0.898 ** | 1 | −0.920 ** | 0.351 ** | −0.993 ** | 0.841 ** |
Hom3 | 0.709 ** | −0.990 ** | −0.920 ** | 1 | −0.325 ** | 0.923 ** | −0.766 ** |
Mea3 | −0.297 * | 0.309 ** | 0.351 ** | −0.325 ** | 1 | −0.348 ** | 0.422 ** |
SM3 | 0.693 ** | −0.898 ** | −0.993 ** | 0.923 ** | −0.348 ** | 1 | −0.821 ** |
Var3 | −0.601 ** | 0.737 ** | 0.841 ** | −0.766 ** | 0.422 ** | −0.821 ** | 1 |
Con8 | Cor8 | Dis8 | Ent8 | Hom8 | SM8 | Var8 | |
---|---|---|---|---|---|---|---|
Con8 | 1 | −0.291 * | 0.953 ** | 0.740 ** | −0.874 ** | −0.638 ** | 0.783 ** |
Cor8 | −0.291 * | 1 | −0.448 ** | −0.562 ** | 0.528 ** | 0.633 ** | −0.129 |
Dis8 | 0.953 ** | −0.448 ** | 1 | 0.853 ** | −0.980 ** | −0.794 ** | 0.671 ** |
Ent8 | 0.740 ** | −0.562 ** | 0.853 ** | 1 | −0.886 ** | −0.971 ** | 0.608 ** |
Hom8 | −0.874 ** | 0.528 ** | −0.980 ** | −0.886 ** | 1 | 0.859 ** | −0.567 ** |
SM8 | −0.638 ** | 0.633 ** | −0.794 ** | −0.971 ** | 0.859 ** | 1 | −0.500 ** |
Var8 | 0.783 ** | −0.129 | 0.671 ** | 0.608 ** | −0.567 ** | −0.500 ** | 1 |
Group | Features Variables |
---|---|
Spectrum features | Blue, Green, Red, RE1, SWIR1, SWIR2 |
Vegetation indices without red edge | EVI, NDVI, RVI, SAVI, MSAVI |
Red edge indices | CIre, SRre1, SRre2, MSRren, NDVIre1, NDIVre2, NDVIre3 |
Texture features | Slope, Elevation |
Terrain factors | SM1, Cor2, Mea2, Cor3, Hom3, Var3, Cor4, Hom5, Cor7, Var7, Cor8, Var8, Ent8, Mea9, SM9 |
Model | R2 | RMSE |
---|---|---|
MSR | 0.685 | 0.135 |
BPNN | 0.817 | 0.088 |
Parameter | Value |
---|---|
26.38 | |
2.69 | |
143.35 | |
179.51 | |
Average tree height (h(m)) | 12.53 |
Average crown radius (r(m)) | 3.59 |
Model | R2 | RMSE | ER (%) |
---|---|---|---|
Li–Strahler GO | 0.451 | 0.187 | 24.83 |
MSR | 0.75 | 0.162 | 20.76 |
BPNN | 0.811 | 0.108 | 16.97 |
Model | R2 | RMSE | ER (%) |
---|---|---|---|
Li–Strahler GO | 0.456 | 0.249 | 28.83 |
MSR | 0.697 | 0.168 | 33.83 |
BPNN | 0.787 | 0.120 | 18.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hua, Y.; Zhao, X. Multi-Model Estimation of Forest Canopy Closure by Using Red Edge Bands Based on Sentinel-2 Images. Forests 2021, 12, 1768. https://doi.org/10.3390/f12121768
Hua Y, Zhao X. Multi-Model Estimation of Forest Canopy Closure by Using Red Edge Bands Based on Sentinel-2 Images. Forests. 2021; 12(12):1768. https://doi.org/10.3390/f12121768
Chicago/Turabian StyleHua, Yiying, and Xuesheng Zhao. 2021. "Multi-Model Estimation of Forest Canopy Closure by Using Red Edge Bands Based on Sentinel-2 Images" Forests 12, no. 12: 1768. https://doi.org/10.3390/f12121768
APA StyleHua, Y., & Zhao, X. (2021). Multi-Model Estimation of Forest Canopy Closure by Using Red Edge Bands Based on Sentinel-2 Images. Forests, 12(12), 1768. https://doi.org/10.3390/f12121768