Crop Classification Based on Red Edge Features Analysis of GF-6 WFV Data
<p>Geographical location and sample distribution of the study area.</p> "> Figure 2
<p>Technical route of the study.</p> "> Figure 3
<p>J<sub>Bh</sub> distance of different spectral classification schemes for GF-6 WFV data.</p> "> Figure 4
<p>Importance evaluation results of red edge indices based on SDA and RF.</p> "> Figure 5
<p>Crop classification results in Hengshui city.</p> "> Figure 6
<p>Overall classification accuracy and kappa coefficient of all different classification schemes.</p> ">
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Overview of the Study Area
2.2. Data Source
2.2.1. Remote Sensing Data
2.2.2. Sample Data
3. Methods
3.1. Spectral Feature Analysis
3.1.1. ABS Method
3.1.2. JBh Distance
3.2. Texture Feature Extraction
3.3. Red Edge Index Analysis
3.4. Classification Scheme and Accuracy Evaluation
4. Results
4.1. Red Edge Spectral Analysis Results
4.1.1. Spectral Analysis Based on Information Content
4.1.2. Spectral Analysis Based on Separability Distance
4.2. Feature Importance Evaluation Results of Red Edge Indices
4.3. Classification Results of Red Edge Features
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhao, C.J. Advances of research and application in remote sensing for agriculture. Trans. Chin. Soc. Agric. Mach. 2014, 45, 277–293. [Google Scholar]
- Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains. Remote Sens. Environ. 2007, 108, 290–310. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.X.; Ren, J.Q.; Tang, H.J.; Shi, Y.; Liu, J. Progress and perspectives on agricultural remote sensing research and applications in China. Journal of Remote Sensing. J. Remote Sens. 2016, 20, 748–767. [Google Scholar]
- Thenkabail, P.S. Global Croplands and their Importance for Water and Food Security in the Twenty-first Century: Towards an Ever Green Revolution that Combines a Second Green Revolution with a Blue Revolution. Remote Sens. 2010, 2, 2305–2312. [Google Scholar] [CrossRef] [Green Version]
- Atzberger, C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef] [Green Version]
- Hao, P.; Wang, L.; Niu, Z.; Aablikim, A.; Huang, N.; Xu, S.; Chen, F. The potential of time series merged from Landsat-5 TM and HJ-1 CCD for crop classification: A case study for Bole and Manas Counties in Xinjiang, China. Remote Sens. 2014, 6, 7610–7631. [Google Scholar] [CrossRef] [Green Version]
- Song, J.W.; Zhang, Y.J.; Li, X.C.; Yang, W.Z. Comparison between GF-1 and Landsat-8 images in land cover classification. Prog. Geogr. 2016, 35, 255–263. [Google Scholar]
- Cai, Y.; Guan, K.; Peng, J.; Wang, S.; Seifert, C.; Wardlow, B.; Li, Z. A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach. Remote Sens. Environ. 2018, 210, 35–47. [Google Scholar] [CrossRef]
- Li, H.K.; Wu, J.; Wang, X.L. Object oriented land use classification of Dongjiang River Basin based on GF-1 image. Trans. Chin. Soc. Agric. Eng. 2018, 34, 245–252. [Google Scholar]
- Liu, J.; Wang, L.; Teng, F.; Yang, L.; Gao, J.; Yao, B.; Yang, F. Impact of red edge waveband of RapidEye satellite on estimation accuracy of crop planting area. Trans. Chin. Soc. Agric. Eng. 2016, 32, 140–148. [Google Scholar]
- Delegido, J.; Verrelst, J.; Meza, C.M.; Rivera, J.P.; Alonso, L.; Moreno, J. A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. Eur. J. Agron. 2013, 46, 42–52. [Google Scholar] [CrossRef]
- She, B.; Huang, J.; Shi, J.; Wei, C. Extracting oilseed rape growing regions based on variation characteristics of red edge position. Trans. Chin. Soc. Agric. Eng. 2013, 29, 145–152. [Google Scholar]
- Kanke, Y.; Tubana, B.; Dalen, M.; Harrell, D. Evaluation of red and red-edge reflectance-based vegetation indices for rice biomass and grain yield prediction models in paddy fields. Precis. Agric. 2016, 17, 507–530. [Google Scholar] [CrossRef]
- Qin, Z.F.; Chang, Q.; Shen, J.; Yu, Y.; Liu, J.Q. Red Edge Characteristics and SPAD Estimation Model Using Hyperspectral Data for Rice in Ningxia Irrigation Zone. Geomat. Inf. Sci. Wuhan Univ. 2016, 41, 1168–1175. [Google Scholar]
- Qiu, S.; He, B.; Yin, C.; Liao, Z. Assessments of Sentinel 2 vegetation red-edge spectral bands for improving land cover classification. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 1055–1059. [Google Scholar] [CrossRef] [Green Version]
- Forkuor, G.; Dimobe, K.; Serme, I.; Tondoh, J.E. Landsat-8 vs. Sentinel-2: Examining the added value of sentinel-2’s red-edge bands to land-use and land-cover mapping in Burkina Faso. GIScience Remote Sens. 2018, 55, 331–354. [Google Scholar] [CrossRef]
- Schuster, C.; Förster, M.; Kleinschmit, B. Testing the red edge channel for improving land-use classifications based on high-resolution multi-spectral satellite data. Int. J. Remote Sens. 2012, 33, 5583–5599. [Google Scholar] [CrossRef]
- Liu, H.P.; An, H.J. Greening tree species spectrum characteristics analysis in Huhhot based on worldview-Ⅱ. J. Inn. Mong. Agric. Univ. 2014, 35, 41–45. [Google Scholar]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Liu, J.Y.; Xin, C.L.; Wu, H.G.; Zeng, Q.W.; Shi, J.J. Potential Application of GF-6 WFV Data in Forest Types Monitoring. Spacecr. Recovery Remote Sens. 2019, 40, 107–116. [Google Scholar]
- Kim, H.O.; Yeom, J.M. Effect of red-edge and texture features for object-based paddy rice crop classification using RapidEye multi-spectral satellite image data. Int. J. Remote Sens. 2014, 35, 7046–7068. [Google Scholar] [CrossRef]
- Ustuner, M.; Sanli, F.B.; Abdikan, S.; Esetlili, M.T.; Kurucu, Y. Crop Type Classification Using Vegetation Indices of RapidEye Imagery. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 40, 195–198. [Google Scholar] [CrossRef] [Green Version]
- Hang, S.Y.; Yang, L.; Chen, X.; Yao, Y. Study of typical arid crops classification based on machine learning. Spectrosc. Spectr. Anal. 2018, 38, 3169–3176. [Google Scholar]
- Wu, J.; Lu, Y.N.; Li, C.B.; Li, Q.H. Fine Classification of County Crops Based on Multi-temporal Images of Sentinel-2A. Trans. Chin. Soc. Agric. Mach. 2019, 50, 194–200. [Google Scholar]
- Talukdar, S.; Singha, P.; Mahato, S.; Shahfahad; Pal, S.; Liou, Y.-A.; Rahman, A. Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef] [Green Version]
- Zeraatpisheh, M.; Ayoubi, S.; Jafari, A.; Tajik, S.; Finke, P. Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran. Geoderma 2019, 338, 445–452. [Google Scholar] [CrossRef]
- Sonobe, R.; Yamaya, Y.; Tani, H.; Wang, X.; Kobayashi, N.; Mochizuki, K.-I. Assessing the suitability of data from Sentinel-1A and 2A for crop classification. GIScience Remote. Sens. 2017, 54, 918–938. [Google Scholar] [CrossRef]
- Maponya, M.G.; van Niekerk, A.; Mashimbye, Z.E. Pre-harvest classification of crop types using a Sentinel-2 time-series and machine learning. Comput. Electron. Agric. 2020, 169, 105164. [Google Scholar] [CrossRef]
- Liu, J.; Wang, L.M.; Yang, F.G.; Yang, L.B.; Wang, X.L. Remote sensing estimation of crop planting area based on HJ time-series images. Trans. Chin. Soc. Agric. Eng. 2015, 31, 199–206. [Google Scholar]
- Hao, P.; Tang, H.; Chen, Z.; Liu, Z. Early-season crop mapping using improved artificial immune network (IAIN) and Sentinel data. PeerJ 2018, 6, e5431. [Google Scholar] [CrossRef]
- Huang, G.Q.; Zhao, Q.G. Mode of rotation/fallow management in typical areas of China and its development strategy. Acta Pedol. Sin. 2018, 55, 283–292. [Google Scholar]
- Xie, H.L.; Cheng, L.J. Influence factors and ecological compensation standard of winter wheat-fallow in the ground water funnel area. J. Nat. Resour. 2017, 32, 2012–2022. [Google Scholar]
- Wang, M.; Guo, B.B.; Long, X.X.; Xue, L.; Cheng, Y.F.; Jin, S.Y.; Zhou, X. On-orbit geometric calibration and accuracy verification of GF-6 WFV camera. Acta Geod. Cartogr. Sin. 2020, 49, 171–180. [Google Scholar]
- Zhang, Q.Y.; Li, Z.; Xia, C.Z.; Chen, J.; Peng, D.L. Tree species classification based on the new bands of GF-6 remote sensing satellite. J. Geo-Inf. Sci. 2019, 21, 1619–1628. [Google Scholar]
- Liu, C.; Zhao, C.; Zhang, L.Y. A new method of hyperspectral remote sensing image dimensional reduction. J. Image Graph. 2005, 10, 218–222. [Google Scholar]
- Zhang, A.W.; Du, N.; Kang, X.Y.; Guo, F.C. Hyperspectral adaptive band selection method through nonlinear transform and information adjacency correlation. Infrared Laser Eng. 2017, 46, 221–229. [Google Scholar]
- Zhang, Y.; Guan, Y.L. Hyperspectral band reduction by combining clustering with adaptive band selection. Remote Sens. Inf. 2018, 33, 66–70. [Google Scholar]
- Ma, N.; Hu, Y.F.; Zhuang, D.F.; Wang, X.S. Determination on the optimum band combination of HJ-1A hyperspectral data in the case region of Dongguan based on optimum index factor and J–M distance. Remote Sens. Technol. Appl. 2010, 25, 358–365. [Google Scholar]
- Bruzzone, L.; Roli, F.; Serpico, S.B. An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection. IEEE Trans. Geosci. Remote Sens. 1995, 33, 1318–1321. [Google Scholar] [CrossRef] [Green Version]
- Hao, P.; Wu, M.; Niu, Z.; Wang, L.; Zhan, Y. Estimation of different data compositions for early-season crop type classification. PeerJ 2018, 6, e4834. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Palsson, F.; Sveinsson, J.R.; Ulfarsson, M.O.; Benediktsson, J.A. Model-based fusion of multi-and hyperspectral images using PCA and wavelets. IEEE Trans. Geosci. Remote Sens. 2014, 53, 2652–2663. [Google Scholar] [CrossRef]
- Zhao, Y.S. Principles and Methods of Remote Sensing Application Analysis, 2nd ed.; Science Press: Beijing, China, 2013; pp. 174–175. [Google Scholar]
- Zhang, L.; Gong, Z.N.; Wang, Q.W.; Jin, D.; Wang, X. Wetland mapping of Yellow River Delta wetlands based on multi-feature optimization of Sentinel-2 images. J. Remote Sens. 2019, 23, 313–326. [Google Scholar]
- Fang, C.Y.; Wang, L.; Xu, H.Q. A comparative study of different red edge indices for remote sensing detection of urban grassland health status. J. Geo-Inf. Sci. 2017, 19, 1382–1392. [Google Scholar]
- Xie, Q.Y. Research on Leaf Area Index Retrieve Methods Based on The Red Edge Bands from Multi-Platform Remote Sensing Data. Ph.D. Thesis, University of Chinese Academy of Sciences, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China, 2017. [Google Scholar]
- Gitelson, A.A.; Merzlyak, M.N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Barnes, E.M.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.D.; Haberland, J.; Kostrzewski, M.; Moran, M.S. Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. In Proceedings of the Fifth International Conference on Precision Agriculture, Bloomington, MN, USA, 27–30 July 2000; p. 1619. [Google Scholar]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 2006, 33, L11402. [Google Scholar] [CrossRef] [Green Version]
- Daughtry, C.S.; Walthall, C.L.; Kim, M.S.; De Colstoun, E.B.; McMurtrey, J.E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. MTCI: The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Blum, A.; Langley, P. Selection of relevant features and examples in machine learning. Artif. Intell. 1997, 97, 245–271. [Google Scholar] [CrossRef] [Green Version]
- Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar]
- Costanza, M.C.; Afifi, A.A. Comparison of Stopping Rules in Forward Stepwise Discriminant Analysis. J. Am. Stat. Assoc. 1979, 74, 777–785. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Q.; Liu, J.; Du, X.; Dong, T.; McNairn, H.; Shang, J. Object-based crop classification using multi-temporal SPOT-5 imagery and textural features with a Random Forest classifier. Geocarto Int. 2018, 33, 1017–1035. [Google Scholar] [CrossRef]
- Wang, N.; Li, Q.Z.; Du, X.; Zhang, Y.; Zhao, L.C.; Wang, H.Y. Identification of main crops based on the univariate feature selection in Subei. J. Remote Sens. 2017, 21, 519–530. [Google Scholar]
- Van der Linden, S.; Rabe, A.; Held, M.; Jakimow, B.; Leitão, P.J.; Okujeni, A.; Hostert, P. The EnMAP-Box--A Toolbox and Application Programming Interface for EnMAP Data Processing. Remote Sens. 2015, 7, 11249–11266. [Google Scholar] [CrossRef] [Green Version]
- Htitiou, A.; Boudhar, A.; Lebrini, Y.; Hadria, R.; Lionboui, H.; Elmansouri, L.; Benabdelouahab, T. The performance of random forest classification based on phenological metrics derived from Sentinel-2 and Landsat 8 to map crop cover in an irrigated semi-arid region. Remote Sens. Earth Syst. Sci. 2019, 2, 208–224. [Google Scholar] [CrossRef]
- He, Y.; Huang, C.; Li, H.; Liu, Q.S.; Liu, G.H.; Zhou, Z.C.; Zhang, C.C. Land-cover Classification of Random Forest based on Sentinel-2A Image Feature Optimization. Resour. Sci. 2019, 41, 992–1001. [Google Scholar]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Foody, G.M. Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy. Photogramm. Eng. Remote Sens. 2004, 70, 627–633. [Google Scholar] [CrossRef]
- Vasilakos, C.; Kavroudakis, D.; Georganta, A. Machine learning classification ensemble of multitemporal Sentinel-2 images: The case of a mixed mediterranean ecosystem. Remote Sens. 2020, 12, 2005. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Liu, J.; Chen, W.; Cheng, X.; Liao, Y. Effects of RapidEye imagery’s red-edge band and vegetation indices on land cover classification in an arid region. Chin. Geogr. Sci. 2017, 27, 827–835. [Google Scholar] [CrossRef]
- Li, Q.; Wang, C.; Zhang, B.; Lu, L. Object-based crop classification with Landsat-MODIS enhanced time-series data. Remote Sens. 2015, 7, 16091–16107. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Li, Q.; Liu, J.; Shang, J.; Du, X.; McNairn, H.; Liu, M. Image Classification Using RapidEye Data: Integration of Spectral and Textual Features in a Random Forest Classifier. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5334–5349. [Google Scholar] [CrossRef]
- Homer, M.S. An introduction to secondary data analysis with IBM SPSS statistics. Educ. Rev. 2018, 70, 251–252. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Duchesnay, E. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Raschka, S. Python Machine Learning; Packt Publishing: Birmingham, UK, 2015; pp. 124–126. [Google Scholar]
Band Number | Band Name | Central Wavelength (nm) | Wavelength Range (nm) | Calibration Coefficient in 2019 | Spatial Resolution (m) |
---|---|---|---|---|---|
B1 | Blue (B) | 485 | 450–520 | 0.0705 | 16 |
B2 | Green (G) | 555 | 520–590 | 0.0567 | |
B3 | Red (R) | 660 | 630–690 | 0.0516 | |
B4 | Near-infrared (NIR) | 830 | 770–890 | 0.0322 | |
B5 | Red edge 1 (RE1) | 710 | 690–730 | 0.0532 | |
B6 | Red edge 2 (RE2) | 750 | 730–770 | 0.0453 | |
B7 | Purple (P) | 425 | 400–450 | 0.0786 | |
B8 | Yellow (Y) | 610 | 590–630 | 0.0585 |
Type | Training Samples | Validation Sample | Total | ||
---|---|---|---|---|---|
Number of Polygons | Number of Pixels | Number of Polygons | Number of Pixels | Number of Polygons | |
Summer maize | 92 | 5855 | 92 | 4690 | 184 |
Spring maize | 50 | 3434 | 50 | 3055 | 100 |
Cotton | 35 | 1788 | 35 | 1721 | 70 |
Minor crops | 30 | 415 | 30 | 388 | 60 |
Greenhouses | 15 | 396 | 15 | 391 | 30 |
Orchards | 25 | 871 | 25 | 855 | 50 |
Woods | 20 | 1234 | 20 | 881 | 40 |
Cities and towns | 24 | 5164 | 24 | 4609 | 48 |
Water bodies | 16 | 3143 | 16 | 3465 | 32 |
Red Edge Indices | Calculation Formula (GF-6 WFV) |
---|---|
Normalized Difference Red Edge (NDRE) [47] | |
Normalized Difference Vegetation Index red edge 1 (NDVIre1) [48] | |
Normalized Difference Vegetation Index red edge 2 (NDVIre2) [48] | |
Chlorophyll Index red edge 1 (CIre1) [49] | |
Chlorophyll Index red edge 2 (CIre2) [50] | |
Modified Chlorophyll Absorption Ratio Index 1 (MCARI1) [51] | |
Modified Chlorophyll Absorption Ratio Index 2 (MCARI2) [52] | |
Transformed Chlorophyll Absorption Reflectance Index 1 (TCARI1) [52] | |
Transformed Chlorophyll Absorption Reflectance Index 2 (TCARI2) [51] | |
MERIS Terrestrial Chlorophyll Index (MTCI) [53] |
Classification Schemes Classification Features | Scheme A-1 | Scheme A-2 | Scheme A-3 | Scheme A-4 | Scheme B-1 | Scheme B-2 | Scheme B-3 | Scheme B-4 | Scheme C-1 | Scheme C-2 | Scheme C-3 | Scheme C-4 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Traditional four bands (R,G,B,NIR) | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
Red edge spectral features | Red edge 710 | ✓ | ✓ | ||||||||||
Red edge 750 | ✓ | ✓ | |||||||||||
Red edge texture features | Red edge texture 710 | ✓ | ✓ | ||||||||||
Red edge texture 750 | ✓ | ✓ | |||||||||||
Near-infrared texture | ✓ | ||||||||||||
Red edge index features | Optimal red edge index 1 | ✓ | |||||||||||
Optimal red edge index 2 | ✓ | ||||||||||||
Optimal red edge index 3 | ✓ | ||||||||||||
Optimal red edge index 4 | ✓ |
Band Name | Band Order | ABS index | Ranking |
---|---|---|---|
Purple (P) | 1 | 0 | 7 |
Blue (B) | 2 | 383.4 | 6 |
Green (G) | 3 | 474.8 | 5 |
Red (R) | 4 | 556.3 | 4 |
Near-infrared (NIR) | 5 | 2418.7 | 1 |
Red edge 710 (RE1) | 6 | 728.3 | 3 |
Red edge 750 (RE2) | 7 | 1732.5 | 2 |
Yellow (Y) | 8 | 0 | 7 |
Red Edge Indices | F Value (SDA) | MDG (RF) |
---|---|---|
CIre1 | 237.268 | 0.111 |
CIre2 | 46.414 | 0.091 |
MCARI1 | 64.475 | 0.090 |
MCARI2 | 54.886 | 0.098 |
MTCI | 227.010 | 0.137 |
NDRE | 387.008 | 0.108 |
NDVIre1 | 337.605 | 0.110 |
NDVIre2 | 52.812 | 0.092 |
TCARI1 | 115.514 | 0.104 |
TCARI2 | 9.566 | 0.059 |
Class | Scheme A-1 | Scheme A-2 | Scheme A-3 | Scheme A-4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PA% | UA% | F1% | PA% | UA% | F1% | PA% | UA% | F1% | PA% | UA% | F1% | |
Summer maize | 87.31 | 74.84 | 80.59 | 91.15 | 77.98 | 84.05 | 88.61 | 77.29 | 82.56 | 91.22 | 78.34 | 84.29 |
Spring maize | 48.35 | 58.38 | 52.89 | 55.61 | 68.92 | 61.55 | 53.39 | 64.16 | 58.28 | 56.20 | 71.66 | 62.99 |
Cotton | 84.83 | 83.33 | 84.07 | 87.68 | 85.21 | 86.42 | 87.91 | 85.05 | 86.45 | 91.69 | 86.99 | 89.27 |
Minor crops | 30.93 | 60.30 | 40.88 | 29.64 | 47.92 | 36.62 | 29.38 | 57.29 | 38.84 | 27.32 | 49.53 | 35.21 |
Greenhouses | 75.70 | 86.80 | 80.87 | 75.70 | 88.89 | 81.76 | 75.45 | 90.77 | 82.40 | 75.96 | 91.67 | 83.08 |
Orchards | 47.72 | 54.91 | 51.06 | 61.05 | 73.31 | 66.62 | 57.54 | 65.51 | 61.26 | 61.17 | 72.14 | 66.20 |
Woods | 75.60 | 75.94 | 75.76 | 82.41 | 80.94 | 81.66 | 79.80 | 76.08 | 77.89 | 83.20 | 77.24 | 80.11 |
Cities and towns | 98.42 | 74.08 | 84.53 | 98.72 | 75.86 | 85.79 | 98.85 | 74.65 | 85.06 | 98.78 | 79.14 | 87.88 |
Water bodies | 56.94 | 97.77 | 71.96 | 61.15 | 98.24 | 75.37 | 58.07 | 97.91 | 72.90 | 68.40 | 97.97 | 80.56 |
OA (%) | 74.95 | 78.84 | 77.15 | 80.55 | ||||||||
Kappa coefficient | 0.6937 | 0.7414 | 0.7208 | 0.7627 |
Class | Scheme B-1 | Scheme B-2 | Scheme B-3 | Scheme B-4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PA% | UA% | F1% | PA% | UA% | F1% | PA% | UA% | F1% | PA% | UA% | F1% | |
Summer maize | 90.64 | 77.87 | 83.77 | 88.17 | 77.17 | 82.30 | 90.15 | 78.57 | 83.96 | 88.06 | 75.15 | 81.09 |
Spring maize | 53.85 | 67.01 | 59.71 | 55.35 | 65.42 | 59.96 | 56.01 | 69.05 | 61.85 | 47.89 | 60.06 | 53.29 |
Cotton | 89.25 | 85.52 | 87.34 | 87.45 | 86.44 | 86.94 | 91.34 | 86.52 | 88.86 | 86.23 | 83.94 | 85.07 |
Minor crops | 27.32 | 50.72 | 35.51 | 28.87 | 51.85 | 37.09 | 27.32 | 53.81 | 36.24 | 30.67 | 57.49 | 40.00 |
Greenhouses | 75.19 | 80.33 | 77.67 | 77.24 | 83.66 | 80.32 | 78.52 | 80.79 | 79.64 | 72.63 | 81.61 | 76.86 |
Orchards | 58.95 | 64.95 | 61.80 | 50.29 | 59.23 | 54.39 | 53.33 | 62.72 | 57.65 | 44.33 | 53.91 | 48.65 |
Woods | 82.52 | 82.33 | 82.42 | 78.09 | 73.66 | 75.81 | 81.27 | 74.12 | 77.53 | 74.91 | 68.75 | 71.69 |
Cities and towns | 96.92 | 97.77 | 97.34 | 97.94 | 77.71 | 86.66 | 97.03 | 98.07 | 97.55 | 98.24 | 81.09 | 88.84 |
Water bodies | 99.83 | 97.66 | 98.73 | 65.11 | 97.03 | 77.93 | 99.83 | 97.46 | 98.63 | 72.38 | 98.24 | 83.35 |
OA (%) | 84.71 | 77.95 | 84.90 | 77.56 | ||||||||
Kappa coefficient | 0.8142 | 0.731 | 0.8167 | 0.7263 |
Class | Scheme C-1 | Scheme C-2 | Scheme C-3 | Scheme C-4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PA% | UA% | F1% | PA% | UA% | F1% | PA% | UA% | F1% | PA% | UA% | F1% | |
Summer maize | 90.94 | 77.64 | 83.76 | 91.07 | 76.95 | 83.42 | 89.49 | 76.73 | 82.62 | 90.75 | 77.64 | 83.68 |
Spring maize | 55.29 | 69.39 | 61.54 | 52.83 | 69.27 | 59.94 | 53.62 | 67.60 | 59.80 | 55.58 | 69.19 | 61.64 |
Cotton | 87.57 | 86.71 | 87.14 | 90.35 | 84.69 | 87.43 | 90.94 | 88.17 | 89.53 | 88.32 | 87.16 | 87.74 |
Minor crops | 30.15 | 49.79 | 37.56 | 33.51 | 48.51 | 39.64 | 28.61 | 46.64 | 35.46 | 30.67 | 51.07 | 38.32 |
Greenhouses | 75.70 | 86.55 | 80.76 | 74.17 | 90.06 | 81.35 | 78.26 | 90.00 | 83.72 | 73.40 | 87.50 | 79.83 |
Orchards | 64.09 | 74.25 | 68.79 | 57.66 | 73.58 | 64.65 | 61.52 | 67.44 | 64.34 | 63.27 | 73.51 | 68.01 |
Woods | 83.54 | 80.00 | 81.73 | 84.22 | 79.96 | 82.03 | 79.00 | 79.82 | 79.41 | 83.43 | 80.24 | 81.80 |
Cities and towns | 98.68 | 73.21 | 84.06 | 98.31 | 76.61 | 86.11 | 98.74 | 73.81 | 84.47 | 98.76 | 74.44 | 84.89 |
Water bodies | 54.86 | 97.84 | 70.30 | 62.97 | 97.54 | 76.53 | 56.25 | 97.89 | 71.45 | 57.89 | 98.00 | 72.78 |
OA (%) | 77.82 | 78.82 | 77.48 | 78.35 | ||||||||
Kappa coefficient | 0.7288 | 0.7413 | 0.7248 | 0.7354 |
Analysis | Scheme 1 | Scheme 2 | f12 | f21 | χ2 | p |
---|---|---|---|---|---|---|
1 | A-1 | A-2 | 6 | 786 | 768.18 | <0.0001% |
2 | A-1 | A-3 | 8 | 449 | 425.56 | <0.0001% |
3 | A-1 | A-4 | 15 | 1139 | 1094.78 | <0.0001% |
4 | A-2 | A-3 | 350 | 11 | 318.34 | <0.0001% |
5 | A-2 | A-4 | 10 | 354 | 325.09 | <0.0001% |
6 | A-3 | A-4 | 12 | 695 | 659.81 | <0.0001% |
7 | B-1 | B-2 | 1464 | 108 | 1169.68 | <0.0001% |
8 | B-1 | B-3 | 83 | 121 | 7.08 | 0.8% |
9 | B-1 | B-4 | 1509 | 75 | 1583.99 | <0.0001% |
10 | B-2 | B-3 | 49 | 1143 | 1302.44 | <0.0001% |
11 | B-2 | B-4 | 352 | 274 | 9.72 | 0.2% |
12 | B-3 | B-4 | 1542 | 70 | 1344.16 | <0.0001% |
13 | C-1 | C-2 | 154 | 355 | 79.37 | <0.0001% |
14 | C-1 | C-3 | 188 | 120 | 15.01 | 0.01% |
15 | C-1 | C-4 | 27 | 134 | 71.11 | <0.0001% |
16 | C-2 | C-3 | 373 | 104 | 151.70 | <0.0001% |
17 | C-2 | C-4 | 248 | 154 | 21.98 | 0.0003% |
18 | C-3 | C-4 | 65 | 240 | 100.41 | <0.0001% |
19 | A-1 | B-3 | 79 | 2075 | 1849.59 | <0.0001% |
20 | A-1 | C-2 | 12 | 789 | 753.72 | <0.0001% |
21 | A-4 | B-3 | 228 | 1100 | 572.58 | <0.0001% |
22 | A-4 | C-2 | 381 | 34 | 293.06 | <0.0001% |
23 | B-3 | C-2 | 1409 | 190 | 929.31 | <0.0001% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, Y.; Meng, Q.; Liu, M.; Zou, Y.; Wang, X. Crop Classification Based on Red Edge Features Analysis of GF-6 WFV Data. Sensors 2021, 21, 4328. https://doi.org/10.3390/s21134328
Kang Y, Meng Q, Liu M, Zou Y, Wang X. Crop Classification Based on Red Edge Features Analysis of GF-6 WFV Data. Sensors. 2021; 21(13):4328. https://doi.org/10.3390/s21134328
Chicago/Turabian StyleKang, Yupeng, Qingyan Meng, Miao Liu, Youfeng Zou, and Xuemiao Wang. 2021. "Crop Classification Based on Red Edge Features Analysis of GF-6 WFV Data" Sensors 21, no. 13: 4328. https://doi.org/10.3390/s21134328
APA StyleKang, Y., Meng, Q., Liu, M., Zou, Y., & Wang, X. (2021). Crop Classification Based on Red Edge Features Analysis of GF-6 WFV Data. Sensors, 21(13), 4328. https://doi.org/10.3390/s21134328