Harnessing Ascidians as Model Organisms for Environmental Risk Assessment
<p>Phylogenetic tree based on 18S ribosomal RNA (18S rRNA) gene fragments of ascidian species reviewed in this study. A few species are not represented due to the absence of their 18S gene sequences in the database. The taxonomic order of the species is depicted, illustrating the clustering of species within the same order. The analysis was conducted using the EMBL-EBI T-Coffee program [<a href="#B33-environments-11-00232" class="html-bibr">33</a>]. The NCBI GenBank accession numbers for the 18S rRNA gene sequences used are as follows: <span class="html-italic">Ascidiella scabra</span> (AB811928.1), <span class="html-italic">Botrylloides leachi</span> (JN573237.1), <span class="html-italic">Botrylloides_violaceus</span> (AY903927.1), <span class="html-italic">Botryllus_schlosseri</span> (FM244858.1), <span class="html-italic">Ciona intestinalis</span> (AB013017.1), <span class="html-italic">Ciona savignyi</span> (LC547329.1), <span class="html-italic">Didemnum molle</span> (AB211071.1), <span class="html-italic">Didemnum vexillum</span> (JF738071.1), <span class="html-italic">Halocynthia roretzi</span> (AB013016.1), <span class="html-italic">Herdmania momus</span> (AF165827.1), <span class="html-italic">Microcosmus exasperates</span> (XR005567858.1), <span class="html-italic">Molgula manhattensis</span> (L12426.2), <span class="html-italic">Phallusia nigra</span> (FM244845.1), <span class="html-italic">Polycarpa mytiligera</span> (FM244860.1), <span class="html-italic">Styela clava</span> (XR_005567858.1), <span class="html-italic">Styela_plicata</span> (L12444.2).</p> "> Figure 2
<p>Modes of life cycles in two ascidian model species: (<b>a</b>) a solitary ascidian (<span class="html-italic">Ciona</span> spp.) revealing classical sexual reproduction progressions of a broadcasting species; (<b>b</b>) asexual (outer cycle in the diagram) and sexual phases in a colonial ascidian (<span class="html-italic">Botryllus schlosseri</span>) highlighted by weekly astogenic rounds of zooidal life and death (each cycle is called blastogenesis). Each blastogenic cycle is divided into four stages (A–D) where three generations of colonial modules (the functional zooids and two cohorts of developing buds, primary and secondary buds) coexist side by side, depicting highly synchronized developmental statuses as the colony progresses through blastogenesis. At stage D, the functional zooids start their degeneration, first by closing the siphons, where simultaneously all zooids undergo cell apoptosis and phagocytosis processes within the next 24–36 h and are morphologically absorbed, while the primary buds mature to the zooidal level of development. Subsequently, stage A of the following blastogenic cycle begins as primary buds complete their development into zooids by opening the inhalant siphons and resuming water filtration, while secondary buds (budlets) develop to the primary bud’s state, starting the generation of new sets of secondary buds. Gametogenesis is highly synchronized with the blastogenic cycle among modules of the same generation. The sexual cycle is typified as brooding, where gametes start differentiation within the budlets. Gametes maturation and egg fertilization occur within the zooids (at the onset of stage A). Embryos differentiation is synchronized with the blastogenic stage and continues within the zooids (inner cycle; showing for each blastogenic stage a single large zooid with its bud/s and budlet/s), culminating in the release of the larvae into the surrounding waters at late blastogenic stage C. The larvae swim for a very short period until they settle, undergo metamorphosis starting with the absorption of the tail, and new juveniles (oozooids) are formed, and a colony is formed by repeated blastogenic cycles.</p> "> Figure 3
<p>Pie charts depicting taxa percentages for search hits in the ‘Web of Science’ and ‘Google Scholar’ databases, filtered by the terms ‘environmental risk assessments’ and ‘marine’ environment, as compared to the total hits for ‘environmental risk assessment’ (marine and terrestrial). Each taxon (a group of different bioindicators) is represented by a specific-colored descriptor detailed in the caption. The black sections encompass the residual hits for taxa with the smaller number of hits. The magnified pie sections on the right provide a detailed breakdown for some of these taxa. <a href="#app1-environments-11-00232" class="html-app">Supplementary Table S1</a> details the specific queries used to obtain the data for each taxon.</p> "> Figure 4
<p>Commonly used model ascidians: the solitary ascidians (<b>a</b>) <span class="html-italic">Ciona robusta</span> and (<b>b</b>) <span class="html-italic">Ciona intestinalis</span> (by John Bishop from the Marine Biological Association of the United Kingdom), once considered as a single species; (<b>c</b>,<b>d</b>) different color morphs of the colonial ascidian <span class="html-italic">Botryllus schlosseri</span>. (<b>c</b>) A colony reared in the laboratory at the Israel Oceanography and Limnological Research, Haifa, and maintained at a constant temperature of 20 °C with a regimen of 12:12 light:dark hours. This colony is a descendant of the Monterey, California, population; (<b>d</b>) a colony from New Zealand reared on a glass slide.</p> "> Figure 5
<p>Pictures of additional solitary (<b>a</b>–<b>c</b>) and colonial ascidian (<b>d</b>–<b>f</b>) used in toxicity, environmental pollution monitoring tests, and biological invasions. (<b>a</b>) <span class="html-italic">Phallusia</span> spp.; (<b>b</b>) <span class="html-italic">Polycarpa</span> spp.; (<b>c</b>) <span class="html-italic">Halocynthia</span> spp.; (<b>d</b>) <span class="html-italic">Botrylloides</span> spp.; (<b>e</b>) <span class="html-italic">Didemnum</span> spp.; (<b>f</b>) <span class="html-italic">Didemnum vexillum</span>.</p> "> Figure 6
<p>Pie charts depicting taxa percentages for search hits in ‘Google Scholar’ databases, filtered by the terms: (<b>a</b>) ‘environmental risk assessment’ and ‘marine’ environment, and ‘invasion’ (61.5% of hits) as compared to the total hits for ‘environmental risk assessments’ and ‘invasion’ (100%). The total number of hits involving individual taxa exceeds the number of hits for ‘environmental risk assessment’, ‘marine’ environment, and ‘invasion’, as many publications examine multiple taxa; (<b>b</b>) ‘environmental risk assessment’ and ‘marine’ environment, and ‘biodiversity’ (62.6%) as compared to the total hits for ‘environmental risk assessments’ and ‘biodiversity’ (100%). The total number of hits involving individual taxa exceeds the number of hits for ‘environmental risk assessment’ and ‘marine’ environment and ‘biodiversity’, as many publications examine multiple taxa. Each taxon is represented by a specific-colored descriptor detailed in the caption. The magnified pie sections on the right are for categories with smaller numbers of hits. <a href="#app1-environments-11-00232" class="html-app">Supplementary Table S2</a> details the specific queries used to obtain the data for each taxon.</p> "> Figure 7
<p>A graphical representation illustrating the potential applications of ascidian-based bioassays within the framework of ERA. The bioassays utilize both solitary and colonial ascidians, which may offer unique advantages for studying different environmental impacts. MCR—multiple clonal ramets; Blue arrows indicate bioassays that have already been successfully employed in toxicity testing; Red arrows represent potential applications that have yet to be widely explored.</p> ">
Abstract
:1. Introduction
2. Risk Assessments of Chemical Pollution
2.1. Marine Chemical Hazard Assessment: Regulations, Monitoring, and Challenges
2.2. Ascidians in Toxicological ERAs
2.3. Exploring Pollution Beyond Standard Models: Non-Standardized Tests with Ascidians
Test | Ciona spp. | Botryllus schlosseri |
---|---|---|
Sperm toxicity | [82,94,125] | N/A |
Oocyte toxicity | [82,94,125] | N/A |
Fertilization | [82,125] | N/A |
Embryotoxicity | [59,126,127,128] | N/A |
Embryo development impairment | [91] | N/A |
Larval hatching | [91,92,102,126] | N/A |
Alterations in larvae behavior (e.g., spontaneous swimming, shadow response) | [99,102] | N/A |
Larval settlement | [91,92,126] | [104] |
Larva development | [95,97,98,102] | [104] |
Larvae mortality | N/A | [104] |
Juvenile | [84,85,100] | N/A |
Transcriptome profiling | [103] | N/A |
Mature colony | ||
Reproductive physiology | [94] | N/A |
Bioaccumulation | [96,129] | N/A |
Oxidative stress tests | [112] | [113] |
Heat shock protein expression | N/A | [130] |
Detoxification enzyme expressions | [131] | [132] |
Transcriptome profiling | [133] | N/A |
Functional responses of hemocytes: Viability, morphology, lysosomal membrane stability, phagocytic activity, apoptosis, enzyme activities | N/A | [114,132,134,135] |
Comet assay (genotoxicity test) | N/A | [115] |
Microbiome composition | [116,117] | [116,117] |
Colony growth | N/A | [136] |
Colony recovery | N/A | [136] |
Pollution-induced differential gene expression | [110] | [66,130] |
Biotransformation | [111] | N/A |
Immunotoxicity | [137] | [132,138,139,140,141,142,143] |
Phenotypic changes | N/A | [144] |
Mortality (survival; LC50) | N/A | [144] |
2.4. ERAs Performed with Ascidians
3. Ecological Risk Assessments
3.1. Biological Invasion
3.2. Biodiversity and Ecosystem Services
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carstens, K.; Anderson, J.; Bachman, P.; De Schrijver, A.; Dively, G.; Federici, B.; Hamer, M.; Gielkens, M.; Jensen, P.; Lamp, W.; et al. Genetically modified crops and aquatic ecosystems: Considerations for environmental risk assessment and non-target organism testing. Transgenic Res. 2012, 21, 813–842. [Google Scholar] [CrossRef]
- US EPA. Guidelines for Ecological Risk Assessment; US EPA 630/R-95-002F; U.S. Environmental Protection Agency: Washington, DC, USA, 1998. [Google Scholar]
- Piet, G.J.; Knights, A.M.; Jongbloed, R.H.; Tamis, J.E.; de Vries, P.; Robinson, L.A. Ecological risk assessments to guide decision-making: Methodology matters. Environ. Sci. Policy 2017, 68, 1–9. [Google Scholar] [CrossRef]
- Hope, B.K. An examination of ecological risk assessment and management practices. Environ. Int. 2006, 32, 983–995. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, B.; Mons, R.; Vollat, B.; Fraysse, B.; Paxēaus, N.; Giudice, R.L.; Pollio, A.; Garric, J. Environmental risk assessment of six human pharmaceuticals: Are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environ. Toxicol. Chem. 2004, 23, 1344–1354. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Chen, H.; Liu, H.; Schlenk, D.; Mu, J.; Lacorte, S.; Ying, G.G.; Xie, L. Anticancer drugs in the aquatic ecosystem: Environmental occurrence, ecotoxicological effect and risk assessment. Environ. Int. 2021, 153, 106543. [Google Scholar] [CrossRef]
- Reinert, K.H.; Giddings, J.M.; Judd, L. Effects analysis of time-varying or repeated exposures in aquatic ecological risk assessment of agrochemicals. Environ. Toxicol. Chem. 2002, 21, 1977–1992. [Google Scholar] [CrossRef]
- Schuler, L.J.; Rand, G.M. Aquatic risk assessment of herbicides in freshwater ecosystems of South Florida. Arch. Environ. Contam. Toxicol. 2008, 54, 571–583. [Google Scholar] [CrossRef]
- Sumon, K.A.; Rashid, H.; Peeters, E.T.; Bosma, R.H.; Van den Brink, P.J. Environmental monitoring and risk assessment of organophosphate pesticides in aquatic ecosystems of north-west Bangladesh. Chemosphere 2018, 206, 92–100. [Google Scholar] [CrossRef]
- Elliott, M. Marine science and management means tackling exogenic unmanaged pressures and endogenic managed pressures-a numbered guide. Mar. Pollut. Bull. 2011, 62, 651–655. [Google Scholar] [CrossRef]
- Beyer, J.; Petersen, K.; Song, Y.; Ruus, A.; Grung, M.; Bakke, T.; Tollefsen, K.E. Environmental risk assessment of combined effects in aquatic ecotoxicology: A discussion paper. Mar. Environ. Res. 2014, 96, 81–91. [Google Scholar] [CrossRef]
- Breitholtz, M.; Rudén, C.; Hansson, S.O.; Bengtsson, B.E. Ten challenges for improved ecotoxicological testing in environmental risk assessment. Ecotoxicol. Environ. Saf. 2006, 63, 324–335. [Google Scholar] [CrossRef] [PubMed]
- Villalobos, S.M.; Lambert, G.; Shenkar, N.; López-Legentil, S. Distribution and population dynamics of key ascidians in North Carolina harbors and marinas. Aquat. Invasions 2017, 12, 447–458. [Google Scholar] [CrossRef]
- Mastrototaro, F.; Chimienti, G.; Montesanto, F.; Perry, A.L.; García, S.; Alvarez, H.; Blanco, J.; Aguilar, R. Finding of the macrophagous deep-sea ascidian Dicopia antirrhinum Monniot, 1972 (Chordata: Tunicata) in the Tyrrhenian Sea and updating of its distribution. Eur. Zool. J. 2019, 86, 181–188. [Google Scholar] [CrossRef]
- Zhan, A.; Briski, E.; Bock, D.G.; Ghabooli, S.; MacIsaac, H.J. Ascidians as models for studying invasion success. Mar. Biol. 2015, 162, 2449–2470. [Google Scholar] [CrossRef]
- Aldred, N.; Clare, A.S. Impact and dynamics of surface fouling by solitary and compound ascidians. Biofouling 2014, 30, 259–270. [Google Scholar] [CrossRef]
- WoRMS—World Register of Marine Species. Available online: https://www.marinespecies.org/ (accessed on 16 March 2024).
- Ascidian World Database. Available online: https://www.marinespecies.org/ascidiacea/aphia.php?p=browser (accessed on 16 March 2024).
- Shenkar, N.; Swalla, B.J. Global Diversity of Ascidiacea. PLoS ONE 2011, 6, e20657. [Google Scholar] [CrossRef]
- Smith, M.J.; Dehnel, P.A. The composition of tunic from four species of ascidians. Comp. Biochem. Physiol. B Comp. Biochem. 1971, 40, 615–622. [Google Scholar] [CrossRef]
- Lambert, G. Nonindigenous Ascidians in Tropical Waters. Pac. Sci. 2002, 56, 291–298. [Google Scholar] [CrossRef]
- Satoh, N. The ascidian tadpole larva: Comparative molecular development and genomics. Nat. Rev. Genet. 2003, 4, 285–295. [Google Scholar] [CrossRef]
- Gasparini, F.; Ballarin, L. Reproduction in Tunicates. In Encyclopedia of Reproduction, 2nd ed.; Skinner, M.K., Ed.; Elsevier Inc.: : Amsterdam, The Netherlands, 2018; Volume 6, pp. 546–553. [Google Scholar] [CrossRef]
- Ruppert, E.E.; Fox, R.S.; Barnes, R.D. Invertebrate Zoology, 7th ed.; Cengage Learning: Boston, MA, USA, 2003; p. 941. [Google Scholar]
- Jiang, A.; Han, K.; Wei, J.; Su, X.; Wang, R.; Zhang, W.; Liu, X.; Qiao, J.; Liu, P.; Liu, Q.; et al. Spatially resolved single-cell atlas of ascidian endostyle provides insight into the origin of vertebrate pharyngeal organs. Sci. Adv. 2024, 10, eadi9035. [Google Scholar] [CrossRef]
- Giacomelli, S.; Melillo, D.; Lambris, J.D.; Pinto, M.R. Immune competence of the Ciona intestinalis pharynx: Complement system-mediated activity. Fish Shellfish Immunol. 2012, 33, 946–952. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, W.R. Distal regeneration involves the age dependent activity of branchial sac stem cells in the ascidian Ciona intestinalis. Regeneration 2015, 2, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Stolfi, A.; Brown, F. Tunicata . In Evolutionary Developmental Biology of Invertebrate; Wanniger, A., Ed.; Springer: Vienna, Austria, 2015; pp. 135–204. [Google Scholar]
- Berrill, N.J. The Tunicata with an Account of the British Species; Ray Society: London, UK, 1950; pp. 3–56. [Google Scholar]
- Rinkevich, B.; Shlemberg, Z.; Fishelson, L. Whole body protochordate regeneration from totipotent blood cells. Proc. Natl. Acad. Sci. USA 1995, 92, 7695–7699. [Google Scholar] [CrossRef] [PubMed]
- Rinkevich, Y.; Paz, G.; Rinkevich, B.; Reshef, R. Systemic bud induction and retinoic acid signaling underlie whole body regeneration in the urochordate Botrylloides Leachi. PLoS Biol. 2007, 5, e71. [Google Scholar] [CrossRef]
- Vanni, V.; Ballarin, L.; Gasparini, F.; Peronato, A.; Manni, L. Studying Regeneration in Ascidians: An Historical Overview. In Whole-Body Regeneration; Methods in Molecular, Biology; Blanchoud, S., Galliot, B., Eds.; Humana: New York, NY, USA, 2022; Volume 2450. [Google Scholar] [CrossRef]
- EMBL-EBI T-Coffee Program. Available online: https://www.ebi.ac.uk/jdispatcher/msa/tcoffee?stype=dna (accessed on 9 October 2024).
- Satoh, N. Developmental Biology of Ascidians; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Nakauchi, M. Asexual development of ascidians: Its biological significance, diversity, and morphogenesis. Amer. Zool. 1982, 22, 753–763. [Google Scholar] [CrossRef]
- Kürn, U.; Rendulic, S.; Tiozzo, S.; Lauzon, R.J. Asexual propagation and regeneration in colonial ascidians. Biol. Bull. 2011, 221, 43–61. [Google Scholar] [CrossRef]
- Berrill, N.J. Regeneration and budding in tunicates. Biol. Rev. Camb. Philos. Soc. 1951, 26, 456–475. [Google Scholar] [CrossRef]
- Ben Hamo, O.; Baruch Rinkevich, R. Botryllus schlosseri-A Model Colonial Species in Basic and Applied Studies. In Handbook of Marine Model Organisms in Experimental Biology; Boutet, A., Schierwater, B., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 385–402. [Google Scholar] [CrossRef]
- Fiala-Medioni, A. Filter-feeding ethology of benthic invertebrates (ascidians). IV. Pumping rate, filtration rate, filtration efficiency. Mar. Biol. 1978, 48, 243–249. [Google Scholar] [CrossRef]
- Petersen, J.K. Ascidian suspension feeding. J. Exp. Mar. Bio. Ecol. 2007, 342, 127–137. [Google Scholar] [CrossRef]
- Stabili, L.; Licciano, M.; Longo, C.; Lezzi, M.; Giangrande, A. The Mediterranean non-indigenous ascidian Polyandrocarpa zorritensis: Microbiological accumulation capability and environmental implications. Mar. Pollut. Bull. 2015, 101, 146–152. [Google Scholar] [CrossRef]
- Stabili, L.; Licciano, M.; Gravina, M.F.; Giangrande, A. Filtering activity on a pure culture of Vibrio alginolyticus by the solitary ascidian Styela plicata and the colonial ascidian Polyandrocarpa zorritensis: A potential service to improve microbiological seawater quality economically. Sci. Total Environ. 2016, 573, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Tamilselvi, M.; Akram, A.; Arshan, M.; Sivakumar, V. Comparative study on bioremediation of heavy metals by solitary ascidian, Phallusia nigra, between Thoothukudi and Vizhinjam ports of India. Ecotoxicol. Environ. Saf. 2015, 121, 93–99. [Google Scholar]
- Li, Y.; Ross, R.; Ross, C. A Novel Approach to Bio-Friendly Microplastic Extraction with Ascidians. J. Stud. Res. 2021, 10, 1–8. [Google Scholar] [CrossRef]
- Roberts, D.A.; Johnston, E.L.; Poore, A.G.B. Contamination of marine biogenic habitats and effects upon associated epifauna. Mar. Pollut. Bull. 2008, 56, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.-S. Origin and evolution of the parasitic cyclopoid copepods. Int. J. Parasitol. 1994, 24, 1293–1300. [Google Scholar] [CrossRef]
- Lambert, G.; Karney, R.C.; Rhee, W.Y.; Carman, M.R. Wild and cultured edible tunicates: A review. Manag. Biol. Invasions 2016, 7, 59–66. [Google Scholar] [CrossRef]
- Gao, P.; Khong, H.Y.; Mao, W.; Chen, X.; Bao, L.; Wen, X.; Xu, Y. Tunicates as Sources of High-Quality Nutrients and Bioactive Compounds for Food/Feed and Pharmaceutical Applications: A Review. Foods 2023, 12, 3684. [Google Scholar] [CrossRef] [PubMed]
- Parmar, T.K.; Rawtani, D.; Agrawal, Y.K. Bioindicators: The natural indicator of environmental pollution. Front. Life Sci. 2016, 9, 110–118. [Google Scholar] [CrossRef]
- Reem, E.; Douek, J.; Paz, G.; Katzir, G.; Rinkevich, B. Phylogenetics biogeography and population genetics of the ascidian Botryllus schlosseri in the Mediterranean Sea and beyond. Mol. Phylogenet. Evol. 2017, 107, 221–231. [Google Scholar] [CrossRef]
- Bouchemousse, S.; Bishop, J.D.; Viard, F. Contrasting global genetic patterns in two biologically similar, widespread and invasive Ciona species (Tunicata, Ascidiacea). Biol. Bull. 2016, 6, 24875. [Google Scholar]
- Januario, S.M.; Estay, S.A.; Labra, F.A.; Lima, M. Combining environmental suitability and population abundances to evaluate the invasive potential of the tunicate Ciona intestinalis along the temperate South American coast. PeerJ 2015, 3, e1357. [Google Scholar] [CrossRef]
- Rinkevich, B.; Shapira, M. An improved diet for inland broodstock and the establishment of an inbred line from Botryllus schlosseri, a colonial sea squirt (Ascidiacea). Aquat. Living Resour. 1998, 11, 163–171. [Google Scholar] [CrossRef]
- Joly, J.S.; Kano, S.; Matsuoka, T.; Auger, H.; Hirayama, K.; Satoh, N.; Awazu, S.; Legendre, L.; Sasakura, Y. Culture of Ciona intestinalis in closed systems. Dev. Dyn. 2007, 236, 1832–1840. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, C.; Christiaen, L.; Deschet, K.; Jiang, D.; Joly, J.S.; Legendre, L.; Nakatani, Y.; Tresser, J.; Smith, W.C. Culture of adult ascidians and ascidian genetics. Methods Mol. Biol. 2004, 74, 143–170. [Google Scholar]
- Botryllus schlosseri Genome Project. Available online: http://botryllus.stanford.edu/botryllusgenome/ (accessed on 24 March 2024).
- JGI-Ciona Intestinalis Genome Database v2.0. Available online: https://mycocosm.jgi.doe.gov/Cioin2/Cioin2.home.html (accessed on 24 March 2024).
- McDougall, A.; Hebras, C.; Gomes, I.; Dumollard, R. Gene Editing in the Ascidian Phallusia mammillata and Tail Nerve Cord Formation. Methods Mol. Biol. 2021, 2219, 217–230. [Google Scholar] [CrossRef]
- Zega, G.; Pennati, R.; Candiani, S.; Pestarino, M.; De Bernardi, F. Solitary ascidians embryos (Chordata, Tunicata) as model organisms for testing coastal pollutant toxicity. ISJ-Invert. Surviv. J. 2009, 6, S29–S34. [Google Scholar]
- Delsuc, F.; Brinkmann, H.; Chourrout, D.; Philippe, H. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 2006, 439, 965–968. [Google Scholar] [CrossRef]
- Azumi, K. New Risk Assessment of Marine Chemical Pollutants using Ascidians. Jpn. J. Environ. Toxicol. 2008, 11, 95–98. [Google Scholar] [CrossRef]
- Gallo, A. Toxicity of marine pollutants on the ascidian oocyte physiology: An electrophysiological approach. Zygote 2018, 26, 14–23. [Google Scholar] [CrossRef]
- Capela, R.; Garric, J.; Castro, L.F.C.; Santos, M.M. Embryo bioassays with aquatic animals for toxicity testing and hazard assessment of emerging pollutants: A review. Sci. Total Environ. 2020, 705, 135740. [Google Scholar] [CrossRef]
- Rosner, A.; Armengaud, J.; Ballarin, L.; Barnay-Verdier, S.; Cima, F.; Coelho, A.V.; Domart-Coulon, I.; Drobne, D.; Genevière, A.-M.; Kokalj, A.J.; et al. Stem cells of aquatic invertebrates as an advanced tool for assessing ecotoxicological impacts. Sci. Total Environ. 2021, 771, 144565. [Google Scholar] [CrossRef] [PubMed]
- Burden, N.; Benstead, R.; Clook, M.; Doyle, I.; Edwards, P.; Maynard, S.K.; Ryder, K.; Sheahan, D.; Whale, G.; van Egmond, R.; et al. Advancing the 3Rs in regulatory ecotoxicology: A pragmatic cross-sector approach. Integr. Environ. Assess. Manag. 2015, 12, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Rosner, A.; Ballarin, L.; Barnay-Verdier, S.; Borisenko, I.; Drago, L.; Drobne, D.; Eliso, M.C.; Harbuzova, Z.; Grimaldi, A.; Guy-Haim, T.; et al. A broad-taxa approach as an important concept in ecotoxicological studies and pollution monitoring. Biol. Rev. 2024, 99, 131–176. [Google Scholar] [CrossRef] [PubMed]
- OECD Test Guidelines for Chemicals. Available online: https://www.oecd.org/chemicalsafety/testing/oecdguidelinesforthetestingofchemicals.htm (accessed on 9 March 2024).
- OECD. Considerations for Assessing the Risks of Combined Exposure to Multiple Chemicals, Series on Testing and Assessment No. 296; Environment, Health and Safety Division, Environment Directorate: Paris, France, 2018. [Google Scholar]
- OECD. Revised Guidance Document 150 on Standardised Test Guidelines for Evaluating Chemicals for Endocrine Disruption; OECD Series on Testing and Assessment; OECD Publishing: Paris, France, 2018. [Google Scholar] [CrossRef]
- OECD Guidelines for the Testing of Chemicals, Section 2. Available online: https://www.oecd-ilibrary.org/environment/oecd-guidelines-for-the-testing-of-chemicals-section-2-effects-on-biotic-systems_20745761 (accessed on 9 March 2024).
- OECD. OECD Guidance Document on Aquatic Toxicity Testing of Difficult Substances and Mixtures, OECD Series on Testing and Assessment; OECD Publishing: Paris, France, 2019. [Google Scholar] [CrossRef]
- OECD Series on Testing and Assessment: Testing for Endocrine Disrupters. Available online: https://www.oecd.org/chemicalsafety/testing/seriesontestingandassessmenttestingforendocrinedisrupters.htm (accessed on 9 March 2024).
- EPA. Chemicals Under the Toxic Substances Control Act. Available online: https://www.epa.gov/chemicals-under-tsca (accessed on 9 March 2024).
- NOAA. Environmental Assessment Tools. Available online: https://response.restoration.noaa.gov/environmental-restoration/environmental-assessment-tools (accessed on 19 March 2024).
- ISO. Available online: https://www.iso.org/home.html (accessed on 19 March 2024).
- Viarengo, A.; Canesi, L. Mussels as biological indicators of pollution. Aquaculture 1991, 94, 225–243. [Google Scholar] [CrossRef]
- Diepens, N.J.; Koelmans, A.A.; Baveco, H.; van den Brink, P.J.; van den Heuvel-Greve, M.J.; Brock, T.C.M. Prospective Environmental Risk Assessment for Sediment-Bound Organic Chemicals: A Proposal for Tiered Effect Assessment. In Reviews of Environmental Contamination and Toxicology; De Voogt, P., Ed.; Springer: Cham, Switzerland, 2016; Volume 239. [Google Scholar] [CrossRef]
- Aguirre-Martínez, G.V.; Okello, C.; Salamanca, M.J.; Garrido, C.; Del Valls, T.A.; Martín-Díaz, M.L. Is the step-wise tiered approach for ERA of pharmaceuticals useful for the assessment of cancer therapeutic drugs present in marine environment? Environ. Res. 2016, 144, 43–59. [Google Scholar] [CrossRef]
- Holsman, K.; Samhouri, J.; Cook, G.; Hazen, E.; Olsen, E.; Dillard, M.; Kasperski, S.; Gaichas, S.; Kelble, C.R.; Fogarty, M.; et al. An ecosystem-based approach to marine risk assessment. Ecosyst. Health Sustain. 2017, 3, e01256. [Google Scholar] [CrossRef]
- Gallo, A.; Boni, R.; Buia, M.C.; Monfrecola, V.; Esposito, M.C.; Tosti, E. Ocean acidification impact on ascidian Ciona robusta spermatozoa: New evidence for stress resilience. Sci. Total Environ. 2019, 697, 134100. [Google Scholar] [CrossRef]
- Posthuma, L.; Suter, G.; Traas, T. Species Sensitivity Distributions in Ecotoxicology; Lewis Publishers: Boca Raton, FL, USA, 2002. [Google Scholar]
- Gallo, A.; Tosti, E. The Ascidian Ciona Intestinalis as Model Organism for Ecotoxicological Bioassays. J. Marine Sci. Res. Dev. 2015, 5, 1000e138. [Google Scholar] [CrossRef]
- Dumollard, R.; Gazo, I.; Gomes, I.D.L.; Besnardeau, L.; McDougall, A. Ascidians: An Emerging Marine Model for Drug Discovery and Screening. Curr. Top. Med. Chem. 2017, 17, 2056–2066. [Google Scholar] [CrossRef]
- Eliso, M.C.; Manfra, L.; Savorelli, F.; Tornambè, A.; Spagnuolo, A. New approaches on the use of tunicates (Ciona robusta) for toxicity assessments. Environ. Sci. Pollut. Res. 2020, 27, 32132–32138. [Google Scholar] [CrossRef]
- Eliso, M.C.; Corsi, I.; Manfra, L.; Spagnuolo, A. Phenotypic and Gene Expression Profiles of Embryo Development of the Ascidian Ciona robusta Exposed to Dispersants. Water 2022, 14, 1539. [Google Scholar] [CrossRef]
- Bellas, J.; Beiras, R.; Vázquez, E.A. Standardisation of Ciona intestinalis (Chordata, Ascidiacea) embryo-larval bioassay for ecotoxicological studies. Water Res. 2003, 37, 4613–4622. [Google Scholar] [CrossRef] [PubMed]
- Rakaj, A.; Morroni, L.; Grosso, L.; Fianchini, F.; Pensa, D.; Pellegrini, D.; Regoli, F. Towards sea cucumbers as a new model in embryo-larval bioassays: Holothuria tubulosa as test species for the assessment of marine pollution. Sci. Total Environ. 2021, 787, 147593. [Google Scholar] [CrossRef]
- Mercurio, S.; Messinetti, S.; Barzaghi, B.; Pennati, R. Comparing the sensitivity of two cogeneric ascidian species to two plastic additives: Bisphenol A and the flame retardant tris(chloro-propyl)phosphate. Eur. Zool. J. 2022, 89, 437–445. [Google Scholar] [CrossRef]
- Hickey, C.W.; Vickers, M.L. Comparison of the sensitivity to heavy metals and pentachlorophenol of the mayflies Deleatidium spp. and the cladoceran Daphnia magna. N. Z. J. Mar. Freshw. Res. 1992, 26, 87–93. [Google Scholar] [CrossRef]
- Wilson, E.R.; Murphy, K.J.; Wyeth, R.C. Ecological Review of the Ciona Species Complex. Biol. Bull. 2022, 242, 153–171. [Google Scholar] [CrossRef]
- Bellas, J.; Vázquez, E.; Beiras, R. Toxicity of Hg, Cu, Cd, and Cr on early developmental stages of Ciona intestinalis (Chordata, Ascidiacea) with potential application in marine water quality assessment. Water Res. 2001, 35, 2905–2912. [Google Scholar] [CrossRef]
- Bellas, J.; Beiras, R.; Vazquez, E. Sublethal effects of trace metals (Cd, Cr, Cu, Hg) on embryogenesis and larval settlement of the ascidian Ciona intestinalis. Arch. Environ. Contam. Toxicol. 2004, 46, 61–66. [Google Scholar] [CrossRef]
- Beiras, R.; Bellas, J.; Fernández, N.; Lorenzo, J.I.; Cobelo-García, A. Assessment of coastal marine pollution in Galicia (NW Iberian Peninsula); metal concentrations in seawater, sediments and mussels (Mytilus galloprovincialis) versus embryo–larval bioassays using Paracentrotus lividus and Ciona intestinalis. Mar. Environ. Res. 2003, 56, 531–553. [Google Scholar] [CrossRef]
- Gallo, A.F.; Silvestre, A.; Cuomo, F.; Papoff, F.; Tosti, E. The impact of metals on the reproductive mechanisms of the ascidian Ciona intestinalis. Mar. Ecol. 2011, 32, 222–231. [Google Scholar] [CrossRef]
- Mizotani, Y.; Itoh, S.; Hotta, K.; Tashiro, E.; Oka, K.; Imoto, M. Evaluation of drug toxicity profiles based on the phenotypes of ascidian Ciona intestinalis. Biochem. Biophys. Res. Commun. 2015, 463, 656–660. [Google Scholar] [CrossRef] [PubMed]
- Beyer, J.; Song, Y.; Lillicrap, A.; Rodríguez-Satizábal, S.; Chatzigeorgiou, M. Ciona spp. and ascidians as bioindicator organisms for evaluating effects of endocrine disrupting chemicals: A discussion paper. Mar. Environ. Res. 2023, 191, 106170. [Google Scholar] [CrossRef]
- Messinetti, S.; Mercurio, S.; Parolini, M.; Sugni, M.; Pennati, R. Effects of polystyrene microplastics on early stages of two marine invertebrates with different feeding strategies. Environ. Pollut. 2018, 237, 1080–1087. [Google Scholar] [CrossRef]
- Messinetti, S.; Mercurio, S.; Pennati, R. Bisphenol A affects neural development of the ascidian Ciona robusta. J. Exp. Zool. A Ecol. Integr. Physiol. 2019, 331, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Matsushima, A.; Ryan, K.; Shimohigashi, Y.; Meinertzhagen, I.A. An endocrine disruptor, bisphenol A, affects development in the protochordate Ciona intestinalis: Hatching rates and swimming behavior alter in a dose-dependent manner. Environ. Pollut. 2013, 173, 257–263. [Google Scholar] [CrossRef]
- Sekiguchi, T.; Akitaya, H.; Nakayama, S.; Yazawa, T.; Ogasawara, M.; Suzuki, N.; Hayakawa, K.; Wada, S. Effect of Polycyclic Aromatic Hydrocarbons on Development of the Ascidian Ciona intestinalis Type A. Int. J. Environ. Res. Public Health 2020, 17, 1340. [Google Scholar] [CrossRef] [PubMed]
- Mansueto, V.; Cangialosi, M.V.; Faqi, A.S. Post-embryonic development effect of bisphenol A and tributyltin effects in Ciona intestinalis. Caryologia 2014, 64, 478–484. [Google Scholar]
- Eliso, M.C.; Bergami, E.; Manfra, L.; Spagnuolo, A.; Corsi, I. Toxicity of nanoplastics during the embryogenesis of the ascidian Ciona robusta (Phylum Chordata). Nanotoxicology 2020, 14, 1415–1431. [Google Scholar] [CrossRef]
- Eliso, M.C.; Bergami, E.; Bonciani, L.; Riccio, R.; Belli, G.; Belli, M.; Corsi, I.; Spagnuolo, A. Application of transcriptome profiling to inquire into the mechanism of nanoplastics toxicity during Ciona robusta embryogenesis. Environ. Pollut. 2023, 318, 120892. [Google Scholar] [CrossRef]
- Cima, F.; Varello, R. Effects of Exposure to Trade Antifouling Paints and Biocides on Larval Settlement and Metamorphosis of the Compound Ascidian Botryllus schlosseri. J. Mar. Sci. Eng. 2022, 10, 123. [Google Scholar] [CrossRef]
- Sasakura, Y.; Hozumi, A. Formation of adult organs through metamorphosis in ascidians. Wiley Interdiscip. Rev. Dev. Biol. 2018, 7, e304. [Google Scholar] [CrossRef] [PubMed]
- Draughon, L.D.; Scarpa, J.; Hartmann, J.X. Are filtration rates for the rough tunicate Styela plicata independent of weight or size? J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2010, 45, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Jacobi, Y.; Yahel, G.; Shenkar, N. Efficient filtration of micron and submicron particles by ascidians from oligotrophic waters. Limnol. Oceanogr. 2018, 63, S267–S279. [Google Scholar] [CrossRef]
- Radhalakshmi, R.; Sivakumar, V.; Abdul Jaffar Ali, H. Analysis of selected species of ascidians as bioindicators of metals in marine ecosystem. Int. J. Curr. Microbiol. App. Sci. 2014, 3, 755–764. [Google Scholar]
- Vered, G.; Kaplan, A.; Avisar, D.; Shenkar, N. Using Solitary ascidians to Assess Microplastic and Phthalate Plasticizers Pollution among Marine Biota: A Case Study of the Eastern Mediterranean and Red Sea. Mar. Pollut. Bull. 2019, 138, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Franchi, N.; Ferro, D.; Ballarin, L.; Santovito, G. Transcription of genes involved in glutathione biosynthesis in the solitary tunicate Ciona intestinalis exposed to metals. Aquat. Toxicol. 2012, 114–115, 14–22. [Google Scholar] [CrossRef]
- Thomas, D.J.; Nava, G.M.; Cai, S.Y.; Boyer, J.L.; Hernández-Zavala, A.; Gaskins, H.R. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate Ciona intestinalis. Toxicol. Sci. 2010, 113, 70–76. [Google Scholar] [CrossRef]
- Liberti, A.; Bertocci, I.; Pollet, A.; Musco, L.; Locascio, A.; Ristoratore, F.; Spagnuolo, A.; Sordino, P. An indoor study of the combined effect of industrial pollution and turbulence events on the gut environment in a marine invertebrate. Mar. Environ. Res. 2020, 158, 104950. [Google Scholar] [CrossRef]
- Rosner, A.; Rabinowitz, C.; Moiseeva, E.; Voskoboynik, A.; Rinkevich, B. BS-Cadherin in the colonial urochordate Botryllus schlosseri: One protein, many functions. Dev. Biol. 2007, 304, 687–700. [Google Scholar] [CrossRef]
- Matozzo, V.; Ballarin, L. In vitro effects of nonylphenol on functional responses of haemocytes of the colonial ascidian Botryllus schlosseri. Mar. Pollut. Bull. 2011, 62, 2042–2046. [Google Scholar] [CrossRef]
- Kamer, I.; Rinkevich, B. In vitro application of the comet assay for aquatic genotoxicity: Considering a primary culture versus a cell line. Toxicol. Vitr. 2002, 16, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Cahill, P.L.; Fidler, A.E.; Hopkins, G.A.; Wood, S.A. Geographically conserved microbiomes of four temperate water tunicates. Environ. Microbiol. Rep. 2016, 8, 470–478. [Google Scholar] [CrossRef]
- Schreiber, L.; Kjeldsen, K.U.; Funch, P.; Jensen, J.; Matthias Obst, M.; López-Legentil, S.; Schramm, A. Endozoicomonas are specific, facultative symbionts of sea squirts. Front. Microbiol. 2016, 7, 1042. [Google Scholar] [CrossRef] [PubMed]
- Hyams, Y.; Rubin-Blum, M.; Rosner, A.; Brodsky, L.; Rinkevich, Y.; Rinkevich, B. Physiological changes during torpor favor association with Endozoicomonas endosymbionts in the urochordate Botrylloides leachii. Front. Microbiol. 2023, 14, 1072053. [Google Scholar] [CrossRef]
- Rix, R.R.; Cutler, G.C. Review of molecular and biochemical responses during stress induced stimulation and hormesis in insects. Sci. Total Environ. 2022, 827, 154085. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, L.A.; Brooks, R.; Johnston, E.L. Heritable pollution tolerance in a marine invader. Environ. Res. 2011, 111, 926–932. [Google Scholar] [CrossRef]
- Lenz, M.; da Gama, B.A.; Gerner, N.V.; Gobin, J.; Gröner, F.; Harry, A.; Jenkins, S.R.; Kraufvelin, P.; Mummelthei, C.; Sareyka, J.; et al. Non-native marine invertebrates are more tolerant towards environmental stress than taxonomically related native species: Results from a globally replicated study. Environ. Res. 2011, 111, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Johnston, E.L.; Keough, M.J. Direct and indirect effects of repeated pollution events on marine hard- substrate assemblages. Ecol. Appl. 2002, 12, 1212–1228. [Google Scholar] [CrossRef]
- Blanchoud, S.; Rinkevich, B.; Wilson, M.J. Whole-Body Regeneration in the Colonial Tunicate Botrylloides leachii. In Marine Organisms as Model Systems in Biology and Medicine; Results and Problems in Cell Differentiation; Springer: Berlin/Heidelberg, Germany, 2018; Volume 65, pp. 337–355. [Google Scholar] [CrossRef]
- Voskoboynik, A.; Simon-Blecher, N.; Soen, Y.; Rinkevich, B.; De Tomaso, A.W.; Ishizuka, K.J.; Weissman, I.L. Striving for normality: Whole body regeneration through a series of abnormal generations. FASEB J. 2007, 21, 1335–1344. [Google Scholar] [CrossRef]
- Gallo, A.; Tosti, E. Adverse effect of antifouling compounds on the reproductive mechanisms of the ascidian Ciona intestinalis. Mar. Drugs 2013, 11, 3554–3568. [Google Scholar] [CrossRef]
- Bellas, J.; Beiras, R.; Mariño-Balsa, J.C.; Fernández, N. Toxicity of organic compounds to marine invertebrate embryos and larvae: A comparison between the sea urchin embryogenesis bioassay and alternative test species. Ecotoxicology 2005, 14, 337–353. [Google Scholar] [CrossRef] [PubMed]
- Bellas, J. Comparative toxicity of alternative antifouling biocides on embryos and larvae of marine invertebrates. Sci. Total Environ. 2006, 367, 573–585. [Google Scholar] [CrossRef]
- Bellas, J.; Sao-Álvarez, L.; Nieto, Ó.; Beiras, R. Ecotoxicological evaluation of polycyclic aromatic hydrocarbons using marine invertebrate embryo–larval bioassays. Mar. Pollut. Bull. 2008, 57, 493–502. [Google Scholar] [CrossRef]
- Schultze, S.; Langva, H.K.; Wei, J.; Chatzigeorgiou, M.; Rundberget, J.T.; Hessen, D.O.; Ruus, A.; Andersen, T.; Borgå, K. Do DOM quality and origin affect the uptake and accumulation of a lipid-soluble contaminant in a filter feeding ascidian species (Ciona) that can target small particle size classes? Aquat. Toxicol. 2024, 273, 107026. [Google Scholar] [CrossRef]
- Tasselli, S.; Ballin, F.; Franchi, N.; Fabbri, E.; Ballarin, L. Expression of genes involved in oxidative stress response in colonies of the ascidian B. schlosseri exposed to various environmental conditions. Estuar. Coast. Shelf S. 2017, 187, 22–27. [Google Scholar] [CrossRef]
- Saad, G.A.; Hamed, S.S.; Radwan, K.; Radwan, E.M. Screening of genomic DNA and analysis of heavy metals to identify mutations in the genes of Ciona intestinalis (Linnaeus, 1767) collected from the Mediterranean Sea—Alexandria. Egypt. Sci. Res. Essays 2011, 6, 4984–5003. [Google Scholar]
- Cima, F.; Bragadin, M.; Ballarin, L. Toxic effects of new antifouling compounds on tunicate haemocytes I. Sea-nine 211 and chlorothalonil. Aquat. Toxicol. 2008, 86, 299–312. [Google Scholar] [CrossRef] [PubMed]
- Vizzini, A.; Bonura, A.; La Paglia, L.; Fiannaca, A.; La Rosa, M.; Urso, A.; Mauro, M.; Vazzana, M.; Arizza, V. Transcriptomic Analyses Reveal 2 and 4 Family Members of Cytochromes P450 (CYP) Involved in LPS Inflammatory Response in Pharynx of Ciona robusta. Int. J. Mol. Sci. 2021, 22, 11141. [Google Scholar] [CrossRef] [PubMed]
- Matozzo, V.; Franchi, N.; Ballarin, L. In vitro effects of the nonsteroidal anti-inflammatory drug, ibuprofen, on the immune parameters of the colonial ascidian Botryllus schlosseri. Toxicol. Vitr. 2014, 28, 778–783. [Google Scholar] [CrossRef]
- Varello, R.; Cima, F. Immunotoxic effects of a new-generation antifouling biocide in a compound ascidian. Invertebr. Surviv. J. 2022, 19, 80. [Google Scholar]
- Marin, M.G.; Bressan, M.; Brunetti, R. Effects of linear alkylbenzene sulphonate (LAS) on two marine benthic organisms. Aquat. Toxicol. 1991, 19, 241–248. [Google Scholar] [CrossRef]
- Cooper, E.L.; Arizza, V.; Cammarata, M.; Pellerito, L.; Parrinello, N. Tributyltin affects phagocytic activity of Ciona intestinalis hemocytes. Comp. Biochem. Physiol. 1995, 112C, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Cima, F.; Ballarin, L. TBT-sulfhydryl interaction as a cause of immunotoxicity in Tunicates. Ecotoxicol. Environ. Saf. 2004, 58, 386–395. [Google Scholar] [CrossRef]
- Cima, F.; Ballarin, L. Immunotoxicity in ascidians: Antifouling compounds alternative to organotins—III. The case of copper(I) and Irgarol 1051. Chemosphere 2012, 89, 19–29. [Google Scholar] [CrossRef]
- Cima, F.; Ballarin, L. Immunotoxicity in ascidians: Antifouling compounds alternative to organotins—IV. The case of zinc pyrithione. Comp. Biochem. Physiol. 2015, 169C, 16–24. [Google Scholar] [CrossRef]
- Cima, F.; Ballarin, L.; Bressa, G.; Sabbadin, A. Immunotoxicity of butyltins in tunicates. Appl. Organomet. Chem. 1995, 9, 567–572. [Google Scholar] [CrossRef]
- Menin, A.; Ballarin, L.; Bragadin, M.; Cima, F. Immunotoxicity in ascidians: Antifouling compounds alternative to organotins—II. The case of Diuron and TCMS pyridine. J. Environ. Sci. Health 2008, 43B, 644–654. [Google Scholar] [CrossRef]
- Cima, F.; Varello, R. Immunotoxicity in Ascidians: Antifouling Compounds Alternative to Organotins—V. the Case of Dichlofluanid. J. Mar. Sci. Eng. 2020, 8, 396. [Google Scholar] [CrossRef]
- Gregorin, C.; Albarano, L.; Somma, E.; Costantini, M.; Zupo, V. Assessing the ecotoxicity of copper and polycyclic aromatic hydrocarbons: Comparison of effects on Paracentrotus lividus and Botryllus schlosseri, as alternative bioassay methods. Water 2021, 13, 711. [Google Scholar] [CrossRef]
- Messinetti, S.; Mercurio, S.; Pennati, R. Effects of bisphenol A on the development of pigmented organs in the ascidian Phallusia mammillata. Invertebr. Biol. 2018, 137, 329–338. [Google Scholar] [CrossRef]
- Gomes, I.D.L.; Gazo, I.; Nabi, D.; Besnardeau, L.; Hebras, C.; McDougall, A.; Dumollard, R. Bisphenols disrupt differentiation of the pigmented cells during larval brain formation in the ascidian. Aquat Toxicol. 2019, 216, 105314. [Google Scholar] [CrossRef] [PubMed]
- Gazo, I.; Gomes, I.D.L.; Savy, T.; Besnardeau, L.; Hebras, C.; Benaicha, S.; Brunet, M.; Shaliutina, O.; McDougall, A.; Peyrieras, N.; et al. High-content analysis of larval phenotypes for the screening of xenobiotic toxicity using Phallusia mammillata embryos. Aquat. Toxicol. 2021, 232, 105768. [Google Scholar] [CrossRef] [PubMed]
- Pennati, R.; Groppelli, S.; Zega, G.; Biggiogero, M.; De Bernardi, F.; Sotgia, C. Toxic effects of two pesticides, Imazalil and Triadimefon, on the early development of the ascidian Phallusia mammillata (Chordata, Ascidiacea). Aquat. Toxicol. 2006, 79, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Tzafriri-Milo, R.; Benaltabet, T.; Torfstein, A.; Shenkar, N. The Potential Use of Invasive Ascidians for Biomonitoring Heavy Metal Pollution. Pollution. Front. Mar. Sci. 2019, 6, 611. [Google Scholar] [CrossRef]
- Martinez, S.T.; Felix, C.S.A.; Sorrentino, R.; Cruz, I.C.S.; de Andrade, J.B. When the detail of organism makes the difference in the seascape: Different tissues of Phallusia nigra have distinct Hg concentrations and show differences resolution in spatial Pollution. J. Braz. Chem. Soc. 2023, 34, 228–233. [Google Scholar] [CrossRef]
- Aydın-Önen, S. Styela plicata: A new promising bioindicator of heavy metal pollution for eastern Aegean Sea coastal waters. Environ. Sci. Pollut. Res. Int. 2016, 23, 21536–21553. [Google Scholar] [CrossRef]
- Raftos, D.; Hutchinson, A. Effects of common estuarine pollutants on the immune reactions of tunicates. Biol Bull. 1997, 192, 62–72. [Google Scholar] [CrossRef]
- Radford, J.L.; Hutchinson, A.E.; Burandt, M.; Raftos, D.A. Effects of metal-based environmental pollutants on tunicate hemocytes. J. Invertebr. Pathol. 2000, 76, 242–248. [Google Scholar] [CrossRef]
- Parrinello, D.; Bellante, A.; Parisi, M.G.; Sanfratello, M.A.; Indelicato, S.; Piazzese, D.; Cammarata, M. The ascidian Styela plicata hemocytes as a potential biomarker of marine pollution: In vitro effects of seawater and organic mercury. Ecotoxicol. Environ. Saf. 2017, 136, 126–134. [Google Scholar] [CrossRef]
- Barbosa, D.B.; Mello, A.A.; Allodi, S.; de Barros, C.M. Acute exposure to water-soluble fractions of marine diesel oil: Evaluation of apoptosis and oxidative stress in an ascidian. Chemosphere 2018, 211, 308–315. [Google Scholar] [CrossRef]
- Sampaio, F.X.A.; Nascimento, M.M.; de Oliveira, V.A.; Martinez, S.T.; de Andrade, J.B.; Machado, M.E. Determination of polycyclic aromatic sulfur heterocycles in ascidians (Phallusia nigra) using a green procedure. Microchem. J. 2023, 186, 108270. [Google Scholar] [CrossRef]
- Navon, G.; Novak, L.; Shenkar, N. Proteomic changes in the solitary ascidian Herdmania momus following exposure to the anticonvulsant medication carbamazepine. Aquat. Toxicol. 2021, 237, 105886. [Google Scholar] [CrossRef]
- Kuplik, Z.; Novak, L.; Shenkar, N. Proteomic profiling of ascidians as a tool for biomonitoring marine environments. PLoS ONE 2019, 14, e0215005. [Google Scholar] [CrossRef]
- Kang, K.H.; Hur, J.W. Effects of Heavy Metals on Clearance and Oxygen Consumption Rates of the Sea Squirt Halocynthia roretzi According to Various Body Sizes. Korean J. Environ. Biol. 2012, 30, 349–354. [Google Scholar] [CrossRef]
- Meng, L.; Sun, X.; Li, Q.; Zheng, S.; Liang, J.; Zhao, C. Quantification of the vertical transport of microplastics by biodeposition of typical mariculture filter-feeding organisms. Sci. Total Environ. 2024, 908, 168226. [Google Scholar] [CrossRef] [PubMed]
- Microplastics Discovered in Marine Invertebrates. Available online: https://www.jns.org/microplastics-discovered-in-marine-invertebrates-along-israels-coastline/ (accessed on 7 April 2024).
- Kenworthy, J.M.; Rolland, G.; Samadi, S.; Lejeusne, C. Local variation within marinas: Effects of pollutants and implications for invasive species. Mar. Pollut. Bull. 2018, 133, 96–106. [Google Scholar] [CrossRef]
- Martins, S.E.; Fillmann, G.; Lillicrap, A.; Thomas, K.V. Review: Ecotoxicity of organic and organo-metallic antifouling co-biocides and implications for environmental hazard and risk assessments in aquatic ecosystems. Biofouling 2018, 34, 34–52. [Google Scholar] [CrossRef]
- EPA 712–C–96–115; OPPTS 850.1025: Oyster Acute Toxicity Test (Shell Deposition). EPA: Washington, DC, USA, 1996.
- EPA 712-C-16-004; OCSPP 850.1710: Oyster Bioconcentration Factor (BCF). EPA: Washington, DC, USA, 2016.
- EPA 712-C-16-006; OCSPP 850.1055: Bivalve Acute Toxicity Test (Embryo-Larval). EPA: Washington, DC, USA, 2016.
- ASTM. ASTM. E724-98; Standard Guide for Conducting Static Acute Toxicity Tests Starting with Embryos of Four Species of Saltwater Bivalve Molluscs. ASTM International: West Conshohocken, PA, USA, 1998.
- ASTM. ASTM. E1022-94; Standard Guide for Conducting Bioconcentration Tests with Fishes and Saltwater Bivalve Mollusks. ASTM International: West Conshohocken, PA, USA, 1994.
- ASTM. ASTM. E1562-00; Standard Guide for Conducting Acute, Chronic, and Lifecycle Aquatic Toxicity Tests with Polychaetous Annelids. ASTM International: West Conshohocken, PA, USA, 2000.
- ISO. Water Quality-Determination of Acute Lethal Toxicity to Marine Copepods (Copepoda, Crustacea); ISO: Geneva, Switzerland, 2007; Volume 14669, p. 1999. [Google Scholar]
- Gallo, A.; Tosti, E. Reprotoxicity of the Antifoulant Chlorothalonil in Ascidians: An Ecological Risk Assessment. PLoS ONE 2015, 10, e0123074. [Google Scholar] [CrossRef]
- Temara, A.; Carr, G.; Webb, S.; Versteeg, D.; Feijtel, T. Marine risk assessment: Linear alkylbenzenesulponates (LAS) in the North Sea. Mar. Pollut. Bull. 2001, 42, 635–642. [Google Scholar] [CrossRef]
- Fabbri, E.; Franzellitti, S. Human pharmaceuticals in the marine environment: Focus on exposure and biological effects in animal species. Environ. Toxicol. Chem. 2016, 35, 799–812. [Google Scholar] [CrossRef]
- Fabbri, E.; Valbonesi, P.; Moon, T.W. Pharmaceuticals in the marine environment: Occurrence, fate, and biological effects. In Contaminants of Emerging Concern in the Marine Environment; Elsevier: Amsterdam, The Netherlands, 2023; pp. 11–71. [Google Scholar]
- ISO 5430:2023; Plastics-Ecotoxicity Testing Scheme for Soluble Decomposition Intermediates from Biodegradable Plastic Materials and Products Used in the Marine Environment. Test Methods and Requirements. ISO: Geneva, Switzerland, 2023.
- Goldsmit, J.; McKindsey, C.; Archambault, P.; Howland, K.L. Ecological risk assessment of predicted marine invasions in the Canadian Arctic. PLoS ONE 2019, 14, e0211815. [Google Scholar] [CrossRef]
- Andersen, M.C.; Adams, H.; Hope, B.; Powell, M. Risk assessment for invasive species. Risk Anal. 2004, 24, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Jhariya, M.K.; Banerjee, A.; Raj, A.; Meena, R.S.; Khan, N.; Kumar, S.; Bargali, S.S. Species invasion and ecological risk. In Natural Resources Conservation and Advances for Sustainability; Elsevier: Amsterdam, The Netherlands, 2022; pp. 503–531. [Google Scholar] [CrossRef]
- Hewitt, C.L.; Hayes, K.R. Risk assessment of marine biological invasions. In Invasive Aquatic Species of Europe. Distribution, Impacts and Management; Springer: Dordrecht, The Netherlands, 2002; pp. 456–466. [Google Scholar]
- Soto, I.; Haubrock, P.J.; Cuthbert, R.N.; Renault, D.; Probert, A.F.; Tarkan, A.S. Monetary impacts should be considered in biological invasion risk assessments. J. Appl. Ecol. 2023, 60, 2309–2313. [Google Scholar] [CrossRef]
- Stohlgren, T.J.; Schnase, J.L. Risk analysis for biological hazards: What we need to know about invasive species. Risk Anal. 2006, 26, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Simberloff, D. The politics of assessing risk for biological invasions: The USA as a case study. Trends Ecol. Evol. 2005, 20, 216–222. [Google Scholar] [CrossRef]
- Simberloff, D.; Parker, I.M.; Windle, P.N. Introduced species policy, management, and future research needs. Front. Ecol. Environ. 2005, 3, 12–20. [Google Scholar] [CrossRef]
- Emiljanowicz, L.M.; Hager, H.A.; Newman, J.A. Traits related to biological invasion: A note on the applicability of risk assessment tools across taxa. NeoBiota 2017, 32, 31–64. [Google Scholar] [CrossRef]
- Drake, J.M.; Lodge, D.M. Allee effects, propagule pressure and the probability of establishment: Risk analysis for biological invasions. Biol. Invasions 2006, 8, 365–375. [Google Scholar] [CrossRef]
- Kolar, C.S.; Lodge, D.M. Ecological predictions and risk assessment for alien fishes in North America. Science 2002, 298, 1233–1236. [Google Scholar] [CrossRef]
- Leprieur, F.; Brosse, S.; Garcia-Berthou, E.; Oberdorff, T.; Olden, J.D.; Townsend, C.R. Scientific uncertainty and the assessment of risks posed by non-native freshwater fishes. Fish Fish. 2009, 10, 88–97. [Google Scholar] [CrossRef]
- Ruiz, G.M.; Huber, T.; Larson, K.; McCann, L.; Steves, B.; Fofonoff, P.; Hines, A.H. Biological Invasions in Alaska’s Coastal Marine Ecosystems: Establishing a Baseline; Smithsonian Environmental Research Center: Edgewater, MD, USA, 2006. [Google Scholar]
- Bishop, J.D.D.; Wood, C.A.; Yunnie, A.L.E.; Griffiths, C.A. Unheralded arrivals: Non-native sessile invertebrates in marinas on the English coast. Aquat. Invasions 2015, 10, 249–264. [Google Scholar] [CrossRef]
- Rinkevich, B.; Weissman, I.L. The fate of Botryllus (Ascidiacea) larvae cosettled with parental colonies: Beneficial or deleterious consequences? Biol. Bull. 1987, 173, 474–488. [Google Scholar] [CrossRef]
- Lambert, G. Ecology and natural history of the protochordates. Can. J. Zool. 2005, 83, 34–50. [Google Scholar] [CrossRef]
- Reem, E.; Douek, J.; Katzir, G.; Rinkevich, B. Long-term population genetic structure of an invasive urochordate: The ascidian Botryllus schlosseri. Biol. Invasions 2013, 15, 225–241. [Google Scholar] [CrossRef]
- Wagstaff, M. Life history variation of an invasive species Botrylloides violaceus (Oka, 1927) between novel coastal habitats in the Gulf of Maine. Aquat. Invasions 2017, 12, 43–51. [Google Scholar] [CrossRef]
- Rocha, R.M.; Salonna, M.; Griggio, F.; Ekins, M.; Lambert, G.; Mastrototaro, F.; Fidler, A.; Gissi, C. The power of combined molecular and morphological analyses for the genus Botrylloides: Identification of a potentially global invasive ascidian and description of a new species. Syst. Biodivers. 2019, 17, 509–526. [Google Scholar] [CrossRef]
- Brunetti, R.; Gissi, C.; Pennati, R.; Caicci, F.; Gasparini, F.; Manni, L. Morphological evidence that the molecularly determined Ciona intestinalis type A and type B are different species: Ciona robusta and Ciona intestinalis. J. Zool. Syst. Evol. Res. 2015, 53, 186–193. [Google Scholar] [CrossRef]
- Clarke, C.L.; Therriault, T.W. Biological synopsis of the invasive tunicate Styela clava (Herdman 1881). Can Manuscr. Rep. Fish Aquat. Sci. 2007, 2807, 23. [Google Scholar]
- Stefaniak, L.M. Mechanisms for invasion success by Didemnum vexillum (Chordata: Ascidiacea): Observations versus manipulations. Biol. Invasions 2017, 19, 1213–1225. [Google Scholar] [CrossRef]
- Fidler, A.E.; Bacq-Labreuil, A.; Rachmilovitz, E.N.; Rinkevich, B. Efficient dispersal and substrate acquisition traits in a marine invasive species via transient chimerism and colony mobility. PeerJ 2018, 6, e5006. [Google Scholar] [CrossRef]
- Bindoff, N.L.; Cheung, W.W.; Kairo, J.G.; Arstegui, J.; Guinder, V.A.; Hallberg, R.; Hilmi, N.; Jiao, N.; Karim, M.S.; Levin, L.; et al. Changing Ocean, marine ecosystems, and dependent communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Chapter 5; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019. [Google Scholar]
- Airoldi, L.; Turon, X.; Perkol-Finkel, S.; Rius, M. Corridors for aliens but not for natives: Effects of marine urban sprawl at a regional scale. Divers. Distrib. 2015, 21, 755–768. [Google Scholar] [CrossRef]
- Reem, E.; Douek, J.; Rinkevich, B. Historical navigation routes in European waters leave their footprint on the contemporary seascape genetics of a colonial urochordate. Sci. Rep. 2023, 13, 19076. [Google Scholar] [CrossRef] [PubMed]
- Simkanin, C.; Fofonoff, P.W.; Larson, K.; Lambert, G.; Dijkstra, J.A.; Ruiz, G.M. Spatial and temporal dynamics of ascidian invasions in the continental United States and Alaska. Mar. Biol. 2016, 163, 163. [Google Scholar] [CrossRef]
- Mercer, J.M.; Whitlatch, R.B.; Osman, R.W. Potential effects of the invasive colonial ascidian (Didemnum vexillum Kott, 2002) on peddle-cobble bottom habitats in Long Island Sound, USA. Aquat. Invasions 2009, 4, 133–142. [Google Scholar] [CrossRef]
- McKindsey, C.W.; Landry, T.; Beirn, F.X.O.; Davies, I.M. Bivalve aquaculture and exotic species: A review of ecological considerations and management issues. J. Shellfish Res. 2007, 26, 281–294. [Google Scholar] [CrossRef]
- Herborg, L.M.; O’Hara, P.; Therriault, T.W. Forecasting the potential distribution of the invasive tunicate Didemnum vexillum. J. Appl. Ecol. 2009, 46, 64–72. [Google Scholar] [CrossRef]
- Locke, A.A. screening procedure for potential tunicate invaders of Atlantic Canada. Aquat. Invasions 2009, 4, 71–79. [Google Scholar] [CrossRef]
- Moore, A.M.; Lowen, J.B.; DiBacco, C. Assessing invasion risk of Didemnum vexillum to Atlantic Canada. Manag. Biol. Invasions 2018, 9, 11–25. [Google Scholar] [CrossRef]
- Lins, D.M.; de Marco, P., Jr.; Andrade, A.F.; Rocha, R.M. Predicting global ascidian invasions. Divers. Distrib. 2018, 24, 692–704. [Google Scholar] [CrossRef]
- Rocha, R.M.; Castellano, G.C.; Freire, C.A. Physiological tolerance as a tool to support invasion risk assessment of tropical ascidians. Mar. Ecol. Prog. Ser. 2017, 577, 105–119. [Google Scholar] [CrossRef]
- Therriault, T.W.; Herborg, L.-M. A qualitative biological risk assessment for vase tunicate Ciona intestinalis in Canadian waters: Using expert knowledge. ICES J. Mar. Sci. 2008, 65, 781–787. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, Y.; Huang, X.; Li, S.; Zhang, Z.; Zhan, A. Incorporating adaptive genomic variation into predictive models for invasion risk assessment. Environ. Sci. Ecotechnol. 2024, 18, 100299. [Google Scholar] [CrossRef] [PubMed]
- Reem, E.; Douek, J.; Rinkevich, B. A critical deliberation of the “species complex” status of the globally-spread colonial ascidian Botryllus schlosseri. J. Mar. Biol. Assoc. UK 2022, 101, 1047–1060. [Google Scholar] [CrossRef]
- Smith, K.F.; Abbott, C.L.; Saito, Y.; Fidler, A.E. Comparison of whole mitochondrial genome sequences from two clades of the invasive ascidian, Didemnum vexillum. Mar. Genom. 2015, 19, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Taverna, A.; Reyna, P.B.; Giménez, D.R.; Tatián, M. Disembarking in port: Early detection of the ascidian Ascidiella scabra (Müller, 1776) in a SW Atlantic port and forecast of its worldwide environmental suitability. Estuar. Coast. Shelf Sci. 2022, 272, 107883. [Google Scholar] [CrossRef]
- Noss, R.F. High-risk ecosystems as foci for considering biodiversity and ecological integrity in ecological risk assessments. Environ. Sci. Policy 2000, 3, 321–332. [Google Scholar] [CrossRef]
- EFSA Scientific Committee. Guidance to develop specific protection goals options for environmental risk assessment at EFSA, in relation to biodiversity and ecosystem services. EFSA J. 2016, 14, e04499. [Google Scholar] [CrossRef]
- Katsanevakis, S.; Wallentinus, I.; Zenetos, A.; Leppäkoski, E.; Çinar, M.E.; Oztürk, B.; Grabowski, M.; Golani, D.; Cardoso, A. CImpacts of invasive alien marine species on ecosystem services and biodiversity: A pan-European review. Aquat. Invasions 2014, 9, 391–423. [Google Scholar] [CrossRef]
- Faber, J.H.; Marshall, S.; Brown, A.R.; Holt, A.; Van den Brink, P.J.; Maltby, L. Identifying ecological production functions for use in ecosystem services-based environmental risk assessment of chemicals. Sci. Total Environ. 2021, 791, 146409. [Google Scholar] [CrossRef]
- Fordham, D.A.; Wigley, T.M.; Brook, B.W. Multi-model climate projections for biodiversity risk assessments. Ecol. Appl. 2011, 21, 3317–3331. [Google Scholar] [CrossRef]
- Naujokaitis-Lewis, I.R.; Curtis, J.M.; Tischendorf, L.; Badzinski, D.; Lindsay, K.; Fortin, M.J. Uncertainties in coupled species distribution–metapopulation dynamics models for risk assessments under climate change. Divers. Distrib. 2013, 19, 541–554. [Google Scholar] [CrossRef]
- Peña, L.V.D.L.; Taelman, S.E.; Préat, N.; Boone, L.; Van der Biest, K.; Custódio, M.; Lucas, S.H.; Everaert, G.; Dewulf, J. Towards a comprehensive sustainability methodology to assess anthropogenic impacts on ecosystems: Review of the integration of Life Cycle Assessment, Environmental Risk Assessment and Ecosystem Services Assessment. Sci. Total Environ. 2022, 808, 152125. [Google Scholar] [CrossRef] [PubMed]
- Muazu, R.I.; Rothman, R.; Maltby, L. Integrating life cycle assessment and environmental risk assessment: A critical review. J. Clean. Prod. 2021, 293, 126120. [Google Scholar] [CrossRef]
- Baird, D.J.; Rubach, M.N.; Van den Brinkt, P.J. Trait-based ecological risk assessment (TERA): The new frontier? Integr. Environ. Assess. Manag. 2008, 4, 2–3. [Google Scholar] [CrossRef]
- Molnar, J.L.; Gamboa, R.L.; Revenga, C.; Spalding, M.D. Assessing the global threat of invasive species to marine biodiversity. Front. Ecol. Environ. 2008, 6, 485–492. [Google Scholar] [CrossRef]
- Therriault, T.W.; Nelson, J.C.; Carlton, J.T.; Liggan, L.; Otani, M.; Kawai, H.; Scriven, D.; Ruiz, G.M.; Murray, C.C. The invasion risk of species associated with Japanese tsunami marine debris in Pacific North America and Hawaii. Mar. Pollut. Bull. 2018, 132, 82–89. [Google Scholar] [CrossRef]
- Zhang, Z.; Capinha, C.; Karger, D.N.; Turon, X.; MacIsaac, H.J.; Zhan, A. Impacts of climate change on geographical distributions of invasive ascidians. Mar. Environ. Res. 2020, 159, 104993. [Google Scholar] [CrossRef]
- Jurgens, L.J.; Bonfim, M.; Lopez, D.P.; Repetto, M.F.; Freitag, G.; McCann, L.; Larson, K.; Ruiz, G.M.; Freestone, A.L. Poleward range expansion of a non-indigenous bryozoan and new occurrences of exotic ascidians in southeast Alaska. Bioinvasions Rec. 2018, 7, 357–366. [Google Scholar] [CrossRef]
- Chang, A.L.; Carlton, J.T.; Brown, C.W.; Ruiz, G.M. Down the up staircase: Equatorward march of a cold-water ascidian and broader implications for invasion ecology. Divers. Distrib. 2020, 26, 881–896. [Google Scholar] [CrossRef]
- Grosholz, E.D. Contrasting rates of spread for introduced species in terrestrial and marine systems. Ecology 1996, 77, 1680–1686. [Google Scholar] [CrossRef]
- Holman, L.E.; Parker-Nance, S.; de Bruyn, M.; Creer, S.; Carvalho, G.; Rius, M. Managing human-mediated range shifts: Understanding spatial, temporal and genetic variation in marine non-native species. Philos. Trans. R. Soc. B 2022, 377, 20210025. [Google Scholar] [CrossRef] [PubMed]
- Corbo, J.C.; Di Gregorio, A.; Levine, M. The ascidian as a model organism in developmental and evolutionary biology. Cell 2001, 106, 535–538. [Google Scholar] [CrossRef]
- Riisgård, H.U.; Larsen, P.S. Comparative ecophysiology of active zoobenthic filter feeding, essence of current knowledge. J. Sea Res. 2000, 44, 169–193. [Google Scholar] [CrossRef]
- Lins, D.M.; Rocha, R.M. Marine aquaculture as a source of propagules of invasive fouling species. PeerJ 2023, 11, e15456. [Google Scholar] [CrossRef] [PubMed]
- Box, A.; Sureda, A.; Galgani, F.; Pons, A.; Deudero, S. Assessment of environmental pollution at Balearic Islands applying oxidative stress biomarkers in the mussel Mytilus galloprovincialis. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2007, 146, 531–539. [Google Scholar] [CrossRef]
- EPA ECO Update. Catalogue of Standard Toxicity Tests for Ecological Risk Assessment. Publication: 9345.0-05I. Intermittent Bull. 1994, 2, 1–4. [Google Scholar]
- Horie, Y.; Okamura, H. Ecotoxicity assessment of biodegradable plastics in marine environments. In Photo-Switched Biodegradation of Bioplastics in Marine Environments; Kaneko, T., Ed.; Springer: Singapore, 2023. [Google Scholar] [CrossRef]
- Dwyer, J.P. Limits of environmental risk assessment. J. Energy Eng. 1990, 116, 231–246. [Google Scholar] [CrossRef]
- Holt, E.A.; Miller, S.W. Bioindicators: Using Organisms to Measure Environmental Impacts. Nat. Educ. Knowl. 2010, 3, 8. [Google Scholar]
- Mazor, R.D.; Rehn, A.C.; Ode, P.R.; Engeln, M.; Schiff, K.C.; Stein, E.D.; Gillett, D.J.; Herbst, D.B.; Hawkins, C.P. Bioassessment in complex environments: Designing an index for consistent meaning in different settings. Freshw. Sci. 2016, 35, 249–271. [Google Scholar] [CrossRef]
- Downs, C.A.; Kramarsky-Winter, E.; Segal, R.; Fauth, J.; Knutson, S.; Bronstein, O.; Ciner, F.R.; Jeger, R.; Lichtenfeld, Y.; Woodley, C.M.; et al. Toxicopathological Effects of the Sunscreen UV Filter, Oxybenzone (Benzophenone-3), on Coral Planulae and Cultured Primary Cells and Its Environmental Contamination in Hawaii and the U.S. Virgin Islands. Arch. Environ. Contam. Toxicol. 2016, 70, 265–288. [Google Scholar] [CrossRef]
- Naime, A. An evaluation of a risk-based environmental regulation in Brazil: Limitations to risk management of hazardous installations. Environ. Impact Assess. Rev. 2017, 63, 35–43. [Google Scholar] [CrossRef]
- Villa, V.; Paltrinieri, N.; Khan, F.; Cozzani, V. Towards dynamic risk analysis: A review of the risk assessment approach and its limitations in the chemical process industry. Saf. Sci. 2016, 89, 77–93. [Google Scholar]
- Yao, D.; Chen, Z.; Zhao, K.; Yang, Q.; Zhang, W. Limitation and challenge faced to the research on environmental risk of nanotechnology. Procedia Environ. Sci. 2013, 18, 149–156. [Google Scholar] [CrossRef]
- de Ruijter, V.N.; Redondo-Hasselerharm, P.E.; Gouin, T.; Koelmans, A.A. Quality criteria for microplastic effect studies in the context of risk assessment: A critical review. Environ. Sci. Technol. 2020, 54, 11692–11705. [Google Scholar] [CrossRef]
- Coady, K.K.; Biever, R.C.; Denslow, N.D.; Gross, M.; Guiney, P.D.; Holbech, H.; Karouna-Renier, N.K.; Katsiadaki, I.; Krueger, H.; Levine, S.L.; et al. Current limitations and recommendations to improve testing for the environmental assessment of endocrine active substances. Integr. Environ. Assess. Manag. 2017, 13, 302–316. [Google Scholar] [CrossRef]
- Weissman, I.L.; Saito, Y.; Rinkevich, B. Allorecognition histocompatibility in a protochordate species: Is the relationship to MHC semantic or structural? Immunol. Rev. 1990, 113, 227–241. [Google Scholar] [CrossRef]
- Magor, B.G.; De Tomaso, A.W.; Rinkevich, B.; Weissman, I.L. Allorecognition in colonial tunicates: Protection against predatory cell lineages? Immunol. Rev. 1999, 167, 69–79. [Google Scholar] [CrossRef]
- Ben-Shlomo, R. The molecular basis of allorecognition in ascidians. Bioessays 2008, 30, 1048–1051. [Google Scholar] [CrossRef]
- Lauzon, R.J.; Rinkevich, B.; Patton, C.W.; Weissman, I.L. A morphological study of non-random senescence in a colonial urochordate. Biol. Bull. 2000, 198, 367–378. [Google Scholar] [CrossRef]
- Manni, L.; Burighel, P. Common and divergent pathways in alternative developmental processes of ascidians. BioEssays 2006, 28, 902–912. [Google Scholar] [CrossRef]
- Hyams, Y.; Paz, G.; Rabinowitz, C.; Rinkevich, B. Insights into the unique torpor of Botrylloides leachi, a colonial urochordate. Dev. Biol. 2017, 428, 101–117. [Google Scholar] [CrossRef]
- Hyams, Y.; Panov, Y.; Rosner, A.; Brodski, L.; Rinkevich, Y.; Rinkevich, B. Transcriptome landscapes that signify Botrylloides leachi (Ascidiacea) torpor states. Dev. Biol. 2022, 490, 22–36. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosner, A.; Rinkevich, B. Harnessing Ascidians as Model Organisms for Environmental Risk Assessment. Environments 2024, 11, 232. https://doi.org/10.3390/environments11110232
Rosner A, Rinkevich B. Harnessing Ascidians as Model Organisms for Environmental Risk Assessment. Environments. 2024; 11(11):232. https://doi.org/10.3390/environments11110232
Chicago/Turabian StyleRosner, Amalia, and Baruch Rinkevich. 2024. "Harnessing Ascidians as Model Organisms for Environmental Risk Assessment" Environments 11, no. 11: 232. https://doi.org/10.3390/environments11110232
APA StyleRosner, A., & Rinkevich, B. (2024). Harnessing Ascidians as Model Organisms for Environmental Risk Assessment. Environments, 11(11), 232. https://doi.org/10.3390/environments11110232