[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Gene Editing in the Ascidian Phallusia mammillata and Tail Nerve Cord Formation

  • Protocol
  • First Online:
Developmental Biology of the Sea Urchin and Other Marine Invertebrates

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2219))

Abstract

Functional approaches for studying embryonic development have greatly advanced thanks to the CRISPR-Cas9 gene editing technique. Previously practiced in just a few organisms, these knockout techniques are now widely applied. Here we describe simple techniques for applying the CRISPR-Cas9 system to study the development of the nerve cord in the ascidian Phallusia mammillata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Satoh N (2016) Two decades of ascidian developmental biology: a personal research story. Curr Top Dev Biol 117:289–300. https://doi.org/10.1016/bs.ctdb.2015.11.016

    Article  PubMed  Google Scholar 

  2. Conklin EG (1905) The organization and cell-lineage of the ascidian egg. J Acad Natl Sci Philadelphia 13:1–119

    Google Scholar 

  3. Delsuc F, Philippe H, Tsagkogeorga G et al (2018) A phylogenomic framework and timescale for comparative studies of tunicates. BMC Biol 16:39. https://doi.org/10.1186/s12915-018-0499-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nishida H (2005) Specification of embryonic axis and mosaic development in ascidians. Dev Dyn 233:1177–1193. https://doi.org/10.1002/dvdy.20469

    Article  CAS  PubMed  Google Scholar 

  5. Lemaire P (2009) Unfolding a chordate developmental program, one cell at a time: invariant cell lineages, short-range inductions and evolutionary plasticity in ascidians. Dev Biol 332:48–60. https://doi.org/10.1016/j.ydbio.2009.05.540

    Article  CAS  Google Scholar 

  6. Guignard L, Fiuza U-M, Leggio B et al (2018) Contact-dependent cell communications drive morphological invariance during ascidian embryogenesis. bioRxiv 238741. https://doi.org/10.1101/238741

  7. Stach T, Anselmi C (2015) High-precision morphology: bifocal 4D-microscopy enables the comparison of detailed cell lineages of two chordate species separated for more than 525 million years. BMC Biol 13:113. https://doi.org/10.1186/s12915-015-0218-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Madgwick A, Magri MS, Dantec C et al (2019) Evolution of embryonic cis-regulatory landscapes between divergent Phallusia and Ciona ascidians. Dev Biol 448(2):71–87. https://doi.org/10.1016/j.ydbio.2019.01.003

    Article  CAS  PubMed  Google Scholar 

  9. Costache V, Hebras C, Pruliere G et al (2017) Kif2 localizes to a subdomain of cortical endoplasmic reticulum that drives asymmetric spindle position. Nat Commun 8:917. https://doi.org/10.1038/s41467-017-01048-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hibino T, Nishikata T, Nishida H (1998) Centrosome-attracting body: a novel structure closely related to unequal cleavages in the ascidian embryo. Develop Growth Differ 40:85–95

    Article  CAS  Google Scholar 

  11. Dumollard R, Hebras C, Besnardeau L, McDougall A (2013) Beta-catenin patterns the cell cycle during maternal-to-zygotic transition in urochordate embryos. Dev Biol 384:331–342. https://doi.org/10.1016/j.ydbio.2013.10.007

    Article  CAS  PubMed  Google Scholar 

  12. Dumollard R, Minc N, Salez G et al (2017) The invariant cleavage pattern displayed by ascidian embryos depends on spindle positioning along the cell’s longest axis in the apical plane and relies on asynchronous cell divisions. Elife 6:e19290. https://doi.org/10.7554/eLife.19290

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tassy O, Daian F, Hudson C et al (2006) A quantitative approach to the study of cell shapes and interactions during early chordate embryogenesis. Curr Biol 16:345–358. https://doi.org/10.1016/j.cub.2005.12.044

    Article  CAS  Google Scholar 

  14. Hudson C (2016) The central nervous system of ascidian larvae. Wiley Interdiscip Rev Dev Biol 5:538–561. https://doi.org/10.1002/wdev.239

    Article  Google Scholar 

  15. Hudson C, Lotito S, Yasuo H (2007) Sequential and combinatorial inputs from Nodal, Delta2/Notch and FGF/MEK/ERK signalling pathways establish a grid-like organisation of distinct cell identities in the ascidian neural plate. Development 134:3527–3537. https://doi.org/10.1242/dev.002352

    Article  CAS  PubMed  Google Scholar 

  16. Navarrete IA, Levine M (2016) Nodal and FGF coordinate ascidian neural tube morphogenesis. Development 143:4665–4675. https://doi.org/10.1242/dev.144733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiang D, Munro EM, Smith WC (2005) Ascidian prickle regulates both mediolateral and anterior-posterior cell polarity of notochord cells. Curr Biol 15:79–85

    Article  CAS  Google Scholar 

  18. Yasuo H, Satoh N (1998) Conservation of the developmental role of Brachyury in notochord formation in a urochordate, the ascidian Halocynthia roretzi. Dev Biol 200:158–170

    Article  CAS  Google Scholar 

  19. Nishiyama A, Fujiwara S (2008) RNA interference by expressing short hairpin RNA in the Ciona intestinalis embryo. Develop Growth Differ 50:521–529. https://doi.org/10.1111/j.1440-169X.2008.01039.x

    Article  CAS  Google Scholar 

  20. McDougall A, Chenevert J, Pruliere G et al (2015) Centrosomes and spindles in ascidian embryos and eggs. Methods Cell Biol 129:317–339. https://doi.org/10.1016/bs.mcb.2015.03.006

    Article  CAS  PubMed  Google Scholar 

  21. Arimoto R, Murray JM (2004) A common aberration with water-immersion objective lenses. J Microsc 216:49–51. https://doi.org/10.1111/j.0022-2720.2004.01383.x

    Article  CAS  PubMed  Google Scholar 

  22. Haeussler M, Schönig K, Eckert H et al (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17:148. https://doi.org/10.1186/s13059-016-1012-2

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank members of the Ascidian BioCell team and Janet Chenevert for helpful comments. We would also like to thank the funding agencies that support our work: the French government funding agency Agence National de la Recherche (ANR “MorCell”: ANR-17-CE 13-0028) and Sorbonne University for supporting the Réseau André Picard. We would also like to thank the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730984, ASSEMBLE Plus project. Finally, we also thank the members of the Service Aquariologie (Laurent Gilletta, Alexandre Jan, and Régis Lasbleiz) for maintaining the animals, and the Institut de la Mer de Villefranche (IMEV) that is supported by EMBRC-France, whose French state funds are managed by the ANR within the Investments of the Future program under reference ANR-10-INBS-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex McDougall .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Movie1. (Mp4 92.3mb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

McDougall, A., Hebras, C., Gomes, I., Dumollard, R. (2021). Gene Editing in the Ascidian Phallusia mammillata and Tail Nerve Cord Formation. In: Carroll, D.J., Stricker, S.A. (eds) Developmental Biology of the Sea Urchin and Other Marine Invertebrates. Methods in Molecular Biology, vol 2219. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0974-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0974-3_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0973-6

  • Online ISBN: 978-1-0716-0974-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics