Development of High Performance Quantum Image Algorithm on Constrained Least Squares Filtering Computation
<p>Image degradation process.</p> "> Figure 2
<p>Realization of quantum circuits <math display="inline"><semantics> <msub> <mi>U</mi> <mi>L</mi> </msub> </semantics></math>. On the shifted image set, the gradient is calculated by addition, subtraction, and doubling.</p> "> Figure 3
<p>Quantum circuits of <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>(</mo> <mi>x</mi> <mo>+</mo> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>(</mo> <mi>y</mi> <mo>−</mo> <mo>)</mo> </mrow> </semantics></math> for n-qubit sequence length.</p> "> Figure 4
<p>Realization of quantum circuit of adder and simplified model. (<b>a</b>) The concrete quantum circuit of adder; (<b>b</b>) Simplified model of adder.</p> "> Figure 5
<p>Realization of quantum circuit of subtracter and simplified model. (<b>a</b>) The concrete quantum circuit of the subtracter; (<b>b</b>) A simplified model of a subtracter.</p> "> Figure 6
<p>Double operation of the quantum circuit implementation and simplified model. (<b>a</b>) The concrete quantum circuit of doubling operations; (<b>b</b>) A simplified model of doubling operations.</p> "> Figure 7
<p>The original image.</p> "> Figure 8
<p>Motion blurred image.</p> "> Figure 9
<p>Motion blur and noise images.</p> "> Figure 10
<p>The restored image after filtering.</p> ">
Abstract
:1. Introduction
2. Preliminaries
2.1. NEQR Model
2.2. Constrained Least Square Filtering Computation
3. Quantum Image Algorithm
3.1. Initialization
3.2. Quantum Circuit Implementation
3.3. Cycle Shift, Addition Subtraction and Double Operation
3.4. Restoration for Deblurring of Quantum Image
4. Complexity Analysis
5. Simulation Experiment
6. Conclusions and Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Feynman, R.P. Simulating physics with computers. Int. J. Theor. Phys. 1982, 21, 467–488. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, 9–12 December 1984; pp. 175–179. [Google Scholar]
- Shor, P.W. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; pp. 124–134. [Google Scholar]
- Grover, L. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; pp. 212–219. [Google Scholar]
- Ma, H.; Teng, J.; Hu, T.; Shi, P.; Wang, S. Co-communication Protocol of Underwater Sensor Networks with Quantum and Acoustic Communication Capabilities. Wirel. Pers. Commun. 2020, 113, 337–347. [Google Scholar] [CrossRef]
- Ma, H.-Y.; Xu, P.-A.; Shao, C.-H.; Chen, L.; Li, J.-X.; Pan, Q. Quantum Private Query Based on Stable Error Correcting Code in the Case of Noise. Int. J. Theor. Phys. 2019, 58, 4241–4248. [Google Scholar] [CrossRef]
- Shi, P.; Li, N.; Wang, S.; Liu, Z.; Ren, M.; Ma, H. Quantum Multi-User Broadcast Protocol for the “Platform as a Service” Model. Sensors 2019, 19, 5257. [Google Scholar] [CrossRef] [Green Version]
- Teng, J.; Ma, H. Dynamic asymmetric group key agreement protocol with traitor traceability. IET Inf. Secur. 2019, 13, 703–710. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, X.; Xu, P.; Liu, F. Quantum Secure Primary Communication Based on Quantum Information Compression. Wirel. Pers. Commun. 2020, 113, 2203–2214. [Google Scholar] [CrossRef]
- Venegas-Andraca, S.E.; Ball, J.L. Storing images in engtangled quantum. arXiv 2004, arXiv:quant-ph/0402085. [Google Scholar]
- Venegas-Andraca, S.E.; Bose, S. Quantum Computation and Image Processing: New Trends in Artificial Intelligence. In Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, Acapulco, Mexico, 9–15 August 2003; pp. 1563–1564. [Google Scholar]
- Le, P.Q.; Iliyasu, A.M.; Dong, F.; Hirota, K. Fast Geometric Transformations on Quantum Images. Int. J. Appl. Math. 2010, 40, 113–123. [Google Scholar]
- Venegas-Andraca, S.E.; Bose, S. Storing, processing, and retrieving an image using quantum mechanics. Int. Soc. Opt. Photonics 2003, 5105, 137–147. [Google Scholar]
- Venegas-Andraca, S.E.; Ball, J.L. Processing images in entangled quantum systems. Quantum Inf. Process. 2010, 9, 1–11. [Google Scholar] [CrossRef]
- Latorre, J.I. Image compression and entanglement. arXiv 2005, arXiv:quant-ph/0510031. [Google Scholar]
- Le, P.Q.; Dong, F.; Hirota, K. A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 2011, 10, 63–84. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, K.; Gao, Y.; Zhang, Y.; Lu, K.; Gao, Y.; Wang, M. NEQR: A novel enhanced quantum representation of digital images. Quantum Inf. Process. 2013, 12, 2833–2860. [Google Scholar] [CrossRef]
- Le, P.Q.; Iliyasu, A.M.; Dong, F.; Hirota, K. Strategies for designing geometric transformations on quantum images. Theor. Comput. Sci. 2011, 412, 1406–1418. [Google Scholar] [CrossRef] [Green Version]
- Sang, J.; Wang, S.; Li, Q. A novel quantum representation of color digital images. Quantum Inf. Process. 2017, 16, 42. [Google Scholar] [CrossRef]
- Li, P.; Liu, X.; Xiao, H. Quantum image median filtering in the spatial domain. Quantum Inf. Process. 2018, 17, 49. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, K.; Xu, K.; Gao, Y.; Wilson, R. Local feature point extraction for quantum images. Quantum Inf. Process. 2015, 14, 1573–1588. [Google Scholar] [CrossRef]
- Yuan, S.; Mao, X.; Chen, L.; Wang, X. Improved quantum dilation and erosion operations. Quantum Inf. Process. 2016, 14, 1650036. [Google Scholar] [CrossRef]
- Ma, S.Y.; Khalil, A.; Hajjdiab, H.; Eleuch, H. Quantum Dilation and Erosion. Appl. Sci. 2020, 10, 4040. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, Y.; Lu, K.; Wang, X. Restoration for noise removal in quantum images. Int. J. Theor. Phys. 2017, 56, 2867–2886. [Google Scholar] [CrossRef]
- Song, Q.; Ma, L.; Cao, J.; Han, X. Image Denoising Based on Mean Filter and Wavelet Transform. In Proceedings of the 2015 4th International Conference on Advanced Information Technology and Sensor Application (AITS), Harbin, China, 21–23 August 2015. [Google Scholar]
- Caraiman, S.; Manta, V.I. Quantum image filtering in the frequency domain. Adv. Electr. Comput. Eng. 2013, 13, 77–85. [Google Scholar] [CrossRef]
Fuzzy Factor (Angle:Length) | PSNR (Fuzzy) | Noise Density | PSNR (Noise) | PSNR (Recovery) |
---|---|---|---|---|
11:21 | 23.1184 | 0.0001 | 23.1112 | 31.6785 |
20:22 | 21.6673 | 0.008 | 18.3736 | 21.5656 |
10:20 | 21.8055 | 0.08 | 11.8724 | 21.4558 |
11:23 | 21.3195 | 0.1 | 11.1295 | 21.9005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Xu, P.; Song, R.; Li, P.; Ma, H. Development of High Performance Quantum Image Algorithm on Constrained Least Squares Filtering Computation. Entropy 2020, 22, 1207. https://doi.org/10.3390/e22111207
Wang S, Xu P, Song R, Li P, Ma H. Development of High Performance Quantum Image Algorithm on Constrained Least Squares Filtering Computation. Entropy. 2020; 22(11):1207. https://doi.org/10.3390/e22111207
Chicago/Turabian StyleWang, Shumei, Pengao Xu, Ruicheng Song, Peiyao Li, and Hongyang Ma. 2020. "Development of High Performance Quantum Image Algorithm on Constrained Least Squares Filtering Computation" Entropy 22, no. 11: 1207. https://doi.org/10.3390/e22111207
APA StyleWang, S., Xu, P., Song, R., Li, P., & Ma, H. (2020). Development of High Performance Quantum Image Algorithm on Constrained Least Squares Filtering Computation. Entropy, 22(11), 1207. https://doi.org/10.3390/e22111207