Switching and Swapping of Quantum Information: Entropy and Entanglement Level
<p>A graphical representation of the SWAP operation. Local information exchange is performed on the initial state <span class="html-italic">Q</span> (the final state, after the operation, is <math display="inline"><semantics> <mrow> <mi>Sw</mi> <mo>(</mo> <mi>Q</mi> <mo>)</mo> </mrow> </semantics></math>). One can observe the swapping of subsystems <span class="html-italic">A</span> and <span class="html-italic">B</span> what may be calculated by the operation of partial trace.</p> "> Figure 2
<p>The circuits illustrating the operation of the quantum switch for qubits. If the state of the controlling qubit is <math display="inline"><semantics> <mrow> <mo stretchy="false">|</mo> <mn>0</mn> <mo>〉</mo> </mrow> </semantics></math> (case (A)) the switch does not change the order of first two input states. When the state of the third qubit is expressed as <math display="inline"><semantics> <mrow> <mo stretchy="false">|</mo> <mn>1</mn> <mo>〉</mo> </mrow> </semantics></math> (case (B)), the quantum switch swaps the input states <math display="inline"><semantics> <mrow> <mo stretchy="false">|</mo> <mi>A</mi> <mo>〉</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo stretchy="false">|</mo> <mi>B</mi> <mo>〉</mo> </mrow> </semantics></math>. The matrix (C) represents the unitary operator of the switch operation.</p> "> Figure 3
<p>Decomposition of <math display="inline"><semantics> <mrow> <msub> <mi>U</mi> <mrow> <mi>q</mi> <mi>s</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> operation for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>4</mn> </mrow> </semantics></math>. The set of used gates enables the circuit’s implementation in qiskit and quantum machine IBM Q. Decompositions may be realised for arbitrary <span class="html-italic">t</span> what requires the changes in values of rotating gates U3 parameters.</p> "> Figure 4
<p>The examined entanglement level concerns mainly qubits <span class="html-italic">A</span> and <span class="html-italic">B</span>, which exchange their states (expressed as <math display="inline"><semantics> <mrow> <mo stretchy="false">|</mo> <mi>ψ</mi> <mo>〉</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo stretchy="false">|</mo> <mi>φ</mi> <mo>〉</mo> </mrow> </semantics></math>) if controlling qubit <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>=</mo> <mo stretchy="false">|</mo> <mn>1</mn> <mo>〉</mo> </mrow> </semantics></math>. The entanglement level may also be analysed between pairs: <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>…</mo> <mi>C</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>B</mi> <mo>…</mo> <mi>C</mi> </mrow> </semantics></math>, which is marked above with the dotted line.</p> "> Figure 5
<p>The chart (<b>A</b>) depicts the changes of the entanglement level between qubits A and B during the switch operating in time <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mo>〈</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>〉</mo> </mrow> </semantics></math>. States <math display="inline"><semantics> <mrow> <mo stretchy="false">|</mo> <mi>A</mi> <mo>〉</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo stretchy="false">|</mo> <mi>B</mi> <mo>〉</mo> </mrow> </semantics></math> are described respectively as: <math display="inline"><semantics> <mrow> <mo stretchy="false">|</mo> <mi>A</mi> <mo>〉</mo> <mo>=</mo> <mo stretchy="false">|</mo> <mo>+</mo> <mo>〉</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo stretchy="false">|</mo> <mi>B</mi> <mo>〉</mo> <mo>=</mo> <mo stretchy="false">|</mo> <mn>0</mn> <mo>〉</mo> </mrow> </semantics></math>. Whereas, the chart (<b>B</b>) shows the values of the Negativity measure for the transfer of arbitrary selected states (128 states were used to create the chart (<b>B</b>)).</p> "> Figure 6
<p>Values of the Negativity measure (<b>A</b>) and values calculated by the criterion Proposition (2), Equation (<a href="#FD62-entropy-23-00717" class="html-disp-formula">62</a>) for the switch during its operating on states <math display="inline"><semantics> <mrow> <mo stretchy="false">|</mo> <mi>A</mi> <mo>〉</mo> <mo>=</mo> <mo stretchy="false">|</mo> <mo>+</mo> <mo>〉</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo stretchy="false">|</mo> <mi>B</mi> <mo>〉</mo> <mo>=</mo> <mo stretchy="false">|</mo> <mn>0</mn> <mo>〉</mo> </mrow> </semantics></math>. It is clear that both criteria evaluate the entanglement levels for pure states. The values of <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>L</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> are obtained as the differences between both sides of inequality Equation (<a href="#FD62-entropy-23-00717" class="html-disp-formula">62</a>). It means that only for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> both sides of the inequality are the same. In case (<b>B</b>), after the noise introduction (maximally mixed state), the Negativity measure still detects entanglement properly, but its level is decreased by the <span class="html-italic">p</span> value. Case (<b>C</b>) shows that <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>L</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> can be also used to indicate the presence of distortions by generating the negative values.</p> "> Figure 7
<p>Plot (<b>A</b>) shows values of Negativity and EL(t) for a pure state, the dynamics of which are described by the operator <math display="inline"><semantics> <msubsup> <mi>U</mi> <mrow> <mi>q</mi> <mi>s</mi> </mrow> <mi>DMI</mi> </msubsup> </semantics></math> without DMI distortions (<math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>s</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>). Plot (<b>B</b>) presents entanglement levels when DMI is present and <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>s</mi> </msub> <mo>=</mo> <mn>0.25</mn> </mrow> </semantics></math> (again, the operator <math display="inline"><semantics> <msubsup> <mi>U</mi> <mrow> <mi>q</mi> <mi>s</mi> </mrow> <mi>DMI</mi> </msubsup> </semantics></math> was used). On both graphs, the lines with the additional symbol O (Negativity O and EL(t) O) refer to cases without the intrinsic decoherence. Other lines depict the switch behaviour with the intrinsic decoherence for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>.</p> "> Figure 8
<p>The scheme (<b>A</b>) of an exemplary quantum circuit estimating the entanglement level during switch’s operating in a chosen point of the quantum circuit. The gates <math display="inline"><semantics> <msub> <mi>π</mi> <mn>0</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>π</mi> <mn>1</mn> </msub> </semantics></math> realise the controlled SWAP operation. The chart (<b>B</b>) shows the entanglement values estimated by the circuit (as the difference of probabilities calculated for measuring state <math display="inline"><semantics> <mrow> <mo stretchy="false">|</mo> <mn>0</mn> <mo>〉</mo> </mrow> </semantics></math> on both analysed qubits) and computed with the use of algebraic formula for the Negativity measure.</p> ">
Abstract
:1. Introduction
2. Preliminaries
- (i)
- completeness relation:
- (ii)
- orthogonality:
- (iii)
- orthogonality of operators pairs product:
- (iv)
- completeness relation in operator algebra:
- (i)
- (ii)
- if is separable: , then
- (I)
- Let . Then for any pure state on , the von Neumann entropy of the corresponding reduced density matrices:
- (II)
- If then the same facts, as in point (I), are valid for the renormalised von Neumann entropies defined as
3. Swapping Local Quantum Information (Slqi)
4. Quantum Switch as Unitary Local Information Swapping
4.1. Quantum Circuit for Operation
4.2. The Level of Entanglement for Switch
4.3. The Level of Entanglement for Switch with Noise Presence
4.4. Quantum Circuit for Estimating the Level of Entanglement
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peres, A. Separability Criterion for Density Matrices. Phys. Rev. Lett. 1996, 77, 1413–1415. [Google Scholar] [CrossRef] [Green Version]
- Terhal, B.M. Detecting quantum entanglement. Theor. Comput. Sci. 2002, 287, 313–335. [Google Scholar] [CrossRef] [Green Version]
- Wootters, W.K. Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev. Lett. 1998, 80, 2245–2248. [Google Scholar] [CrossRef] [Green Version]
- Bengtsson, I.; Zyczkowski, K. Geometry of Quantum States: An Introduction to Quantum Entanglement; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar] [CrossRef]
- Gühne, O.; Tóth, G. Entanglement detection. Phys. Rep. 2009, 474, 1–75. [Google Scholar] [CrossRef] [Green Version]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865–942. [Google Scholar] [CrossRef] [Green Version]
- Batle, J.; Casas, M.; Plastino, A.; Plastino, A. Some statistical features of the entanglement changes associated with quantum logical gates. Phys. A Stat. Mech. Appl. 2005, 356, 385–402. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information: 10th Anniversary Edition; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef] [Green Version]
- Balakrishnan, S.; Sankaranarayanan, R. Entangling characterization of SWAP1/m and controlled unitary gates. Phys. Rev. A 2008, 78, 052305. [Google Scholar] [CrossRef] [Green Version]
- Zanardi, P.; Zalka, C.; Faoro, L. Entangling power of quantum evolutions. Phys. Rev. A 2000, 62, 030301. [Google Scholar] [CrossRef] [Green Version]
- Bataille, M.; Luque, J.G. Quantum circuits of c-Z and SWAP gates: Optimization and entanglement. J. Phys. A Math. Theor. 2019, 52, 325302. [Google Scholar] [CrossRef] [Green Version]
- Balakrishnan, S. Various Constructions of Qudit SWAP Gate. Phys. Res. Int. 2014, 2014, 479320. [Google Scholar] [CrossRef] [Green Version]
- Ono, T.; Okamoto, R.; Tanida, M.; Hofmann, H.F.; Takeuchi, S. Implementation of a quantum controlled-SWAP gate with photonic circuits. Sci. Rep. 2017, 7, 45353. [Google Scholar] [CrossRef]
- Baekkegaard, T.; Kristensen, L.B.; Loft, N.J.S.; Andersen, C.K.; Petrosyan, D.; Zinner, N.T. Realization of efficient quantum gates with a superconducting qubit-qutrit circuit. Sci. Rep. 2019, 9, 13389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasmussen, S.E.; Zinner, N.T. Simple implementation of high fidelity controlled-iswap gates and quantum circuit exponentiation of non-Hermitian gates. Phys. Rev. Res. 2020, 2, 033097. [Google Scholar] [CrossRef]
- Loft, N.J.S.; Kjaergaard, M.; Kristensen, L.B.; Andersen, C.K.; Larsen, T.W.; Gustavsson, S.; Oliver, W.D.; Zinner, N.T. Quantum interference device for controlled two-qubit operations. NPJ Quantum Inf. 2020, 6, 47. [Google Scholar] [CrossRef]
- Aïmeur, E.; Brassard, G.; Gambs, S. Machine Learning in a Quantum World. In Advances in Artificial Intelligence; Lamontagne, L., Marchand, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 431–442. [Google Scholar]
- Behera, B.; Seth, S.; Das, A.; Panigrahi, P. Demonstration of entanglement purification and swapping protocol to design quantum repeater in IBM quantum computer. Quantum Inf. Process. 2019, 18, 108. [Google Scholar] [CrossRef] [Green Version]
- Pathak, A. Elements of Quantum Computation and Quantum Communication; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W.K. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 1993, 70, 1895–1899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Żukowski, M.; Zeilinger, A.; Horne, M.A.; Ekert, A.K. “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 1993, 71, 4287–4290. [Google Scholar] [CrossRef]
- Briegel, H.J.; Dür, W.; Cirac, J.I.; Zoller, P. Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication. Phys. Rev. Lett. 1998, 81, 5932–5935. [Google Scholar] [CrossRef]
- Blanchard, P.; Brüning, E. Mathematical Methods in Physics; Birkhäuser: Basel, Switzerland, 2015. [Google Scholar] [CrossRef]
- Sciara, S.; Lo Franco, R.; Compagno, G. Universality of Schmidt decomposition and particle identity. Sci. Rep. 2017, 7, 44675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gielerak, R. On the use of Fredholm determinants for an analysis of entanglement in bipartite, infinite dimensional systems. unpublished; manuscript in preparation.
- Eisert, J.; Simon, C.; Plenio, M.B. On the quantification of entanglement in infinite-dimensional quantum systems. J. Phys. A Math. Gen. 2002, 35, 3911–3923. [Google Scholar] [CrossRef] [Green Version]
- Grothendieck, A. La théorie de Fredholm. Bull. Soc. Math. Ematique Fr. 1956, 84, 319–384. [Google Scholar] [CrossRef]
- Simon, B. Trace Ideals and Their Applications. In Mathematical Surveys and Monographs, 2nd ed.; American Mathematical Society: Providence, RI, USA, 2005; Volume 120. [Google Scholar]
- Klyachko, A. Quantum marginal problem and representations of the symmetric group. arXiv 2004, arXiv:arXiv:0409113v1. [Google Scholar]
- Nielsen, M.A.; Kempe, J. Separable States Are More Disordered Globally than Locally. Phys. Rev. Lett. 2001, 86, 5184–5187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratan, R.; Shukla, M.K.; Oruc, A.Y. Quantum Switching Networks with Classical Routing. In Proceedings of the 2007 41st Annual Conference on Information Sciences and Systems, Baltimore, MD, USA, 14–16 March 2007; pp. 789–793. [Google Scholar] [CrossRef] [Green Version]
- Aleksandrowicz, G.; Alexander, T.; Barkoutsos, P.; Bello, L.; Ben-Haim, Y.; Bucher, D.; Cabrera-Hernández, F.J.; Carballo-Franquis, J.; Chen, A.; Chen, C.F.; et al. Qiskit: An Open-source Framework for Quantum Computing. Zenodo 2019. Available online: https://zenodo.org/record/2562111 (accessed on 3 July 2020). [CrossRef]
- Sawerwain, M.; Wiśniewska, J.; Gielerak, R. Github Repository for Python Scripts. 2021. Available online: https://github.com/qMSUZ/EntDetector/tree/main/SwitchCode (accessed on 3 July 2020).
- Dzyaloshinsky, I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 1958, 4, 241–255. [Google Scholar] [CrossRef]
- Moriya, T. Anisotropic Superexchange Interaction and Weak Ferromagnetism. Phys. Rev. 1960, 120, 91–98. [Google Scholar] [CrossRef]
- Milburn, G.J. Intrinsic decoherence in quantum mechanics. Phys. Rev. A 1991, 44, 5401–5406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekert, A.K.; Alves, C.M.; Oi, D.K.L.; Horodecki, M.; Horodecki, P.; Kwek, L.C. Direct Estimations of Linear and Nonlinear Functionals of a Quantum State. Phys. Rev. Lett. 2002, 88, 217901. [Google Scholar] [CrossRef] [Green Version]
Notation | Description |
---|---|
sequence of integers from one to infinity | |
set of real numbers | |
set of complex numbers | |
set of integer numbers | |
set of unitary operators | |
complex Hilbert space | |
, | complex Hilbert space for A and B subsystems |
, , | unity operator, d-dimensional unity operator, and unity operator in Hilbert space |
A, B, C | single qubit or qudit |
, , | pure state of single qubit or qudit |
positive superposition of base states and | |
, , , … | pure state of quantum register, a state is described with decimal number |
projector on given state | |
Q | quantum state of the whole system |
, | state of the subsystem A or B |
Kronecker symbol | |
trace of matrix A | |
partial trace of system Q | |
swap operation | |
value of von Neumann Entropy | |
value of Negativity criterion |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawerwain, M.; Wiśniewska, J.; Gielerak, R. Switching and Swapping of Quantum Information: Entropy and Entanglement Level. Entropy 2021, 23, 717. https://doi.org/10.3390/e23060717
Sawerwain M, Wiśniewska J, Gielerak R. Switching and Swapping of Quantum Information: Entropy and Entanglement Level. Entropy. 2021; 23(6):717. https://doi.org/10.3390/e23060717
Chicago/Turabian StyleSawerwain, Marek, Joanna Wiśniewska, and Roman Gielerak. 2021. "Switching and Swapping of Quantum Information: Entropy and Entanglement Level" Entropy 23, no. 6: 717. https://doi.org/10.3390/e23060717
APA StyleSawerwain, M., Wiśniewska, J., & Gielerak, R. (2021). Switching and Swapping of Quantum Information: Entropy and Entanglement Level. Entropy, 23(6), 717. https://doi.org/10.3390/e23060717