Constructal Equivalent Thermal Resistance Minimization for Tau-Shaped Fin
<p>Model of Tau-shaped fin [<a href="#B23-entropy-22-01206" class="html-bibr">23</a>].</p> "> Figure 2
<p>Characteristic of <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>R</mi> <mo>˜</mo> </mover> <mi>h</mi> </msub> </mrow> </semantics></math> versus <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> <mo>/</mo> <msub> <mi>L</mi> <mn>0</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>/</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 3
<p>Dimensionless temperature distribution of the Tau-shaped fin (TAUSF) gained by CFD software.</p> "> Figure 4
<p>Characteristics of <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>R</mi> <mo>˜</mo> </mover> <mrow> <mi>h</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>L</mi> <mn>1</mn> </msub> <mo>/</mo> <msub> <mi>L</mi> <mn>0</mn> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math> versus <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>/</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 5
<p>Contour plot of <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>R</mi> <mo>˜</mo> </mover> <mrow> <mi>h</mi> <mo>,</mo> <mi>m</mi> <mi>m</mi> </mrow> </msub> </mrow> </semantics></math> in the parameter space of <math display="inline"><semantics> <mrow> <msub> <mi>ϕ</mi> <mn>1</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mi>a</mi> </semantics></math>.</p> "> Figure 6
<p>Effect of <math display="inline"><semantics> <mi>a</mi> </semantics></math> on the optimal constructs of the Tau-shaped fin.</p> "> Figure 7
<p>Effect of <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> </mrow> </semantics></math> on the optimal constructs of the Tau-shaped fin.</p> "> Figure 8
<p>Effect of <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mn>2</mn> </msub> </mrow> </semantics></math> on the optimal constructs of the Tau-shaped fin.</p> "> Figure 9
<p>Optimal constructs of the TAUSFs: (<b>a</b>) ETR minimization, (<b>b</b>) MTR minimization [<a href="#B23-entropy-22-01206" class="html-bibr">23</a>].</p> ">
Abstract
:1. Introduction
2. Model of the TAUSF
3. Constructal Optimization for the TAUSF
3.1. Optimization Based on Two Design Variables
3.2. Parameter Influences on the Optimal Results
3.3. Optimal Result Comparison for Different Optimization Objectives
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CFD | Computational fluid dynamics |
EDR | Entransy dissipation rate |
ETR | equivalent thermal resistance |
HTR | heat transfer rate |
HTP | heat transfer performance |
MTR | maximum thermal resistance |
TAUSF | Tau-shaped fin |
TSF | T-shaped fin |
Nomenclature
A | Frontal area, |
Fin cross-sectional area, | |
Parameter related to heat transfer and structure | |
Biot number | |
Length ratio | |
Width ratio | |
Entransy dissipation rate, | |
h | Heat transfer coefficient, |
Thermal conductivity, | |
Length of the two elemental fins, | |
Length of the first order fin, | |
Length of the bend end, | |
, | Parameters related to heat transfer and structure |
Total heat current, | |
Heat transfer rate of the heat current, | |
Width of the two elemental fins, | |
Width of the first order fin, | |
Width of the bend end, | |
Temperature at the junction of the first order and elemental fin, | |
Inlet temperature of the heat current, | |
Temperature at the junction of the bend end and elemental fin, | |
Ambient temperature, | |
Equivalent thermal resistance, | |
Maximum thermal resistance, | |
Volume of the fin, | |
Thickness, | |
X axis | |
Y axis | |
Greek symbols | |
Volume faction of the fin | |
Temperature gradient, | |
Subscripts | |
e | Bend end fin |
lim | Limited value |
m | Minimum |
mm | Double minimum |
opt | Optimal |
Elemental fin | |
1 | First order fin |
Superscripts | |
~ | Dimensionless |
References
- Poulikakos, D.; Bejan, A. Fin Geometry for Minimum Entropy Generation in Forced Convection. J. Heat Transf. 1982, 104, 616–623. [Google Scholar] [CrossRef]
- Deshamukhya, T.; Hazarika, S.A.; Bhanja, D.; Nath, S. An optimization study to investigate non-linearity in thermal behaviour of porous fin having temperature dependent internal heat generation with and without tip loss. Commun. Nonlinear Sci. Numer. Simul. 2019, 67, 351–365. [Google Scholar] [CrossRef]
- Gorla, R.S.R.; Bakier, A. Thermal analysis of natural convection and radiation in porous fins. Int. Commun. Heat Mass Transf. 2011, 38, 638–645. [Google Scholar] [CrossRef]
- Sheikh, N.N.; Kumar, B.; Saini, N.K. A review paper on pin fin efficiency enhancement. Int. J. Appl. Eng. Res. 2019, 14, 108–112. [Google Scholar]
- Bejan, A. Constructal-theory network of conducting paths for cooling a heat generating volume. Int. J. Heat Mass Transf. 1997, 40, 799–816. [Google Scholar] [CrossRef]
- Bejan, A. Shape and Structure, from Engineering to Nature; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Kim, S.; Lorente, S.; Bejan, A. Design with Constructal Theory: Vascularized Composites for Volumetric Cooling; ASME International: New York, NY, USA, 2008; pp. 437–444. [Google Scholar]
- Lorenzini, G.; Moretti, S.; Conti, A. Fin Shape Thermal Optimization Using Bejan’s Constructal Theory; Morgan & Claypool Publishers: San Francisco, CA, USA, 2011. [Google Scholar]
- Chen, L. Progress in study on constructal theory and its applications. Sci. China Ser. E Technol. Sci. 2012, 55, 802–820. [Google Scholar] [CrossRef]
- Luo, L.A. Heat and Mass Transfer Intensification and Shape Optimization; Springer: New York, NY, USA, 2013. [Google Scholar]
- Chen, L.G.; Feng, H.J.; Xie, Z.H. Generalized Thermodynamic Optimization for Iron and Steel Production Processes: Theoretical Exploration and Application Cases. Entropy 2016, 18, 353. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Feng, H.; Xie, Z.; Sun, F. Progress of constructal theory in China over the past decade. Int. J. Heat Mass Transf. 2019, 130, 393–419. [Google Scholar] [CrossRef]
- Wu, Z.X.; Feng, H.J.; Chen, L.G.; Xie, Z.H.; Cai, C.G. Pumping power minimization of an evaporator in ocean thermal energy conversion system based on constructal theory. Energy 2019, 181, 974–984. [Google Scholar] [CrossRef]
- Wu, Z.X.; Feng, H.J.; Chen, L.G.; Xie, Z.H.; Cai, C.G.; Xia, S.J. Optimal design of dual-pressure turbine in OTEC system based on constructal theory. Energy Convers. Manag. 2019, 201, 112179. [Google Scholar] [CrossRef]
- Chen, L.G.; Yang, A.B.; Feng, H.J.; Ge, Y.L.; Xia, S.J. Constructal design progress for eight types of heat sinks. Sci. China Ser. E Technol. Sci. 2020, 63, 879–911. [Google Scholar] [CrossRef]
- Bejan, A. Human evolution is biological & technological evolution. Biosystems 2020, 195, 104156. [Google Scholar] [CrossRef]
- You, J.; Feng, H.J.; Chen, L.G.; Xie, Z.H. Constructal optimization for cooling a nonuniform heat generating disc-shaped area by conduction. Entropy 2018, 20, 685. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Xie, Z.H.; Yin, Y.; Chen, L.G. Constructal Design of Elliptical Cylinders with Heat Generating for Entropy Generation Minimization. Entropy 2020, 22, 651. [Google Scholar] [CrossRef]
- Wu, Z.X.; Feng, H.J.; Chen, L.G.; Ge, Y.L. Performance Optimization of a Condenser in Ocean Thermal Energy Conversion (OTEC) System Based on Constructal Theory and a Multi-Objective Genetic Algorithm. Entropy 2020, 22, 641. [Google Scholar] [CrossRef]
- Zhang, F.Y.; Feng, H.J.; Chen, L.G.; You, J.; Xie, Z.H. Constructal Design of an Arrow-Shaped High Thermal Conductivity Channel in a Square Heat Generation Body. Entropy 2020, 22, 475. [Google Scholar] [CrossRef]
- Feng, H.J.; Xie, Z.H.; Chen, L.G.; Wu, Z.X.; Xia, S.J. Constructal design for supercharged boiler superheater. Energy 2020, 191, 116484. [Google Scholar] [CrossRef]
- Bejan, A.; Dan, N. Constructal Trees of Convective Fins. J. Heat Transf. 1999, 121, 675–682. [Google Scholar] [CrossRef]
- Bejan, A.; Almogbel, M. Constructal T-shaped fins. Int. J. Heat Mass Transf. 2000, 43, 2101–2115. [Google Scholar] [CrossRef]
- Almogbel, M.A. Constructal tree-shaped fins. Int. J. Therm. Sci. 2005, 44, 342–348. [Google Scholar] [CrossRef]
- Combelles, L.; Lorente, S.; Bejan, A. Leaflike architecture for cooling a flat body. J. Appl. Phys. 2009, 106, 044906. [Google Scholar] [CrossRef]
- Chen, L.G.; Feng, H.J.; Xie, Z.H.; Sun, F.R. Constructal optimization for leaf-like body based on maximization of heat transfer rate. Int. Commun. Heat Mass Transf. 2016, 71, 157–163. [Google Scholar] [CrossRef]
- Lorenzini, G.; Moretti, S. A CFD Application to Optimize T-Shaped Fins: Comparisons to the Constructal Theory’s Results. J. Electron. Packag. 2006, 129, 324–327. [Google Scholar] [CrossRef]
- Lorenzini, G.; Rocha, L.A.O. Constructal design of Y-shaped assembly of fins. Int. J. Heat Mass Transf. 2006, 49, 4552–4557. [Google Scholar] [CrossRef]
- Lorenzini, G.; Moretti, S. Numerical analysis of heat removal enhancement with extended surfaces. Int. J. Heat Mass Transf. 2007, 50, 746–755. [Google Scholar] [CrossRef]
- Lorenzini, G.; Moretti, S. Numerical analysis on heat removal from Y-shaped fins: Efficiency and volume occupied for a new approach to performance optimisation. Int. J. Therm. Sci. 2007, 46, 573–579. [Google Scholar] [CrossRef]
- Lorenzini, G.; Moretti, S. Numerical Heat Transfer Optimization in Modular Systems of Y-Shaped Fins. J. Heat Transf. 2008, 130, 081801. [Google Scholar] [CrossRef]
- Lorenzini, G.; Moretti, S. Numerical Performance Analysis of Constructal I and Y Finned Heat Exchanging Modules. J. Electron. Packag. 2009, 131, 031012. [Google Scholar] [CrossRef]
- Lorenzini, G.; Rocha, L.A.O. Constructal design of T–Y assembly of fins for an optimized heat removal. Int. J. Heat Mass Transf. 2009, 52, 1458–1463. [Google Scholar] [CrossRef]
- Xie, Z.H.; Chen, L.G.; Sun, F.R. Constructal optimization of twice level Y-shaped assemblies of fins by taking maximum thermal resistance minimization as objective. Sci. China Tech. Sci. 2010, 53, 2756–2764. [Google Scholar] [CrossRef]
- Lorenzini, G.; Corrêa, R.L.; Dos Santos, E.D.; Rocha, L.A.O. Constructal Design of Complex Assembly of Fins. J. Heat Transf. 2011, 133, 081902. [Google Scholar] [CrossRef]
- Almogbel, M.; Bejan, A. Cylindrical of pin fins. Int. J. Heat Mass Transf. 2000, 43, 4285–4297. [Google Scholar] [CrossRef]
- Bello-Ochende, T.; Meyer, J.P.; Benjan, A. Constructal multi-scale pin–fins. Int. J. Heat Mass Transf. 2010, 53, 2773–2779. [Google Scholar] [CrossRef] [Green Version]
- Yang, A.B.; Chen, L.G.; Xie, Z.H.; Feng, H.J.; Sun, F.R. Constructal heat transfer rate maximization for cylindrical pin-fin heat sinks. Appl. Therm. Eng. 2016, 108, 427–435. [Google Scholar] [CrossRef]
- Yang, A.B.; Chen, L.G.; Xie, Z.H.; Feng, H.J.; Sun, F.R. Constructal operation cost minimization for in-line cylindrical pin-fin heat sinks. Int. J. Heat Mass Transf. 2019, 129, 562–568. [Google Scholar] [CrossRef]
- Chen, L.G.; Yang, A.B.; Xie, Z.H.; Sun, F.R. Constructal entropy generation rate minimization for cylindrical pin-fin heat sinks. Int. J. Therm. Sci. 2017, 111, 168–174. [Google Scholar] [CrossRef]
- Feng, H.J.; Chen, L.G.; Xie, Z.H.; Sun, F.R. Constructal design for helm-shaped fin with inner heat sources. Int. J. Heat Mass Transf. 2017, 110, 1–6. [Google Scholar] [CrossRef]
- Hajmohammadi, M.R. Design and analysis of multi-scale annular fins attached to a pin fin. Int. J. Refrig. 2018, 88, 16–23. [Google Scholar] [CrossRef]
- Mustafa, A.W. Constructal design of multi-scale diamond-shaped pin fins cooled by mixed convection. Int. J. Therm. Sci. 2019, 145, 106018. [Google Scholar] [CrossRef]
- Hazarika, S.A.; Deshmukhya, T.; Bhanja, D.; Nath, S. A novel optimum constructal fork-shaped fin array design for simultaneous heat and mass transfer application in a space-constrained situation. Int. J. Therm. Sci. 2020, 150, 106225. [Google Scholar] [CrossRef]
- Guo, Z.Y.; Zhu, H.Y.; Liang, X.G. Entransy—A physical quantity describing heat transfer ability. Int. J. Heat Mass Transf. 2007, 50, 2545–2556. [Google Scholar] [CrossRef]
- Liang, X.G.; Chen, Q.; Guo, Z.Y. Entransy Theory of Heat Transfer and Its Applications; Science Press: Beijing, China, 2019. [Google Scholar]
- Chen, L.G. Progress in entransy theory and its applications. Chin. Sci. Bull. 2012, 57, 4404–4426. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.T.; Liang, X.G. Entransy: Its physical basis, applications and limitations. Chin. Sci. Bull. 2014, 59, 5309–5323. [Google Scholar] [CrossRef]
- Chen, L.G.; Xiao, Q.H.; Feng, H.J. Constructal Optimizations for Heat and Mass Transfers Based on the Entransy Dissipation Extremum Principle, Performed at the Naval University of Engineering: A Review. Entropy 2018, 20, 74. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhao, T.; Zhang, M.Q.; Chen, Q. Entropy and entransy in convective heat transfer optimization: A review and perspective. Int. J. Heat Mass Transf. 2019, 137, 1191–1220. [Google Scholar] [CrossRef]
- Chen, L.G.; Wei, S.H.; Sun, F.R. Constructal entransy dissipation minimization for ‘volume-point’ heat conduction. J. Phys. D Appl. Phys. 2008, 41, 195506. [Google Scholar] [CrossRef]
- Xie, Z.H.; Chen, L.G.; Sun, F.R. Comparative study on constructal optimizations of T-shaped fin based on entransy dissipation rate minimization and maximum thermal resistance minimization. Sci. China Ser. E Technol. Sci. 2011, 54, 1249–1258. [Google Scholar] [CrossRef]
- Cheng, X.T.; Zhang, Q.Z.; Xu, X.H.; Liang, X.G. Optimization of fin geometry in heat convection with entransy theory. Chin. Phys. B 2013, 22, 020503. [Google Scholar] [CrossRef]
- Zhao, T.; Liu, D.; Chen, Q. A collaborative optimization method for heat transfer systems based on the heat current method and entransy dissipation extremum principle. Appl. Therm. Eng. 2019, 146, 635–647. [Google Scholar] [CrossRef]
- Feng, H.J.; Chen, L.G.; Xie, Z.H. Constructal entransy dissipation rate minimization for X-shaped vascular networks. Sci. China Ser. E Technol. Sci. 2019, 62, 2195–2203. [Google Scholar] [CrossRef]
- Li, K.; Wen, J.; Liu, Y.C.; Liu, H.Q.; Wang, S.M.; Tu, J.Y. Application of entransy theory on structure optimization of serrated fin in plate-fin heat exchanger. Appl. Therm. Eng. 2020, 173, 114809. [Google Scholar] [CrossRef]
- Herwig, H. Do We Really Need “Entransy”? A Critical Assessment of a New Quantity in Heat Transfer Analysis. J. Heat Transf. 2014, 136, 045501. [Google Scholar] [CrossRef]
- Guo, Z.Y.; Chen, Q.; Liang, X.G. Closure to “Discussion of ‘do we really need “Entransy”?’”. J. Heat Transf. 2014, 136, 046001. [Google Scholar] [CrossRef]
- Bejan, A. “Entransy,” and Its Lack of Content in Physics. J. Heat Transf. 2014, 136, 055501. [Google Scholar] [CrossRef]
- Guo, Z.Y. Closure to “Discussion of ‘“Entransy,” and its lack of content in physics’” (2014, ASME J. Heat Transfer, 136 (5), p. 055501). J. Heat Transf. 2014, 136, 056001. [Google Scholar] [CrossRef]
- Oliveira, S.D.R.; Milanez, L.F. Equivalence between the application of entransy and entropy generation. Int. J. Heat Mass Transf. 2014, 79, 518–525. [Google Scholar] [CrossRef]
- Wu, J.; Guo, Z.Y. Comments on “Equivalence between the application of entransy and entropy generation” [Int. J. Heat Mass Transfer 79 (2015): 518–525]. Int. J. Heat Mass Transf. 2016, 101, 824. [Google Scholar] [CrossRef]
- Bejan, A. Heat Transfer; Wiley: New York, NY, USA, 1993. [Google Scholar]
- COMSOL, A.B. COMSOL Multiphysics Users’ Manuals, Version 5.0; COMSOL AB: Burlington, MA, USA, 2014. [Google Scholar]
- Feng, H.J.; Chen, L.G.; Xie, Z.H.; Sun, F.R. Experimental study on ‘‘+” shaped high conductivity constructal channels based on entransy theory. Acta Phys. Sin. 2016, 65, 024401. (In Chinese) [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, S.; Feng, H.; Chen, L.; Ge, Y. Constructal Equivalent Thermal Resistance Minimization for Tau-Shaped Fin. Entropy 2020, 22, 1206. https://doi.org/10.3390/e22111206
Wei S, Feng H, Chen L, Ge Y. Constructal Equivalent Thermal Resistance Minimization for Tau-Shaped Fin. Entropy. 2020; 22(11):1206. https://doi.org/10.3390/e22111206
Chicago/Turabian StyleWei, Shuhuan, Huijun Feng, Lingen Chen, and Yanlin Ge. 2020. "Constructal Equivalent Thermal Resistance Minimization for Tau-Shaped Fin" Entropy 22, no. 11: 1206. https://doi.org/10.3390/e22111206
APA StyleWei, S., Feng, H., Chen, L., & Ge, Y. (2020). Constructal Equivalent Thermal Resistance Minimization for Tau-Shaped Fin. Entropy, 22(11), 1206. https://doi.org/10.3390/e22111206