The Extension of Statistical Entropy Analysis to Chemical Compounds
<p>Simple cadmium budget of a process with two input flows that are transformed into two output flows. All mass flow rates <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi mathvariant="normal">M</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>, the colors indicate the concentrations of cadmium. Process A achieves maximum concentrating of cadmium (H<sub>OUT</sub> = 0). Process B realizes the equal distribution of cadmium to both flows and H<sub>OUT</sub> = H<sub>max</sub> = 1.</p> "> Figure 2
<p>The real mass flow rates are interpreted as the frequency of occurrence of flows with <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi mathvariant="normal">M</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>.</p> "> Figure 3
<p>Nitrogen budgets for a hypothetical and simplified crop farming region based on Austrian data (data rounded); all values are given in kgN/ha/yr.</p> "> Figure 3 Cont.
<p>Nitrogen budgets for a hypothetical and simplified crop farming region based on Austrian data (data rounded); all values are given in kgN/ha/yr.</p> "> Figure 4
<p>Illustration of the dilution process of an emission.</p> "> Figure 5
<p>Relative statistical entropy values for the input and output of the base system (S0) and all variations (V1–V3) according to SEA and eSEA for the hypothetical crop farming region; entropy values are divided into entropy contributions from product yield and losses to the atmosphere, surface water, and groundwater.</p> ">
Abstract
:1. Introduction
2. Description of the Investigated System and Data
3. Extension of the Statistical Entropy Analysis (eSEA)
3.1. Estimation of the Statistical Entropy of the Input (HIN)
SEA | eSEA |
---|---|
Entropy is a function of the total nitrogen load (N) in the different input flows | Entropy is a function of the load of all nitrogen compounds (m) that appear in the different input flows |
3.2. Estimation of the Statistical Entropy of the Output (HOUT)
SEA | eSEA |
---|---|
Entropy for the output depends on total nitrogen loads (N) in the different output flows | Entropy depends on the load of all nitrogen compounds (m) that appear in the different output flows |
CALCULATION OF THE DILUTING TERMS | |
3.3. Estimation of the Maximum Statistical Entropy of the Output (Hmax)
SEA | eSEA |
---|---|
With min(cN,geog)=1E-05 kgN/kg (1) | With min(cm,geog).=7E-11 kgN/kg (2) |
3.4. Estimation of the Concentrating Power/Diluting Extent, ΔH
3.5. SEA vs. eSEA
4. Application of the eSEA: A Numerical Example
(9) | (10) | (11) | (12,13) | |||||
cim | cim,geog | mi | Xim | ∑Xim | ||||
kg/ha/yr | kgN/kg | kgN/kg | kgN/a | kg/kgN | kgN/kgN | kgN/kgN | ||
INPUT | Fertilizer | 211 | 4.74 | 1 | ||||
NH4NO3 | 0.13 | 28.20 | 0.63 | |||||
CO(NH2)2 | 0.01 | 1.80 | 0.04 | |||||
Seeds | 25 | 0.56 | ||||||
Norg | 0.02 | 0.50 | 0.01 | |||||
Deposition | 571 | 12.84 | ||||||
NO3− | 0.01 | 4.80 | 0.11 | |||||
NH4+ | 0.01 | 3.20 | 0.07 | |||||
N-fixation | 8 | 0.76 | 6.00 | 0.18 | 0.13 | |||
OUTPUT | Product | 2300 | 51.68 | 1 | ||||
Norg | 0.01 | 23.00 | 0.52 | |||||
Off-gas | 11 | 0.24 | ||||||
N2 | 0.7553 | 0.7553 | 8.19 | 0.18 | ||||
NH3 | 0.16 | 4.1 E-9 | 1.75 | 0.04 | ||||
N2O | 0.14 | 2.0 E-8 | 1.50 | 0.03 | ||||
NOx | 0.02 | 2.5 E-10 | 0.20 | 4.5 E-03 | ||||
Surface water | 42 | 0.94 | ||||||
NO3− | 2.0 E-02 | 3.0 E-06 | 0.85 | 0.02 | ||||
NH4+ | 2.4 E-03 | 1.2 E-06 | 0.10 | 2.3 E-03 | ||||
Norg | 1.2 E-03 | 1.0 E-10 | 0.05 | 1.1 E-03 | ||||
Groundwater | 373 | 8.37 | ||||||
NO3− | 2.0 E-02 | 1.0 E-05 | 7.52 | 0.17 | ||||
NH4+ | 2.4 E-03 | 3.5 E-07 | 0.90 | 0.02 | ||||
Norg | 1.2 E-03 | 7.0 E-11 | 0.45 | 0.01 |
(19) | (21) | (15), (17) | (23) | (24) | |||
m'im | c'im | HIN / HOUT | HIN,rel / HOUT,rel | Hmax | ΔH | ||
[-] | [-] | [-] | [-] | [-] | [%] | ||
INPUT | Fertilizer | 3.52 | 0.09 | 40.38 | 229 | ||
NH4NO3 | |||||||
CO(NH2)2 | |||||||
Seeds | |||||||
Norg | |||||||
Deposition | |||||||
NO3- | |||||||
NH4+ | |||||||
N-fixation | |||||||
OUTPUT | Product | 11.60 | 0.29 | ||||
Norg | |||||||
Off-gas | |||||||
N2 | 2.4 E-01 | 7.553 E-01 | |||||
NH3 | 9.6 E+08 | 4.1 E-11 | |||||
N2O | 1.7 E+08 | 2.0 E-10 | |||||
NOx | 1.8 E+08 | 2.0 E-12 | |||||
Surface water | |||||||
NO3− | 6.4 E+05 | 3.0 E-08 | |||||
NH4+ | 1.9 E+05 | 1.2 E-08 | |||||
Norg | 1.1 E+09 | 1.0 E-12 | |||||
Groundwater | |||||||
NO3− | 1.7 E+06 | 1.0 E-07 | |||||
NH4+ | 5.8 E+06 | 3.5 E-09 | |||||
Norg | 1.4 E+10 | 7.0 E-13 |
5. Conclusions
Acknowledgments
List of all indices and parameters
H | Statistical entropy according to Shannon’s definition |
ΔH | Change in statistical entropy representing the concentrating power (ΔH < 0) or the diluting extent (ΔH > 0) for nitrogen |
Hmax | Maximum occurring statistical entropy resulting from a theoretical worst case crop farming scenario |
HIN | Statistical entropy for all incoming nitrogen compounds in the region |
HIN,rel | Relative value of statistical entropy (HIN / Hmax) for all incoming nitrogen compounds in the region |
HOUT | Statistical entropy for all nitrogen compounds that leave the region |
HOUT,rel | Relative value for statistical entropy (HOUT / Hmax) for all nitrogen compounds that leave the region |
Pi | Probability of an event i |
Mass flow, e.g., rainwater in kg/ha/A | |
i | Index for mass flows, e.g., rainwater |
k | Number of all input material flows i |
ci | Concentration of a substance i, e.g. kg cadmium per kg mass-flow |
cim | Nitrogen concentration of nitrogen compound m in material flow i, e.g., kg N-NH4+ per kg groundwater |
m | Index for nitrogen compounds, e.g., NO3-, NH4+, N2 |
r | Number of different nitrogen compounds m in the input |
Nitrogen load for nitrogen compound m in material flow i, e.g., kg N-NH4+ in kg groundwater per hectare per year | |
Specific mass for material flow i, e.g., kg groundwater per kg total nitrogen throughput of the process | |
Specific nitrogen load, e.g., kg N-NH4+ per kg total N of the output | |
s | Number of different nitrogen compounds m in the output |
Number of all outgoing material flows | |
Diluting mass from material flow i for nitrogen compound m | |
Corresponding concentration term for nitrogen compound m in material flow i to diluting mass
| |
cim,geog | Background concentration corresponding to nitrogen compound m in environmental compartment i, e.g., kg N-NH4+ per kg groundwater |
min(cj,geog) | Smallest occurring corresponding background concentration, e.g., N-Norg concentration in groundwater |
References
- Baccini, P.; Brunner, H.P. Metabolism of the Anthroposphere; Springer: New York, NY, USA, 1991. [Google Scholar]
- Rechberger, H.; Brunner, P.H. A new, entropy based method to support waste and resource management decisions. Environ. Sci. Technol. 2002, 34, 809–816. [Google Scholar] [CrossRef]
- Rechberger, H.; Graedel, T.E. The contemporary European copper cycle: statistical entropy analysis. Ecol. Econ. 2002, 42, 59–72. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell System Technol. J. 1948, 27, 379–443, 623–656. [Google Scholar] [CrossRef]
- Brunner, P.H.; Rechberger, H. Practical Handbook of Material Flow Analysis; Lewis Publishers: New York, NY, USA, 2004; p. 318. [Google Scholar]
- Rechberger, H. Waste-to-Energy (WTE): Decreasing the Entropy of Solid Wastes and Increasing Metal Recovery. In Encyclopedia of Sustainability Science and Technology; Robert, A.M., Ed.; Springer: New York, NY, USA, 2012. [Google Scholar]
- Kaufman, S.; Krishnan, N.; Known, E.; Castaldi, M.; Themelis, N.; Rechberger, H. Examination of the Fate of Carbon in Waste Management Systems through Statistical Entropy and Life Cycle Analysis. Environ. Sci. Technol. 2008, 42, 8558–8563. [Google Scholar]
- Yue, Q.; Lu, Z.W.; Zhi, S.K. Copper cycle in China and its entropy analysis. Resour. Conserv. Recy. 2009, 53, 680–687. [Google Scholar] [CrossRef]
- Zessner, M.; Schilling, C.; Gabriel, O.; Dimova, G.; Lampert, C.; Kovacs, A.; Clement, A.; Buzas, K.; Postolache, C. Deliverable D 1.3 Nutrient Balances for Case Study Regions Austria and Hungary Part I; Vienna University of Technology, Institute for Water Quality and Waste Management: Vienna, Austria, 2004. [Google Scholar]
- Rechberger, H. Entwicklung einer Methode zur Bewertung von Stoffbilanzen in der Abfallwirtschaft. Ph.D. Thesis, Vienna University of Technology, Wiener Mitteilungen, Band 158, 1999. [Google Scholar]
- Uherek, E. Environmental Science Published for Everybody Round the Earth (ESPERE) Climate Encyclopaedia, Lower Atmosphere; Max Planck Institute for Chemistry: Mainz, Germany, 2004. Available online: http://espere.mpch-mainz.mpg.de/documents/pdf/ (accessed on 20 February 2012).
- Bundesministerium für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft. Verordnung des Bundesministers für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft über die Festlegung des ökologischen Zustandes für Oberflächengewässer Teil II (BGBl. II Nr. 461/2010). 2010.
- Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft.Verordnung des Bundesministers für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft über die Festlegung des chemischen Zustandes für Oberflächengewässer Teil II (BGBl. II Nr. 461/2010). 2010.
- Bundesministerium für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft. Verordnung des Bundesministers für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft über die Festlegung des chemischen Zustandes für Grundwässer Teil II (BGBl. II Nr. 461/2010). 2010.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sobańtka, A.P.; Zessner, M.; Rechberger, H. The Extension of Statistical Entropy Analysis to Chemical Compounds. Entropy 2012, 14, 2413-2426. https://doi.org/10.3390/e14122413
Sobańtka AP, Zessner M, Rechberger H. The Extension of Statistical Entropy Analysis to Chemical Compounds. Entropy. 2012; 14(12):2413-2426. https://doi.org/10.3390/e14122413
Chicago/Turabian StyleSobańtka, Alicja P., Matthias Zessner, and Helmut Rechberger. 2012. "The Extension of Statistical Entropy Analysis to Chemical Compounds" Entropy 14, no. 12: 2413-2426. https://doi.org/10.3390/e14122413
APA StyleSobańtka, A. P., Zessner, M., & Rechberger, H. (2012). The Extension of Statistical Entropy Analysis to Chemical Compounds. Entropy, 14(12), 2413-2426. https://doi.org/10.3390/e14122413