A New Monohydrogen Phosphate-Selective Carbon Composite Membrane Electrode for Soil Water Samples
"> Figure 1
<p>(<b>a</b>) FTIR spectrum of Ag-pGAP, CNT, and CNT-Ag-pGAP. (<b>b</b>) TGA graphs of Ag-pGAP and CNT-Ag-pGAP.</p> "> Figure 2
<p>SEM images of (<b>a</b>) Ag-pGAP, (<b>b</b>) CNT, and (<b>c</b>) CNT/Ag-pGAP.</p> "> Figure 3
<p>XRD spectra of Ag-pGAP, CNT, and CNT/Ag-pGAP.</p> "> Figure 4
<p>Potentiometric behavior of composite phosphate-selective electrode prepared with Ag-pGAP of composition.</p> "> Figure 5
<p>(<b>a</b>) Potentiometric behavior of the composite phosphate-selective electrode with Composition 2 towards ions HPO<sub>4</sub><sup>2−</sup>, Cl<sup>−</sup>, CH<sub>3</sub>COO<sup>−</sup>, Cu<sup>2+</sup>, SO<sub>4</sub><sup>2−</sup>, HCO<sub>3</sub><sup>−</sup>, and NO<sub>3</sub><sup>−</sup> (<b>b</b>) Calibration graph employed for determining the selectivity coefficient of the composite phosphate-selective electrode of Composition 2.</p> "> Figure 6
<p>Reproducibility assessment of the composite phosphate-selective electrode with Composition 2, fabricated using Ag-pGAP.</p> "> Figure 7
<p>Response time of the composite phosphate-selective electrode prepared with Ag-pGAP, utilizing Composition 2.</p> "> Figure 8
<p>Bland–Altman plot obtained for the phosphate values for the comparison of measurement techniques.</p> "> Figure 9
<p>Regression plot obtained for the phosphate values for the comparison of measurement techniques. CI and PI represent 95% confidence intervals and prediction intervals, respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Solutions
2.2. Synthesis of Silver Polyglutaraldehyde Phosphate (Ag-pGAP)
2.3. Characterization
2.4. Fabrication of the Electrode
2.5. Potentiometric Measurements
2.6. Statistical Analysis
3. Results and Discussion
3.1. FTIR Analysis
3.2. Thermogravimetric Analysis
3.3. SEM Analysis
3.4. XRD Analysis
3.5. Potentiometric Performance of the Electrode
3.6. Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Li, D.; Ding, X.; Zhang, D. Sensitive and selective electrochemical aptasensing method for the voltammetric determination of dopamine based on AuNPs/PEDOT-ERGO nanocomposites. Bioelectrochemistry 2024, 157, 108653. [Google Scholar] [CrossRef] [PubMed]
- Palo, E.; Zhang, H.; Lastusaari, M.; Salomäki, M. Nanometer-Thick Ion-Selective Polyelectrolyte Multilayer Coatings to Inhibit the Disintegration of Inorganic Upconverting Nanoparticles. ACS Appl. Nano Mater. 2020, 3, 6892–6898. [Google Scholar] [CrossRef]
- Saikrithika, S.; Kumar, S. A selective voltammetric pH sensor using graphitized mesoporous carbon/polyaniline hybrid system. J. Chem. Sci. 2021, 133, 2. [Google Scholar] [CrossRef]
- Daneshgar, S.; Callegari, A.; Capodaglio, A.G.; Vaccari, D. The potential phosphorus crisis: Resource conservation and possible escape technologies: A review. Resources 2018, 7, 37. [Google Scholar] [CrossRef]
- Kates, D.M.; Sherrard, D.J.; Andress, D.L. Evidence that serum phosphate is independently associated with serum PTH in patients with chronic renal failure. Am. J. Kidney Dis. 1997, 30, 809–813. [Google Scholar] [CrossRef] [PubMed]
- Desmeules, S.; Bergeron, M.J. Isenring. Acute Phosphate Nephropathy and Renal Failure. N. Engl. J. Med. 2003, 349, 1006–1007. [Google Scholar] [CrossRef]
- Kim, D.Y.; Kim, D.G.; Jeong, B.; Kim, Y.I.; Heo, J.; Lee, H.K. Reusable and pH-Stable Luminescent Sensors for Highly Selective Detection of Phosphate. Polymers 2022, 14, 190. [Google Scholar] [CrossRef]
- Tang, C.; Fu, D.; Wang, R.; Zhang, X.; Wei, L.; Li, M.; Li, C.; Cao, Q.; Chen, X. An Electrochemical Microfluidic System for on-Site Continuous Monitoring of Soil Phosphate. IEEE Sens. J. 2024, 24, 6754–6764. [Google Scholar] [CrossRef]
- Parra, A.; Ramon, M.; Alonso, J.; Lemos, S.G.; Vieira, E.C.; Nogueira, A.R.A. Flow injection potentiometric system for the simultaneous determination of inositol phosphates and phosphate: Phosphorus nutritional evaluation on seeds and grains. J. Agric. Food Chem. 2005, 53, 7644–7648. [Google Scholar] [CrossRef]
- Ganjali, M.R.; Norouzi, P.; Ghomi, M.; Salavati-Niasari, M. Highly selective and sensitive monohydrogen phosphate membrane sensor based on molybdenum acetylacetonate. Anal. Chim. Acta 2006, 567, 196–201. [Google Scholar] [CrossRef]
- Akyilmaz, E.; Yorganci, E. Construction of an amperometric pyruvate oxidase enzyme electrode for determination of pyruvate and phosphate. Electrochim. Acta 2007, 52, 7972–7977. [Google Scholar] [CrossRef]
- Kwan, R.C.H.; Leung, H.F.; Hon, P.Y.T.; Barford, J.P.; Renneberg, R. A screen-printed biosensor using pyruvate oxidase for rapid determination of phosphate in synthetic wastewater. Appl. Microbiol. Biotechnol. 2005, 66, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.X.; Liu, L.Q.; de Liu, Z.; Wang, Y.; Zhao, X.J.; Huang, C.Z. Highly selective detection of phosphate in very complicated matrixes with an off–on fluorescent probe of europium-adjusted carbon dots. Chem. Commun. 2011, 47, 2604–2606. [Google Scholar] [CrossRef] [PubMed]
- Preechaworapun, A.; Dai, Z.; Xiang, Y.; Chailapakul, O.; Wang, J. Investigation of the enzyme hydrolysis products of the substrates of alkaline phosphatase in electrochemical immunosensing. Talanta 2008, 76, 424–431. [Google Scholar] [CrossRef]
- Mousty, C.; Cosnier, S.; Shan, D.; Mu, S. Trienzymatic biosensor for the determination of inorganic phosphate. Anal. Chim. Acta 2001, 443, 1–8. [Google Scholar] [CrossRef]
- Mahmud, M.A.P.; Ejeian, F.; Azadi, S.; Myers, M.; Pejcic, B.; Abbassi, R.; Razmjou, A.; Asadnia, M. Recent progress in sensing nitrate, nitrite, phosphate, and ammonium in aquatic environment. Chemosphere 2020, 259. [Google Scholar] [CrossRef]
- Berchmans, S.; Issa, T.B.; Singh, P. Determination of inorganic phosphate by electroanalytical methods: A review. Anal. Chim. Acta 2012, 729, 7–20. [Google Scholar] [CrossRef]
- Ebadi, M.; Asareh, A.; Yengejeh, R.J.; Hedayat, N. Investigation of electro-coagulation process for phosphate and nitrate removal from sugarcane wastewaters. Iran. J. Toxicol. 2021, 15, 19–26. [Google Scholar] [CrossRef]
- Lawrence, N.S.; Beckett, E.L.; Davis, J.; Compton, R.G. Advances in the voltammetric analysis of small biologically relevant compounds. Anal. Biochem. 2002, 303, 1–16. [Google Scholar] [CrossRef]
- Hart, J.P.; Crew, A.; Crouch, E.; Honeychurch, K.C.; Pemberton, R.M. Some Recent Designs and Developments of Screen-Printed Carbon Electrochemical Sensors/Biosensors for Biomedical, Environmental, and Industrial Analyses. Anal. Lett. 2004, 37, 789–830. [Google Scholar] [CrossRef]
- Pan, D.; Wang, Y.; Chen, Z.; Lou, T.; Qin, W. Nanomaterial/ionophore-based electrode for anodic stripping voltammetric determination of lead: An electrochemical sensing platform toward heavy metals. Anal. Chem. 2009, 81, 5088–5094. [Google Scholar] [CrossRef] [PubMed]
- Manjunatha, J.G.; Deraman, M.; Basri, N.H.; Talib, I.A. Fabrication of poly (Solid Red A) modified carbon nano tube paste electrode and its application for simultaneous determination of epinephrine, uric acid and ascorbic acid. Arab. J. Chem. 2018, 11, 149–158. [Google Scholar] [CrossRef]
- Wardak, C.; Pietrzak, K.; Morawska, K.; Grabarczyk, M. Ion-Selective Electrodes with Solid Contact Based on Composite Materials: A Review. Sensors 2023, 23, 5839. [Google Scholar] [CrossRef] [PubMed]
- Khairuddin, R.; Andarini, N.; Oktriviani, W.; Toda’A, M.; Kaope, V.H. Study of Phosphate Adsorption Using Ferrihydrite with Diffusive Gradient in Thin Films Method. IOP Conf. Ser. Earth Environ. Sci. 2022, 1075, 1. [Google Scholar] [CrossRef]
- Vardar, G.; Altikatoʇlu, M.; Ortaç, D.; Cemek, M.; Işildak, I. Measuring calcium, potassium, and nitrate in plant nutrient solutions using ion-selective electrodes in hydroponic greenhouse of some vegetables. Biotechnol. Appl. Biochem. 2015, 62, 663–668. [Google Scholar] [CrossRef]
- Dai, J.; Zhu, Y.; Tahini, H.A.; Lin, Q.; Chen, Y.; Guan, D.; Zhou, C.; Hu, Z.; Lin, H.-J.; Chan, T.-S.; et al. Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution. Nat. Commun. 2020, 11, 1. [Google Scholar] [CrossRef]
- Savale, P.A. Comparative Study of POA-PVS-DBS-GOD Electrode in Acetate and Phosphate Buffers for Determination of Glucose. Adv. Sci. Lett. 2018, 24, 5759–5763. [Google Scholar] [CrossRef]
- Hamidah, L.N.; Afkar, K.; Rahmayanti, A.; Fitrianah, L. Performance of slow sand filter reactor using geotextile for reducing total n and phosphate. in IOP Conf. Ser. Earth Environ. Sci. 2022, 1211, 1. [Google Scholar] [CrossRef]
- Guan, D.; Xu, H.; Huang, Y.; Jing, C.; Tsujimoto, Y.; Xu, X.; Lin, Z.; Tang, J.; Wang, Z.; Sun, X.; et al. Operando Studies Redirect Spatiotemporal Restructuration of Model Coordinated Oxides in Electrochemical Oxidation. Adv. Mater. 2024, 2413073. [Google Scholar] [CrossRef]
- Staaks, D.; Olynick, D.L.; Rangelow, I.W.; Altoe, M.V.P. Polymer-metal coating for high contrast SEM cross sections at the deep nanoscale. Nanoscale 2018, 10, 22884–22895. [Google Scholar] [CrossRef]
- Kozlovskaya, V.; Zavgorodnya, O.; Chen, Y.; Ellis, K.; Tse, H.M.; Cui, W.; Thompson, J.A.; Kharlampieva, E. Ultrathin polymeric coatings based on hydrogen-bonded polyphenol for protection of pancreatic islet cells. Adv. Funct. Mater. 2012, 22, 3389–3398. [Google Scholar] [CrossRef]
- Prakasham, R.S.; Kumar, B.S.; Kumar, Y.S.; Shankar, G.G. Characterization of silver nanoparticles synthesized by using marine isolate Streptomyces albidoflavus. J. Microbiol. Biotechnol. 2012, 22, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Ebuele, V.O.; Congrave, D.G.; Gwenin, C.D. Fitzsimmons-Thoss. Development of a Cobalt Electrode for the Determination of Phosphate in Soil Extracts and Comparison with Standard Methods. Anal. Lett. 2018, 51, 834–848. [Google Scholar] [CrossRef]
- Forano, C.; Farhat, H. Mousty. Recent trends in electrochemical detection of phosphate in actual waters. Curr. Opin. Electrochem. 2018, 11, 55–61. [Google Scholar] [CrossRef]
- Hall, L.B. A text-book of quantitative chemical analysis. J. Am. Chem. Soc. 1903, 25, 318–319. [Google Scholar] [CrossRef]
- Ziegel, E.R. Statistics and Chemometrics for Analytical Chemistry. Technometrics 2004, 46, 498–499. [Google Scholar] [CrossRef]
- Meruva, R.K.; Meyerhoff, M.E. Mixed potential response mechanism of cobalt electrodes toward inorganic phosphate. Anal. Chem. 1996, 68, 2022–2026. [Google Scholar] [CrossRef]
- Topcu, C.; Caglar, B.; Onder, A.; Coldur, F.; Caglar, S.; Guner, E.K.; Cubuk, O.; Tabak, A. Structural characterization of chitosan-smectite nanocomposite and its application in the development of a novel potentiometric monohydrogen phosphate-selective sensor. Mater. Res. Bull. 2018, 98, 288–299. [Google Scholar] [CrossRef]
- Özkütük, E.B.; Yıldız, B.; Gündüz, M.; Hür, E. Phosphate-imprinted polymer as an efficient modifier for the design of ion-selective electrode. J. Chem. Technol. Biotechnol. 2021, 96, 2604–2609. [Google Scholar] [CrossRef]
- Bhat, K.S.; Nakate, U.T.; Yoo, J.Y.; Wang, Y.; Mahmoudi, T.; Hahn, Y.B. Nozzle-Jet-Printed Silver/Graphene Composite-Based Field-Effect Transistor Sensor for Phosphate Ion Detection. ACS Omega 2019, 4, 8373–8380. [Google Scholar] [CrossRef]
- Ratkovski, G.P.; Nascimento, K.T.O.D.; Pedro, G.C.; Ratkovski, D.R.; Gorza, F.D.S.; da Silva, R.J.; Maciel, B.G.; Mojica-Sánchez, L.C.; de Melo, C.P. Spinel Cobalt Ferrite Nanoparticles for Sensing Phosphate Ions in Aqueous Media and Biological Samples. Langmuir 2020, 36, 2920–2929. [Google Scholar] [CrossRef] [PubMed]
No. | CNT (mg) | Ag-pGAP (mg) | Silver Sulfide (Ag2S) (mg) | Copper Sulfide (Cu2S) (mg) | Epoxy (mg) |
---|---|---|---|---|---|
1 | 100 | 10 | 80 | 10 | 800 |
2 | 100 | 10 | 80 | 10 | 600 |
3 | 100 | 10 | 80 | 10 | 400 |
4 | 100 | 10 | 80 | 10 | 200 |
5 | – | 11 | 55 | – | 34 |
Measurement Results (mV) | ||||||||
---|---|---|---|---|---|---|---|---|
HPO42− | 1 | 2 | 3 | 4 | 5 | 6 | 7 | X ± S * |
1 × 10−2 M | 1130 | 1128 | 1128 | 1129 | 1127 | 1128 | 1128 | 1128.28 ± 0.95 |
1 × 10−3 M | 1158 | 1158 | 1158 | 1153 | 1158 | 1157 | 1157 | 1157 ± 1.82 |
1 × 10−4 M | 1189 | 1188 | 1188 | 1188 | 1187 | 1188 | 1188 | 1188 ± 0.58 |
n | Mean (ppm) | S.D. | Min. | Max. | ||
---|---|---|---|---|---|---|
Spectrophotometric | P2O5 | 30 | 2.35557 | 2.08279 | 0.28047 | 9.54652 |
Potentiometric | HPO42− | 30 | 2.29233 | 1.98941 | 0.3 | 9 |
Sample | Phosphate Conc. (ppm) | Average n:7 | SD± | CV (%) | |
---|---|---|---|---|---|
Min. | Max. | ||||
Soil water 1 | 0.39 | 0.44 | 0.41 | 0.025 | 3.4 |
Soil water 2 | 0.35 | 0.42 | 0.39 | 0.035 | 5.6 |
Soil water 3 | 0.40 | 0.48 | 0.44 | 0.040 | 6.8 |
Sample | Phosphate Conc., ppm, n:3 | |
---|---|---|
The Electrode | UV-Vis | |
Soil water 1 | 0.42 | 0.45 |
Soil water 2 | 0.38 | 0.40 |
Soil water 3 | 0.45 | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavukcuoglu, O.; Erci, V.; Ciftci, F.; Isildak, I.; Kasapoglu, M.Z. A New Monohydrogen Phosphate-Selective Carbon Composite Membrane Electrode for Soil Water Samples. C 2025, 11, 18. https://doi.org/10.3390/c11010018
Tavukcuoglu O, Erci V, Ciftci F, Isildak I, Kasapoglu MZ. A New Monohydrogen Phosphate-Selective Carbon Composite Membrane Electrode for Soil Water Samples. C. 2025; 11(1):18. https://doi.org/10.3390/c11010018
Chicago/Turabian StyleTavukcuoglu, Ozlem, Vildan Erci, Fatih Ciftci, Ibrahim Isildak, and Muhammed Zahid Kasapoglu. 2025. "A New Monohydrogen Phosphate-Selective Carbon Composite Membrane Electrode for Soil Water Samples" C 11, no. 1: 18. https://doi.org/10.3390/c11010018
APA StyleTavukcuoglu, O., Erci, V., Ciftci, F., Isildak, I., & Kasapoglu, M. Z. (2025). A New Monohydrogen Phosphate-Selective Carbon Composite Membrane Electrode for Soil Water Samples. C, 11(1), 18. https://doi.org/10.3390/c11010018