[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A selective voltammetric pH sensor using graphitized mesoporous carbon/polyaniline hybrid system

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Development of a new pH sensor system, which is simple to prepare, sensitive, selective and workable with low volume, is demanding research in biomedical and environmental studies. In the literature, organic molecules like methylene blue, toluidine blue, hydroquinone, catechol, anthraquinone and polyaniline-based redox probes have been widely used for this purpose. In general, these redox probes have easily interfered with common biochemicals such as dopamine, ascorbic acid, NADH, H2O2, cysteine, hydrazine, and some transition metal ions, etc., and in turn to marked potential and current drifts (pH-false positive response). In this work, a highly redox-active, stable and interference-free redox polymer based on poly(4-chloroaniline) (PANI(4-Cl)) modified graphitized mesoporous carbon (GMC), designated as GMC@PANI(4-Cl), has been prepared using 4-chloroaniline as a monomer in pH 7 phosphate buffer solution. The new redox polymer system showed a distinct redox peak at Eo’= 0.15 V vs Ag/AgCl with a stable voltammetric response. Transmission electron microscope analysis of the redox polymer composite had shown adhesion of black polymeric solid due to polyaniline like the molecular system as a surface layer on the GMC material. The constructed calibration plot was linear in the pH window 2-11 with a slope and regression values − 58 mV pH−1 and 0.9997, respectively. The GMC@PANI(4-Cl) modified electrode showed a sensitive and selective pH monitoring without any interference from the common biochemicals as listed above. As a practical application, pH sensing of commercial pH solutions, undiluted urine and saliva samples were demonstrated. Also, a three-in-one screen-printed carbon modified GMC@PANI(4-Cl) was explored for pH monitoring of a bacterial (E.coli) growth, which showed a comparable response with the conventional pH electrode.

Graphic abstract

A poly(4-chloroaniline) modified graphitized mesoporous carbon electrode has been prepared for an efficient redox-active system for voltage-, current drifts- and electrocatalytic response-free differential pulse voltammetric pH sensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Scheme 1
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Zhou J, Zhang L and Tian Y 2016 Micro electrochemical pH sensor applicable for real-time ratiometric monitoring of pH values in rat brains Anal. Chem. 88 2113

    Article  CAS  PubMed  Google Scholar 

  2. Kim J, Imani S, de Araujo W R, Warchall J, Ramírez G V, Paixão T R L C, et al. 2015 Wearable salivary uric acid mouth guard biosensor with integrated wireless electronics Biosens. Bioelectron. 74 1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bandodkar A J and Wang J 2014 Non-invasive wearable electrochemical sensors: a review Trends Biotechnol. 32 363

    Article  CAS  PubMed  Google Scholar 

  4. Cohen M and Khalaila R 2014 Saliva pH as a biomarker of exam stress and a predictor of exam performance J. Psychosom. Res. 77 420

    Article  PubMed  Google Scholar 

  5. Koff S G, Paquette E L, Cullen J, Gancarczyk K K, Tucciarone P R and Schenkman N S 2007 Comparison between lemonade and potassium citrate and impact on urine pH and 24-hour urine parameters in patients with kidney stone formation Urology 69 1013

    Article  PubMed  Google Scholar 

  6. Scheiner B, Lindner G, Reiberger T, Schneeweiss B, Trauner M, Zauner C and Funk G C 2017 Acid-base disorders in liver disease J. Hepatol. 67 1062

    Article  CAS  PubMed  Google Scholar 

  7. Clemente R S, Igeno M I, Poblacion A G, Guijo M I, Merchan F and Blasco R 2018 Study of pH changes in media during bacterial growth of several environmental strains Proceedings 2 1297

    Article  Google Scholar 

  8. Luli G W and Strohl W R 1990 Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations Appl. Environ. Microbiol. 56 1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marxer S M and Schoenfisch M H 2005 Sol-gel derived potentiometric pH sensors Anal. Chem. 77 848

    Article  CAS  PubMed  Google Scholar 

  10. Ghoneim M T, Nguyen A, Dereje N, Huang J, Moore G C, Murzynowski P J and Dagdeviren C 2019 Recent progress in electrochemical pH-sensing materials and configurations for biomedical applications Chem. Rev. 119 5248

    Article  CAS  PubMed  Google Scholar 

  11. Paek K, Yang H, Lee J, Park J and Kim B J 2014 Efficient colorimetric pH sensor based on responsive polymer–quantum dot integrated graphene oxide ACS Nano 8 2848

    Article  CAS  PubMed  Google Scholar 

  12. Qi J, Liu D, Liu X, Guan S, Shi F, Chang H, et al. 2015 Fluorescent pH sensors for broad-range pH measurement based on a single fluorophore Anal. Chem. 87 5897

    Article  CAS  PubMed  Google Scholar 

  13. Bakker E and Qin Y 2006 Electrochemical sensors Anal. Chem. 78 3965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ju H, Zhou J, Cai C and Chen H 1995 The electrochemical behavior of methylene blue at a microcylinder carbon fiber electrode Electroanalysis 7 1165

    Article  CAS  Google Scholar 

  15. Vostiar I, Tkac J, Sturdik E and Gemeiner P 2002 Amperometric urea biosensor based on urease and electropolymerized toluidine blue dye as a pH-sensitive redox probe Bioelectrochem. 56 113

    Article  CAS  Google Scholar 

  16. Devlin L, Jamal M and Razeeb K M 2013 Novel pH sensor based on anthraquinone–ferrocene modified free standing gold nanowire array electrode Anal. Meth. 5 880

    Article  CAS  Google Scholar 

  17. Shiu K K, Song F and Bai H P 1996 Potentiometric pH sensor with anthraquinonesulfonate adsorbed on glassy carbon electrodes Electroanalysis 8 1160

    Article  CAS  Google Scholar 

  18. Ouajai W P, Pigram P J, Jones R and Sirivat A 2008 A novel pH sensor based on hydroquinone monosulfonate-doped conducting polypyrrole Sens. Actuat. B Chem. 135 366

    Article  CAS  Google Scholar 

  19. Lebègue E, Louro R O and Barrière F 2018 Electrochemical detection of pH-responsive grafted catechol and immobilized cytochrome c onto lipid deposit-modified glassy carbon surface ACS Omega 3 9035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Marzouk S A M 2003 Improved electrodeposited iridium oxide pH sensor fabricated on etched titanium substrates Anal. Chem. 75 1258

    Article  CAS  PubMed  Google Scholar 

  21. Lin K C, Yin C Y and Chen S M 2011 An electrochemical biosensor for determination of hydrogen peroxide using nanocomposite of poly(methylene blue) and FAD hybrid film Sens. Actuat. B Chem. 157 202

    Article  CAS  Google Scholar 

  22. Hasebe Y, Wang Y and Fukuoka K 2011 Electropolymerized poly(Toluidine Blue)-modified carbon felt for highly sensitive amperometric determination of NADH in flow injection analysis J. Environ. Sci. 23 1050

    Article  CAS  Google Scholar 

  23. Gong Z, Zhang G and Wang S 2012 Electrochemical reduction of oxygen on anthraquinone/carbon nanotubes nanohybrid modified glassy carbon electrode in neutral medium J. Chem. 2013 9

    Google Scholar 

  24. Sornambikai S and Kumar A S 2012 Selective immobilization of hydroquinone on carbon nanotube modified electrode via phenol electro-oxidation method and its hydrazine electro-catalysis and escherichia coli antibacterial activity Electrochim. Acta 62 207

    Article  CAS  Google Scholar 

  25. Zhu J, Chauhan D S, Shan D, Wu X Y, Zhang G Y and Zhang X J 2014 Ultrasensitive determination of hydrazine using a glassy carbon electrode modified with pyrocatechol violet electrodeposited on single walled carbon nanotubes Microchim. Acta 181 813

    Article  CAS  Google Scholar 

  26. Ueda C, Tse D S C and Kuwana T 1982 Stability of catechol modified carbon electrodes for electrocatalysis of dihydronicotinamide adenine dinucleotide and ascorbic acid Anal. Chem. 54 850

    Article  CAS  Google Scholar 

  27. Xu F, Wang L, Gao M, Jin L and Jin J 2002 Amperometric determination of glutathione and cysteine on a Pd-IrO2 modified electrode with high performance liquid chromatography in rat brain microdialysate Anal. Bioanal. Chem. 372 791

    Article  CAS  PubMed  Google Scholar 

  28. Raoof J B, Ojani R, Aref M A and Chekin F 2010 Catechol as an electrochemical indicator for voltammetric determination of N-Acetyl-L-cysteine in aqueous media at the surface of carbon paste electrode J. Appl. Electrochem. 40 1357

    Article  CAS  Google Scholar 

  29. Grummt U W, Pron A, Zagorska M and Lefrant S 1997 Polyaniline based optical pH sensor Anal. Chim. Acta 357 253

    Article  CAS  Google Scholar 

  30. Kulkarni M V, Charhate N A, Bhavsar K V, Tathe M A and Kale B B 2013 Development of polyaniline–multiwalled carbon nanotube (PANI–MWCNT) nanocomposite for optical pH sensor Mater. Res. Innov. 17 238

    Article  CAS  Google Scholar 

  31. Kaempgen M and Roth S 2006 Transparent and flexible carbon nanotube/polyaniline pH sensors J. Electroanal. Chem. 586 72

    Article  CAS  Google Scholar 

  32. Yoon J H, Hong S B, Yun S O, Lee S J, Lee T J, Lee K G and Choi B G 2017 High performance flexible pH sensor based on polyaniline nanopillar array electrode J. Colloid Interface Sci. 490 53

    Article  CAS  PubMed  Google Scholar 

  33. Rahimi R, Ochoa O M, Tamayol A, Khalili S, Khademhosseini A and Ziaie O B 2017 Highly stretchable potentiometric pH sensor fabricated via laser carbonization and machining of carbon−polyaniline composite ACS Appl. Mater. Interface 9 9015

    Article  CAS  Google Scholar 

  34. Gao W and Song J 2009 Polyaniline film based amperometric pH sensor using a novel electrochemical measurement system Electroanalysis 21 973

    Article  CAS  Google Scholar 

  35. Chinnathambi S and Euverink G J W 2018 Polyaniline functionalized electrochemically reduced graphene oxide chemiresistive sensor to monitor the pH in real time during microbial fermentations Sens. Actuat. B Chem. 264 38

    Article  CAS  Google Scholar 

  36. Shinde V P and Patil P P 2012 Investigation on role of monomer (s) during electrochemical polymerization of aniline and its derivatives on low carbon steel by XPS Electrochim. Acta 78 483

    Article  CAS  Google Scholar 

  37. Bilal S and Holze R 2006 Electrochemical copolymerization of m-toluidine and o-phenylenediamine Electrochim. Acta 52 1247

    Article  CAS  Google Scholar 

  38. Deng H and Berkel G J V 1999 Electrochemical polymerization of aniline investigated using on-line electrochemistry/electrospray mass spectrometry Anal. Chem. 71 4284

    Article  CAS  PubMed  Google Scholar 

  39. Mathebe N G R, Morrin A and Iwuoha E I 2004 Electrochemistry and scanning electron microscopy of polyaniline/peroxidase-based biosensor Talanta 64 115

    Article  CAS  PubMed  Google Scholar 

  40. Wang Y G, Li H Q and Xia Y Y 2006 Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance Adv. Mater. 18 2619

    Article  CAS  Google Scholar 

  41. Rao P S, Sathyanarayana D N and Palaniappan S 2002 Polymerization of aniline in an organic peroxide system by the inverted emulsion process Macromolecules 35 4988

    Article  CAS  Google Scholar 

  42. Molina J, Esteves M F, Fernández J, Bonastre J and Cases F 2011 Polyaniline coated conducting fabrics. Chemical and electrochemical characterization Eur. Polym. J. 47 2003

    Article  CAS  Google Scholar 

  43. Bacon J and Adam R N 1968 Anodic oxidations of aromatic amines. Substituted anilines in aqueous media J. Am. Chem. Soc. 90 6596

    Article  CAS  Google Scholar 

  44. Vishnu N, Kumar A S and Pillai KC 2013 Unusual neutral pH assisted electrochemical polymerization of aniline on a MWCNT modified electrode and its enhanced electro-analytical features Analyst 138 6296

    Article  CAS  PubMed  Google Scholar 

  45. Lu X, Xiao Y, Lei Z, Chen J, Zhang H, Nia Y and Zhang Q 2009 A promising electrochemical biosensing platform based on graphitized ordered mesoporous carbon J. Mater. Chem. 19 4707

    Article  CAS  Google Scholar 

  46. Li J, Hu X and Wang J 2013 Electrochemical recognition of chiral molecules with poly(4-bromoaniline) modified gold electrode Electroanalysis 25 1975

    Article  CAS  Google Scholar 

  47. Sezonov G, Petit D J and Ari R D 2007 Escherichia coli physiology in luria-bertani broth J. Bacteriol. 189 8746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Saikrithika S, Huang S T and Kumar A S 2020 Electrochemical polymerization of para-chloroaniline as highly redoxactive poly(para-chloroaniline) on graphitized mesoporous carbon surface Electrochim. Acta 349 136376

    Article  CAS  Google Scholar 

  49. Thangaraj R and Kumar A S 2012 Graphitized mesoporous carbon modified glassy carbon electrode for selective sensing of xanthine, hypoxanthine and uric acid Anal. Methods 4 2162

    Article  CAS  Google Scholar 

  50. Kumar A S, Shanmugam R, Vishnu N, Pillai K C and Kamaraj S 2016 Electrochemical immobilization of ellagic acid phytochemical on MWCNT modified glassy carbon electrode surface and its efficient hydrazine electrocatalytic activity in neutral pH J. Electroanal. Chem. 782 215

    Article  CAS  Google Scholar 

  51. Bard A J and Faulkner L R 2001 In Electrochemical Methods: Fundamentals and Applications (New York: John Wiley)

Download references

Acknowledgements

The authors acknowledge the Department of Science and Technology – Science and Engineering Research Board, DST-SERB-EMR/2016/002818 and Technology Development Programme DST-TDP-IDP/MED/04/2017 Schemes for the funding. Authors thank Dr. R. Sudhakaran and Mrs. Saranya, School of Biosciences and Technology for the E.coli culture real sample work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annamalai Senthil Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saikrithika, S., Kumar, A.S. A selective voltammetric pH sensor using graphitized mesoporous carbon/polyaniline hybrid system. J Chem Sci 133, 46 (2021). https://doi.org/10.1007/s12039-021-01908-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-021-01908-3

Keywords