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Abstract: This study focused on developing a novel composite phosphate-selective elec-
trode for on-site and real-time applications using a silver polyglutaraldehyde phosphate
and carbon nanotube (CNT) matrix. CNT-silver polyglutaraldehyde phosphate compound
was synthesized and characterized using Fourier-transform infrared spectroscopy (FTIR),
scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric anal-
ysis (TGA). The potentiometric performance of the composite phosphate-selective electrode
was then investigated. The results demonstrated that the composite phosphate-selective
electrode exhibited good sensitivity, with a linear response in the concentration range of
1.0 × 10−4 to 1.0 × 10−2 M for phosphate ions. The electrode also showed high selectivity
towards phosphate ions compared to other anions, such as chloride and nitrate. Addition-
ally, the electrode displayed a quick response time of less than 15 s, making it suitable for
real-time measurements. The electrode was applied to surface and soil water samples. The
results obtained from the water samples showed a strong correlation with those obtained
from the preferred spectrophotometry method, highlighting the potential of the developed
electrode for on-site and continuous monitoring of phosphate and offering an efficient and
practical solution for various fields that require phosphate detection.

Keywords: composite matrix; phosphate-selective electrode; solid contact; soil analysis

1. Introduction
The development of phosphate-selective electrodes has gained significant attention

due to the increasing need for the efficient, reliable, and cost-effective detection of phosphate
ions across various applications, including in environmental monitoring, agriculture, and
biomedical analysis [1–3]. Phosphates are essential for all living organisms, existing in both
inorganic and organic forms, with orthophosphates (HPO4

2− and H2PO4
−) being the most

prevalent in natural environments [4]. They play critical roles in biological functions such
as energy metabolism, genetic information storage, and cell signaling [4–6].

While phosphates are vital for human health and agricultural productivity, their
overuse, particularly through phosphate-based fertilizers, poses serious environmental
challenges. Phosphate pollution significantly degrades groundwater and surface water
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quality, leading to eutrophication, characterized by excessive algal blooms that disrupt
aquatic ecosystems. The leaching of phosphates into water bodies due to improper fertil-
izer application necessitates substantial investments in wastewater treatment systems to
mitigate these impacts. Therefore, monitoring phosphate levels in natural water sources
and agricultural soils is crucial for maintaining water quality and optimizing agricultural
outputs, which can help prevent economic losses for farmers [4,7,8].

Electrochemical sensors have emerged as a promising solution for phosphate monitor-
ing, offering a high sensitivity for detecting trace levels of phosphates and other nutrients
in soil and water samples [9–17]. These sensors provide rapid results, enabling real-time
monitoring essential for dynamic environmental assessments. Their cost-effectiveness
and compact design make them suitable for large-scale agricultural applications, allowing
for in-field measurements without the need for extensive laboratory setups. Moreover,
electrochemical sensors can be customized for specific ions, achieving high selectivity even
in complex soil matrices. This selectivity is crucial for accurate monitoring in environments
where multiple ions may be present. Compared to traditional chemical analysis methods,
electrochemical techniques typically require minimal sample preparation, reducing analy-
sis time and the risk of contamination. Additionally, these methods are environmentally
friendly, as they generally consume fewer reagents and generate less waste, aligning with
sustainable practices in environmental monitoring [18].

The growing need for the rapid and on-site analysis of environmental samples has
driven the development of ion-selective electrode (ISE) technology for phosphate mea-
surement [19–22]. ISE technology enables fast, selective, and quantitative measurement of
phosphate levels [18]. Researchers have utilized various nanomaterials to enhance the sen-
sitivity and stability of ion-selective electrodes for phosphate determination, with carbon
nanotubes (CNTs) being widely employed due to their large surface area, high electrical
conductivity, and chemical stability [23–27].

This study focuses on developing a composite matrix potentiometric electrode that
utilizes carbon nanotube (CNT) and silver polyglutaraldehyde phosphate (Ag-pGAP) for
the precise detection of monohydrogen phosphate ions. The synthesis and characterization
of this composite material are outlined, alongside an assessment of the potentiometric
performance of the phosphate-selective electrode and an exploration of its commercial
viability and scalability. A thorough examination of the composite membrane matrix,
which includes Ag-pGAP and CNT, will be conducted using various analytical techniques,
including Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy
(SEM), X-ray diffraction (XRD), thermogravimetric analysis (TG-DTG), and differential
thermal analysis (DTA). Furthermore, the potentiometric performance attributes of the
optimized electrode, such as selectivity and sensitivity, will be rigorously evaluated. The
practical applicability of the developed phosphate-selective electrode will be illustrated
through the measurement of phosphate concentrations in wastewater and soil samples [1].
Consequently, this planned study aims to provide an in-depth understanding of how a
novel composite material, comprising Ag-pGAP and CNT, can improve the functionality of
phosphate-selective electrodes. The findings will pave the way for the development of prac-
tical and scalable sensors for detecting phosphate ions, effectively addressing significant
challenges related to sensitivity, selectivity, and stability.

2. Materials and Methods
2.1. Materials and Solutions

Thiourea dioxide, tetrahydrofuran (THF), silver (I) sulfide, Tris buffer solution (pH
7.0), copper (I) sulfide, and Kelowna extractant solution containing 0.25 mol/L CH3COOH
and 0.015 mol/L NH4F were purchased from Sigma-Aldrich (St. Louis, MO, USA); glu-
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taraldehyde and graphite were purchased from Fluka (Buchs, Switzerland); CNT was
purchased from www.us-nano.com (Houston, TX, USA); silver nitrate was purchased from
Carlo Erba (Milan, Italy); disodium monohydrogen phosphate was purchased from Merck
(Darmstadt, Germany); hardener was purchased from Bayer (Leverkusen, Germany); and
epoxy was purchased from Araldite (Basel, Switzerland). All chemicals and sodium salts
of the anions used were of analytical grade. Throughout the experimental studies, double-
distilled deionized water was used. A stock disodium monohydrogen phosphate solution
(1.0 × 10−1 M) was prepared. Dilute solutions (1.0 × 10−1–1.0 × 10−5 M) of disodium
monohydrogen phosphate were then prepared by appropriate dilution of the stock solution
with deionized water.

2.2. Synthesis of Silver Polyglutaraldehyde Phosphate (Ag-pGAP)

In the synthesis process, 7.4 g of thiourea dioxide and 21 g of 50% glutaraldehyde
by weight were mixed in a flask. The mixture was then heated in an oil bath at 50 ◦C for
2 h, forming a light yellow polyglutaraldehyde dissolved in water. Subsequently, 230 mL
of a 0.2 M solution of silver nitrate (AgNO3) was added to the mixture, forming a silver
complex. To precipitate Ag-pGAP, a dropwise addition of a 10−1 M Na2HPO4 solution
was performed into the resulting complex solution. The precipitate was then washed with
water and dried.

2.3. Characterization

The morphology of the silver polyglutaraldehyde phosphate, CNT, and CNT/Ag-
pGAP used in the composite matrix was observed and examined using a Zeiss EVO/LS10
scanning electron microscope (SEM) (Carl Zeiss AG, Oberkochen, Germany). X-ray diffrac-
tion (XRD) patterns were recorded at ambient temperatures on an X’Pert XRD Philips
Panalytical X’Pert Pro diffractometer (Malvern Panalytical, Almelo, The Netherlands) using
Ni-filtered CuKα radiation (λ = 1.54059 Å; 45 kV and 40 mA). Fourier-transform infrared
spectroscopy (FTIR) spectra of the samples were collected in the 4000–400 cm−1 region
using a Shimadzu Corp IrPrestige-21 spectrophotometer (Shimadzu Corporation, Kyoto,
Japan) with a resolution of 4 cm−1. Thermal analysis curves (TG/DTG, DTA) were moni-
tored using a TA Instruments SDT Q600 apparatus (TA Instruments, New Castle, DE, USA)
in a dynamic air atmosphere with a heating rate of 10 ◦C min−1, using platinum crucibles
with a mass of approximately 10 mg, and a temperature range of 0–800 ◦C. Calcinated
α-alumina was taken as the reference.

2.4. Fabrication of the Electrode

The composite membrane electrodes were prepared using the synthesized Ag-pGAP
complex. The membrane compositions used with silver sulfide, copper sulfide, and epoxy
are also listed in Table 1. The specific composition of the electrode, as shown in Table 1,
was selected to optimize performance characteristics, including stability, sensitivity, and
selectivity. The chosen materials and their ratios could reflect a carefully balanced com-
promise that enhanced the electrode’s performance in detecting phosphate ions, while
minimizing interference and ensuring long-term functionality. Each membrane mixture
was homogeneously stirred with the appropriate amount of THF on a watch glass. Using a
high-speed mechanical drill system with inserted bit for mixing, carbon nanotubes (CNTs)
were well dispersed throughout the membrane matrix. Subsequently, the mixtures were
compressed into plastic pipes and dried at room temperature.

www.us-nano.com
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Table 1. Ratios of composite phosphate electrodes prepared with Ag-pGAP.

No. CNT
(mg)

Ag-pGAP
(mg)

Silver Sulfide
(Ag2S) (mg)

Copper
Sulfide

(Cu2S) (mg)
Epoxy (mg)

1 100 10 80 10 800
2 100 10 80 10 600
3 100 10 80 10 400
4 100 10 80 10 200
5 – 11 55 – 34

Thin sections were extracted from the drying tubes and affixed to the end of a copper
wire of appropriate length (15 cm, 0.5 mm thickness) using a solid contact material. This
solid contact material was created by thoroughly dissolving a mixture consisting of 50%
(w/w) graphite, 35% (w/w) epoxy, and 15% (w/w) hardener in a suitable amount of THF.
After allowing it to dry for 5 h, the electrodes were insulated with a strong adhesive similar
to “Patex” to prepare them for measurement.

2.5. Potentiometric Measurements

Potentiometric measurements were carried out using a multi-channel potentiometer
developed by Medisen Medical Technologies Research and Development Ind. Co., Ltd.,
in Istanbul, Turkey. An Elit solid-state Ag/AgCl dual-junction reference electrode with a
lithium acetate internal reference solution was employed for these measurements.

2.6. Statistical Analysis

In this study, the Bland–Altman method and regression analysis were utilized for
30 soil samples to plot the differences against the averages of the measurements obtained
from the two distinct methods, allowing for the examination of any relationship between
the differences and the averages to compare the outcomes for the same samples. If the
differences exhibited a normal distribution, they were expected to be randomly distributed
around zero, with 95% falling between the limits of agreement. The Bland–Altman method
was implemented using the Origin package program, while the regression analysis was
conducted using the MINITAB package program. Additionally, this study utilized the
concept of “agreement boundaries” within the Bland–Altman method. If the differences
followed a normal distribution, the differences were expected to be randomly distributed
around zero, with 95% falling between “dĎ− 1.96 s and dĎ+ 1.96 s”. In this method, the
range “dĎ± 1.96 s” refers to “limits of agreement”. Furthermore, this study considered the
use of regression analysis for calibrating one measurement against another or detecting
bias between two measurement methods.

The practical applicability of the composite phosphate-selective electrode was further
assessed for analyzing soil surface water samples obtained from three different agricultural
areas near Istanbul. To validate the correlation between the two methods, statistical tests
such as Student’s t-test and Fisher’s F-test were employed, with calculated values provided.

3. Results and Discussion
3.1. FTIR Analysis

Figure 1a shows the FTIR spectrum for Ag-pGAP, CNT, and the CNT/Ag-pGAP
composite. In the FTIR spectrum of silver polyglutaraldehyde phosphate (Ag-pGAP), we
observed a significant absorption band between 1740 and 1725 cm−1, associated with C=O
stretching [28]. Additionally, the peaks at 2850 and 2750 cm−1 indicate C-H stretching
related to the aldehyde (-CHO) group. A peak at 2920 cm−1 suggests the presence of
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silver metal centers. Notably, the intensity of the hydroxyl (OH−) species was prominently
observed around 3450 and 3655 cm−1 [29]. When examining the FTIR spectra of CNT and
CNT/Ag-pGAP, only minor differences were noted. This is likely due to the low weight
percentage (<10%) of Ag-pGAP in the composite. The spectrum is primarily dominated by
intense and broad absorption bands from the CNT, which may have obscured the weaker
signals from the functional groups of Ag-pGAP. However, the weak split peaks observed at
900 and 950 cm−1 in the CNT/Ag-pGAP spectrum indicate the presence of P-O and P-C
bonds. This suggests successful bonding between the carbon and phosphorus atoms in
CNT and Ag-pGAP. Although these peaks are subtle, they are characteristic of phosphoryl
and phosphonate groups, confirming the presence of Ag-pGAP even at low concentrations.
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3.2. Thermogravimetric Analysis

The thermogravimetric behavior of Ag-pGAP and CNT/Ag-pGAP was investigated.
The thermogravimetric curves depicting their behavior are shown in Figure 1b. The graphs
show that Ag-pGAP experienced weight loss after 120 ◦C, while CNT/Ag-pGAP com-
pound exhibited weight loss after 200 ◦C. Complex structures containing metals are known
to be stable up to 150 ◦C, but tend to break down into smaller fragments beyond this
temperature. This indicates that CNT/Ag-pGAP behaves like a stable complex. Weight
losses between 150 and 600 ◦C are believed to arise from the degradation of the polyglu-
taraldehyde phosphate structure. In contrast, CNT/Ag-pGAP shows limited weight loss in
this temperature range, suggesting the mixture’s high stability. At the final temperature
(800 ◦C), the residues are predicted to have originated from the “silver” content in the
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Ag-pGAP structure (77%) and both the “silver and CNT” content in the CNT/Ag-pGAP
structure (88%).

3.3. SEM Analysis

Figure 2 presents SEM images of the silver polyglutaraldehyde phosphate (Ag-pGAP),
carbon nanotube (CNT), and CNT/Ag-pGAP compounds at various magnifications. The
micrographs indicate that Ag-pGAP has an amorphous structure, with silver appearing
as tiny particles (Figure 2a). In Figure 2b, the CNT structures are clearly visible with
smooth surfaces, showcasing their pristine morphology. In contrast, the SEM image of the
CNT/Ag-pGAP composite (Figure 2c) retains the CNT structures but shows a clouded and
less defined surface compared to Figure 2b.
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This clouded appearance results from a thin, uniform layer of Ag-pGAP coating the
CNTs, which slightly blurs the contours of the nanotubes. Since the Ag-pGAP layer is ex-
tremely thin—likely at the nanoscale—its overall morphology remains largely unchanged,
but its surface texture experiences subtle alterations. The differences between Figure 2b,c
can be challenging to discern due to the thin and homogeneous nature of the Ag-pGAP
coating, which does not significantly impact its tubular structure but does affect surface
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roughness and texture. Additionally, the clouded surface and slight increase in agglom-
eration seen in Figure 2c suggest enhanced interactions between the tubes, implying that
Ag-pGAP acts as a binding agent.

Given the nanoscale thickness of the Ag-pGAP layer, SEM imaging may have caused
a struggle to distinguish the coating from the CNT substrate. This limitation arose from
the resolution constraints of SEM in detecting ultrathin, amorphous layers. Nevertheless,
the observed clouded surface and slight textural changes provide indirect evidence of the
coating, aligning with findings from previous studies, which showed similar challenges in
visualizing thin polymeric coatings using SEM [30,31].

3.4. XRD Analysis

The X-ray diffraction spectra of silver polyglutaraldehyde phosphate, CNT, and
CNT/Ag-pGAP are shown in Figure 3. The obtained spectra exhibit strong intensity
diffraction peaks. In the spectra of the CNT and CNT/Ag-pGAP samples, the peaks ob-
served at approximately 26, 45, 52, and 73 can be attributed to CNT reflections. The broad
peaks observed in the spectra indicate that the carbon nanotubes had small dimensions.
In the spectrum of CNT/Ag-pGAP, the peaks observed at 31, 33, and 380, along with
significant reductions in peak intensities compared to the CNT spectrum, indicate that
Ag-pGAP was homogeneously adhered to and surrounded by the CNT surface.

C 2025, 11, x FOR PEER REVIEW 7 of 16 
 

This clouded appearance results from a thin, uniform layer of Ag-pGAP coating the 
CNTs, which slightly blurs the contours of the nanotubes. Since the Ag-pGAP layer is 
extremely thin—likely at the nanoscale—its overall morphology remains largely un-
changed, but its surface texture experiences subtle alterations. The differences between 
Figure 2b,c can be challenging to discern due to the thin and homogeneous nature of the 
Ag-pGAP coating, which does not significantly impact its tubular structure but does affect 
surface roughness and texture. Additionally, the clouded surface and slight increase in 
agglomeration seen in Figure 2c suggest enhanced interactions between the tubes, imply-
ing that Ag-pGAP acts as a binding agent. 

Given the nanoscale thickness of the Ag-pGAP layer, SEM imaging may have caused 
a struggle to distinguish the coating from the CNT substrate. This limitation arose from 
the resolution constraints of SEM in detecting ultrathin, amorphous layers. Nevertheless, 
the observed clouded surface and slight textural changes provide indirect evidence of the 
coating, aligning with findings from previous studies, which showed similar challenges 
in visualizing thin polymeric coatings using SEM [30,31]. 

3.4. XRD Analysis 

The X-ray diffraction spectra of silver polyglutaraldehyde phosphate, CNT, and 
CNT/Ag-pGAP are shown in Figure 3. The obtained spectra exhibit strong intensity dif-
fraction peaks. In the spectra of the CNT and CNT/Ag-pGAP samples, the peaks observed 
at approximately 26, 45, 52, and 73 can be attributed to CNT reflections. The broad peaks 
observed in the spectra indicate that the carbon nanotubes had small dimensions. In the 
spectrum of CNT/Ag-pGAP, the peaks observed at 31, 33, and 380, along with significant 
reductions in peak intensities compared to the CNT spectrum, indicate that Ag-pGAP was 
homogeneously adhered to and surrounded by the CNT surface. 

 

Figure 3. XRD spectra of Ag-pGAP, CNT, and CNT/Ag-pGAP. 

3.5. Potentiometric Performance of the Electrode 

The electrode membranes, containing Ag-pGAP as an ionophore, demonstrated sen-
sitive responses to HPO42− concentrations ranging from 10−5 to 10−1 mol/L in Tris buffer at 
pH 8.0. Interestingly, the electrodes exhibited minimal sensitivity to phosphate when Ke-
lowna soil extractant was used as the base solution. In the Kelowna solution, the electrode 
displayed a sensitive response to HPO42− concentrations spanning from 10−5 to 10−1 mol/L 
for total phosphate concentration, with a detection limit of 10−5 mol/L. This detection range 
encompasses the typical soil phosphorus concentration range in soil water samples. The 

Figure 3. XRD spectra of Ag-pGAP, CNT, and CNT/Ag-pGAP.

3.5. Potentiometric Performance of the Electrode

The electrode membranes, containing Ag-pGAP as an ionophore, demonstrated sensi-
tive responses to HPO4

2− concentrations ranging from 10−5 to 10−1 mol/L in Tris buffer
at pH 8.0. Interestingly, the electrodes exhibited minimal sensitivity to phosphate when
Kelowna soil extractant was used as the base solution. In the Kelowna solution, the elec-
trode displayed a sensitive response to HPO4

2− concentrations spanning from 10−5 to
10−1 mol/L for total phosphate concentration, with a detection limit of 10−5 mol/L. This
detection range encompasses the typical soil phosphorus concentration range in soil water
samples. The electrode’s selectivity was deemed satisfactory for measuring phosphates
in the presence of six interfering ions, including Cl−, CH3COO−, Cu2+, SO4

2−, HCO3
−,

and NO3
−, with the electrodes exhibiting significantly higher responsiveness to phosphate

compared to the interfering ions. To mitigate any pH influence, the pH levels of the tested
solutions were standardized across various tested phosphate concentrations, maintaining
the Kelowna solution at pH 8.0, with pH adjustments monitored using an Orion pH meter.
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The Kelowna extraction for available and total dissolved P was conducted following the
protocols outlined by Ebuele, involving mixing ten grams of soil with 100 mL of Kelowna
solution at pH 8.0 in a 250 mL Erlenmeyer flask [32].

Potentiometric measurements were conducted using standard phosphate-selective
electrodes with concentrations ranging from 1.0 × 10−1 to 1.0 × 10−5 M and HPO4

2−

solutions prepared according to the ratios specified in Table 1. The pH effect on the
electrode performance was investigated and the best response for HPO4

2− species was
obtained at pH 7.0 with good reproducibility. It differed slightly from the pH value (8.5)
reported in the literature [33]. The slight change in the optimal pH for the electrode likely
arose from a combination of factors related to differences in electrode composition, phos-
phate species distribution, surface chemistry, and experimental conditions. The modified
electrode materials in our study may simply have had a different affinity for phosphate
ions at a lower pH than the electrode used in previous studies. No variations were ob-
served in the measurements obtained, especially with Composition 2 of these electrodes.
Figure 4 illustrates the relationship between potential and concentration for the composite
phosphate-selective electrode prepared with Composition 2. This specific composition was
selected for performance evaluation due to its optimal potentiometric response and selec-
tivity towards phosphate ions. The favorable performance of Composition 2 is attributed
to its balanced epoxy content, which offers both mechanical stability and consistent ion
exchange properties, ensuring reliable signal transduction.
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The preparations of Compositions 1 and 3–5 were designed to systematically inves-
tigate how varying epoxy content influences potentiometric performance. The effects on
membrane adhesion, electrical conductivity, and ion selectivity were examined by adjusting
the epoxy ratios while keeping the amounts of CNT, Ag-pGAP, Ag2S, and Cu2S constant.
Although not all compositions were evaluated in detail, preliminary testing showed that
Composition 2 provided the best balance between selectivity, sensitivity, and stability. These
findings led to the conclusion that Composition 2 was the most promising candidate for
in-depth potentiometric analysis, resulting in the Nernstian response and high selectivity
observed in this study.

Figure 5b presents the potentiometric response of the composite membrane phosphate-
selective electrode prepared using Composition 2 listed in Table 1 against standard HPO4

2−

ions and other ions in the concentration range of 1.0 × 10−1 to 1.0 × 10−5 M.
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As shown in Figure 5a, the composite phosphate-selective electrode prepared us-
ing Composition 2 demonstrated specific sensitivity to HPO4

2− ions, as well as to Cl−,
CH3COO−, Cu2+, SO4

2−, HCO3
−, and NO3

− ions. To better understand the selective
behavior of the composite phosphate-selective electrode, selectivity coefficients were
calculated. For this purpose, standard HPO42− solutions ranging from 1.0 × 10−1 to
1.0 × 10−5 M were prepared. The potential changes exhibited by the composite phosphate-
selective electrode in response to these HPO4

2− solutions were analyzed, and calibration
curves were plotted using the obtained data. From the calibration curve, a linear equation
was derived. Subsequently, the same electrode was employed to measure the potential
changes in different standard anion solutions, including sodium and potassium, at concen-
trations ranging from 1.0 × 10−1 to 1.0 × 10−5 M. Selectivity coefficients were calculated
based on the potential changes in each anion and the linear equation derived from the cali-
bration curve. The calibration curve used for calculating selectivity coefficients is illustrated
in Figure 5b.

Potentiometric measurements were conducted using a composite phosphate-selective
electrode (Composition 2), which was prepared with silver polyglutaraldehyde phosphate.
The electrode demonstrated a linear response to standard HPO4

2− ions within a concentra-
tion range of 1.0 × 10−4 to 1.0 × 10−2 M at a pH of 7.0. The linear equation representing
the potential–concentration relationship in the linear working range was determined as the
following: E = −25.4[HPO4

2−] + 1238 R2 = 0.952. It was observed that within the linear
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working range, there was an approximate 30 ± 1 mV potential difference for every 10-fold
concentration change. The detection limit of the electrode with Composition 2 was deter-
mined to be 4.7 × 10−5 M. The results collectively demonstrate that the phosphate-selective
composite electrode with Composition 2 not only provided a linear response but also
showcased excellent sensitivity and a low detection limit for phosphate ions. In terms of
repeatability, the electrode’s performance was evaluated using standard HPO4

2− solutions
at concentrations of 1.0 × 10−2, 1.0 × 10−3, and 1.0 × 10−4 M. The measurements were
conducted in a controlled environment, ensuring that the electrode surface was thoroughly
washed with deionized water between different solutions to prevent cross-contamination.
The potentiometric response behavior of the electrode is graphically presented in Figure 6
and numerically in Table 2, along with the standard deviations, to demonstrate the repeata-
bility of the results.
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tion 2, fabricated using Ag-pGAP.

Table 2. Average and standard deviation values showing the repeatability of the composite phosphate-
selective electrode of Composition 2.

Measurement Results (mV)

HPO42− 1 2 3 4 5 6 7 X ± S *

1 × 10−2 M 1130 1128 1128 1129 1127 1128 1128 1128.28 ± 0.95
1 × 10−3 M 1158 1158 1158 1153 1158 1157 1157 1157 ± 1.82
1 × 10−4 M 1189 1188 1188 1188 1187 1188 1188 1188 ± 0.58

* Average and standard deviation values are given for n = 7.

To measure the response time of the composite phosphate-selective electrode prepared
with Ag-pGAP for Composition 2, the transition times to reach the equilibrium potential
were examined in standard HPO4

2− solutions within the concentration range of 1.0 × 10−1

to 1.0 × 10−5 M. The response time graph of the composite phosphate-selective electrode is
shown in Figure 7. It was observed that the response time of the electrode, which exhibited
repeatable and linear responses to standard HPO4

2− ions in the concentration range of
1.0 × 10−2 to 1.0 × 10−4 M, was particularly less than 15 s, especially as the concentration
increased towards higher concentrations.
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3.6. Applications

The application section of this study involved the utilization of spectrophotomet-
ric [34] and potentiometric methods to extract separate PO4

3− values from 30 soil samples
collected from diverse locations in Istanbul. Extraction was carried out using Kelowna
solution in Tris buffer at pH 8.0. Following extraction, the samples underwent filtration
and were stored at room temperature for subsequent analysis using a solid-state phosphate-
selective electrode. The acquired values underwent statistical assessment by employing the
Bland–Altman method and regression technique [35]. Table 3 details descriptive statistics
for the data obtained from the 30 soils, encompassing the mean, standard deviation, mini-
mum, and maximum values for both the spectrophotometric (P2O5) and potentiometric
(HPO4

2−) methods.

Table 3. The descriptive statistics for the phosphate values obtained from the soil.

n Mean
(ppm) S.D. Min. Max.

Spectrophotometric P2O5 30 2.35557 2.08279 0.28047 9.54652
Potentiometric HPO4

2− 30 2.29233 1.98941 0.3 9

In Table 3, the mean and standard deviation values of the data obtained through both
measurement methods are very close to each other. The relevant data sets were initially
subjected to the Bland–Altman method using the Origin program, and graphs depicting
the deviations of the observed values from the mean were obtained, as shown in Figure 8.

Upon reviewing Figure 8, it is evident that the differences in the measurement results
obtained by the two techniques do not exhibit a systematic distribution around the mean,
but instead display a random distribution. According to the Bland–Altman method, the
mean of the differences should be dispersed around zero. Therefore, using the Bland–
Altman method, it was appropriate to assess the agreement between these two methods.
The analysis indicated that there was an agreement between the two methods, and they
could be considered as alternatives to each other. The results of the regression analysis
of the relevant data sets are depicted in Figure 9. For the values, the fact that 99.7% of
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the variation in either of the two methods could be explained by the other method (R2)
served as an indicator of the agreement, and the linearity ratio was also utilized to express
the agreement.
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The practical application of the composite phosphate-selective electrode was evaluated
by examining soil surface water samples collected from three distinct agricultural regions
near Istanbul. Initially, the water samples underwent filtration through 0.45 µm membranes,
followed by analysis utilizing the standard addition method (Table 4).

Table 4. Determination of phosphate in soil surface water samples by the composite phosphate-
selective electrode.

Sample
Phosphate Conc. (ppm)

Average n:7 SD± CV (%)
Min. Max.

Soil water 1 0.39 0.44 0.41 0.025 3.4
Soil water 2 0.35 0.42 0.39 0.035 5.6
Soil water 3 0.40 0.48 0.44 0.040 6.8



C 2025, 11, 18 13 of 16

The results obtained from the electrode were compared with those from the conven-
tional spectrophotometric method for determining dissolved phosphate levels (Table 5).

Table 5. Comparison of the results obtained by the composite phosphate-selective electrode and
UV-Vis spectrophotometry.

Sample
Phosphate Conc., ppm, n:3

The Electrode UV-Vis

Soil water 1 0.42 0.45
Soil water 2 0.38 0.40
Soil water 3 0.45 0.42

To validate the correlation between the two methods, statistical tests such as Student’s
t-test and Fisher’s F-test were employed, with calculated values provided [36]. Remarkably,
the experimental t-test and F-test values for phosphate were found to be lower than the
theoretical values (t-test = 4.0, n = 7; F-test = 17.0, n = 7), with a confidence level of 95%
(p < 0.05). This suggests that the proposed composite phosphate-selective electrode yields
results that agree with the preferred spectrophotometry method.

The results obtained from the filtered soil surface water samples showed a strong
correlation with those obtained from the preferred spectrophotometry method, indicating
the high suitability of the proposed composite phosphate-selective electrode for sensing
phosphate levels in real agricultural wastewater. This finding highlights its potential
for practical applications in monitoring and evaluating phosphate content in soil surface
water sources.

Overall, this study presents the development of a novel composite phosphate-selective
electrode that employs a matrix of Ag-pGAP and CNT for the on-site and real-time detection
of phosphate in various environmental applications [37]. The composite material was
synthesized through a chemical reaction involving thiourea dioxide, glutaraldehyde, and
silver nitrate (AgNO3), followed by precipitation with disodium monohydrogen phosphate
(Na2HPO4). The resulting structure integrates silver polyglutaraldehyde phosphate, silver
sulfide (Ag2S), and copper sulfide (Cu2S) with epoxy as a binding agent, thereby optimizing
stability, sensitivity, and selectivity for phosphate detection.

Characterization techniques, including Fourier-transform infrared spectroscopy
(FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimet-
ric analysis (TGA), confirmed the successful formation of the composite, demonstrating its
structural integrity and thermal stability [38]. The electrode exhibited a linear potentiomet-
ric response to phosphate ion concentrations ranging from 1.0 × 10−4 M to 1.0 × 10−2 M,
showing high selectivity against other anions such as chloride and nitrate, indicating its
suitability for application in complex environmental matrices.

The electrode’s rapid response time of less than 15 s is essential for real-time monitor-
ing, and its performance was validated against traditional spectrophotometric methods,
revealing a strong correlation in phosphate detection from surface water and soil sam-
ples [39]. This underscores the electrode’s accuracy and its potential to complement or
replace conventional laboratory techniques. Its application in agricultural regions near
Istanbul highlights its role in mitigating phosphate-related environmental issues, such as
eutrophication, while optimizing fertilizer usage.

Moreover, the electrode’s portability, cost-effectiveness, minimal sample preparation
requirements, and environmental friendliness enhance its practicality for in-field measure-
ments [40]. Statistical analyses, including the Bland–Altman method, regression analysis,
Student’s t-test, and Fisher’s F-test, confirmed the reliability of the results, ensuring that
observed differences between methods were statistically insignificant [41].
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4. Conclusions
The developed CNT/Ag-pGAP composite electrode demonstrated high sensitivity,

selectivity, and stability for detecting phosphate ions. It exhibited a Nernstian response
across a concentration range of 1.0 × 10−4 M to 1.0 × 10−2 M. This range effectively covers
the typical phosphorus concentrations in soil water samples.

The selectivity of the electrode was validated against six common interfering ions:
Cl−, CH3COO−, Cu2+, SO4

2−, HCO3
−, and NO3

−. The results showed that the electrode
responded significantly more to phosphate ions than these interfering ions.

Potentiometric measurements indicated good reproducibility, particularly for Com-
position 2, which balanced mechanical stability and consistent ion exchange properties,
ensuring reliable signal transduction. The optimal performance was observed at pH 7.0,
which slightly differs from previous studies; this variation was attributed to differences in
electrode composition and surface chemistry.

In real-world applications, the electrode demonstrated robust performance in areas
such as water quality management and agricultural monitoring, confirming its suitabil-
ity for on-site and real-time environmental monitoring. Its potential for scaling and
practical deployment positions this electrode as an effective and reliable solution for
phosphate detection, thereby contributing to improved environmental management and
agricultural productivity.
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