More Than Resveratrol: New Insights into Stilbene-Based Compounds
<p>Selected biological activities and specific targets of the stilbene-based compounds. Abbreviations: 5-LOX, lipooxygenase; Akt, protein kinase B; AMPK, AMP-activated protein kinase; CDKs, cyclin-dependent kinases; CEBP/α, CCAAT-enhancer binding protein alpha; COX-2, cyclooxygenase-2; IL, interleukins; iNOS, Inducible nitric oxide synthase; mTOR, mammalian target of rapamycin kinase; Nrf2, nuclear factor erythroid 2–related factor 2; PI3K, phosphoinositide 3-kinases; PPARγ, Peroxisome proliferator-activated receptor gamma; Ras/Camp, cAMP-dependent protein kinase; TNFα, tumor necrosis factor α; VEGF, vascular endothelial growth factor.</p> "> Figure 2
<p>The chemical structures of resveratrol, pinosylvin, isorhapontigenin, pterostilbene, and DMU-212.</p> "> Figure 3
<p>The structure of CA-4 with marked sides of the most useful structural modification (<b>A</b>). The anticancer activity of CA-4 associated with disruption of microtubule dynamic and vascular effects are presented in panels (<b>B</b>) and (<b>C</b>), respectively.</p> "> Figure 4
<p>The scheme presented the structure of hybrid compounds, which possess both CA-4 moiety and the additional active moiety [<a href="#B115-biomolecules-10-01111" class="html-bibr">115</a>,<a href="#B116-biomolecules-10-01111" class="html-bibr">116</a>,<a href="#B119-biomolecules-10-01111" class="html-bibr">119</a>,<a href="#B120-biomolecules-10-01111" class="html-bibr">120</a>]. This graph presents the general overview about combretastatin A4-basedh and does not present the detailed synthesis.</p> "> Figure 5
<p>The structure and activity of CA-4, cisplatin, and CA-4-cisplatin prodrug against HepG2 cell line in vitro and in vivo [<a href="#B134-biomolecules-10-01111" class="html-bibr">134</a>]. This graph presents the general overview about combretastatin A4-based hybrid and does not present the detailed synthesis.</p> "> Figure 6
<p>The structure of selected CA-4 derivatives with the modified hydroxyl group [<a href="#B137-biomolecules-10-01111" class="html-bibr">137</a>,<a href="#B138-biomolecules-10-01111" class="html-bibr">138</a>,<a href="#B139-biomolecules-10-01111" class="html-bibr">139</a>].</p> "> Figure 7
<p>The structure of selected CA-4 derivatives with the modified methylene bridge [<a href="#B150-biomolecules-10-01111" class="html-bibr">150</a>,<a href="#B151-biomolecules-10-01111" class="html-bibr">151</a>,<a href="#B152-biomolecules-10-01111" class="html-bibr">152</a>,<a href="#B153-biomolecules-10-01111" class="html-bibr">153</a>].</p> "> Figure 8
<p>The structures of selected benzanilides with different biological activities. <b>1</b>: N-(4-Fluorophenyl)-4-phenoxybenzamide [<a href="#B165-biomolecules-10-01111" class="html-bibr">165</a>]; <b>2:</b> N-(3,4-Dimethoxyphenyl)-4-(4-(((2-oxo-2H-chromen-4-yl)oxy)methyl)-1H-1,2,3-triazol-1-yl)benzamide [<a href="#B166-biomolecules-10-01111" class="html-bibr">166</a>]; <b>3</b>: N-(3-((2,5-dimethylbenzyl)oxy)-4-(N-methylmethylsulfonamido)phenyl)benzo[d][<a href="#B1-biomolecules-10-01111" class="html-bibr">1</a>,<a href="#B3-biomolecules-10-01111" class="html-bibr">3</a>]dioxole-5-carboxamide [<a href="#B167-biomolecules-10-01111" class="html-bibr">167</a>]; <b>4</b>: Bis[2-(2-hydroxyphenylcarbamoyl)]phenyl diselenide [<a href="#B168-biomolecules-10-01111" class="html-bibr">168</a>]; <b>5</b>: Bis[2-(3,4,5-trimethoxyphenylcarbamoyl)]phenyl diselenide [<a href="#B168-biomolecules-10-01111" class="html-bibr">168</a>]; <b>6</b>: 4-Chloro-2- (3,4-dichlorophenylcarbamoyl)phenyl benzenesulfonate [<a href="#B169-biomolecules-10-01111" class="html-bibr">169</a>]; <b>7</b>: N-(4-Methylthiophenyl)-3,5-difluorobenzamide [<a href="#B170-biomolecules-10-01111" class="html-bibr">170</a>]; <b>8</b>: N-(2-hydroxy-5-chlorophenyl)-(2-methoxy-5-chloro)-benzamide [<a href="#B171-biomolecules-10-01111" class="html-bibr">171</a>]; <b>9</b>: N-(4-(1H-benzo[d]imidazol-2-yl)phenyl)-3-bromo-4-ethoxybenzamide [<a href="#B172-biomolecules-10-01111" class="html-bibr">172</a>]; <b>10</b>: 2-amino-N-(3-bromophenyl)-4,5-dimethoxybenzamide [<a href="#B173-biomolecules-10-01111" class="html-bibr">173</a>]; <b>11</b>: 6-amino-N-(3-bromophenyl)-2,3,4-trimethoxybenzamide [<a href="#B173-biomolecules-10-01111" class="html-bibr">173</a>]. Abbreviations: ABCG2, ATP Binding Cassette Subfamily G Member 2; DDR1, Discoidin domain receptor 1; EMCV, Encephalomyocarditis virus; HBV, Hepatitis B Virus, HHV, human Herpesvirus 1; HPV, human Papillomaviruse; IRF-1, interferon regulatory factor-1; MMP, matrix metalloproteinase; TRPV1, transient receptor potential vanilloid subfamily member 1; v-Src, Proto-oncogene tyrosine-protein kinase; V1A, Vasopressin receptor 1A; V2, Vasopressin receptor 2.</p> "> Figure 9
<p>The development of osalmid and its derivatives, as a potent structure in the treatment of certain medical conditions [<a href="#B178-biomolecules-10-01111" class="html-bibr">178</a>,<a href="#B191-biomolecules-10-01111" class="html-bibr">191</a>]. Abbreviations: cccDNA, covalently-closed-circular DNA; DCZ0358 (5-(benzo[d] [<a href="#B1-biomolecules-10-01111" class="html-bibr">1</a>,<a href="#B3-biomolecules-10-01111" class="html-bibr">3</a>]dioxol-5-yl)-3,9,10-trimethoxy-2,3-dihydrooxazolo [2,3-a]isoquinolin- 4-ium chloride); RR, human ribonucleotide reductase; YZ51, 4-cyclopropyl-2-fluoro-N-(4-hydroxyphenyl) benzamide.</p> "> Figure 10
<p>The structures of the most interesting thiobenzanilides with anticancer activity. <b>11</b>: N-(4-Trifluoromethyl-phenyl)-4-nitrothiobenzamide [<a href="#B175-biomolecules-10-01111" class="html-bibr">175</a>]; <b>12</b>: N,N’-(1,2-phenylene)bis(3,4,5-trifluorobenzothioamide [<a href="#B171-biomolecules-10-01111" class="html-bibr">171</a>,<a href="#B176-biomolecules-10-01111" class="html-bibr">176</a>,<a href="#B177-biomolecules-10-01111" class="html-bibr">177</a>,<a href="#B198-biomolecules-10-01111" class="html-bibr">198</a>]: <b>13</b>: N,N’-(1,3-phenylene)bis(4-fluorobenzothioamide) [<a href="#B171-biomolecules-10-01111" class="html-bibr">171</a>].</p> ">
Abstract
:1. Introduction
2. From Hydroxyl to Methoxy-Stilbene Derivatives
2.1. Isorhapontigenin—Successor of Resveratrol
2.2. Pinosylvin—Stilbene of Underestimated Importance
2.3. Short Story about DMU-212—When Synthetic Chemistry Achieved a Success
3. Combretastatins—Between Bench and Bedside
3.1. Modification of the Aromatic Ring
3.2. Modifications of the Hydroxyl Group of Combretastatin Core
3.3. Modifications Related to the Methylene Bridge—Change without Cyclization
3.4. Modifications Related to the Methylene Bridge—Change with Cyclization
4. Significant Progress of Benzanilides-Small Group with Large Potential
5. Conclusions
Funding
Conflicts of Interest
References
- Zdrazil, B.; Guha, R. The Rise and Fall of a Scaffold: A Trend Analysis of Scaffolds in the Medicinal Chemistry Literature. J. Med. Chem. 2018, 61, 4688–4703. [Google Scholar] [PubMed]
- Giacomini, E.; Rupiani, S.; Guidotti, L.; Recanatini, M.; Roberti, M. The Use of Stilbene Scaffold in Medicinal Chemistry and Multi- Target Drug Design. Curr. Med. Chem. 2016, 23, 2439–2489. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, A.; Matos, M.J.; Garrido, J.; Uriarte, E.; Borges, F. Chromone: A Valid Scaffold in Medicinal Chemistry. Chem. Rev. 2014, 114, 4960–4992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, M.; Kaur, M.; Silakari, O. Flavones: An important scaffold for medicinal chemistry. Eur. J. Med. Chem. 2014, 84, 206–239. [Google Scholar] [CrossRef]
- Tsutsumi, L.S.; Gündisch, D.; Sun, D. Carbazole Scaffold in Medicinal Chemistry and Natural Products: A Review from 2010–2015. Curr. Top. Med. Chem. 2016, 16, 1290–1313. [Google Scholar] [CrossRef]
- Rakesh, K.P.; Shantharam, C.S.; Sridhara, M.B.; Manukumar, H.M.; Qin, H.-L. Benzisoxazole: A privileged scaffold for medicinal chemistry. Med. Chem. Commun. 2017, 8, 2023–2039. [Google Scholar] [CrossRef]
- Surana, K.; Chaudhary, B.; Diwaker, M.; Sharma, S. Benzophenone: A ubiquitous scaffold in medicinal chemistry. Med. Chem. Commun. 2018, 9, 1803–1817. [Google Scholar] [CrossRef]
- Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A Privileged Structure in Medicinal Chemistry. Chem. Rev. 2017, 117, 7762–7810. [Google Scholar] [CrossRef]
- Tzara, A.; Xanthopoulos, D.; Kourounakis, A.P. Morpholine As a Scaffold in Medicinal Chemistry: An Update on Synthetic Strategies. ChemMedChem 2020, 15, 392–403. [Google Scholar] [CrossRef]
- Mayol-Llinàs, J.; Nelson, A.; Farnaby, W.; Ayscough, A. Assessing molecular scaffolds for CNS drug discovery. Drug Discov. Today 2017, 22, 965–969. [Google Scholar] [CrossRef] [Green Version]
- Gholap, S.S. Pyrrole: An emerging scaffold for construction of valuable therapeutic agents. Eur. J. Med. Chem. 2016, 110, 13–31. [Google Scholar] [CrossRef] [PubMed]
- Barreiro, E.J. Chapter 1 Privileged Scaffolds in Medicinal Chemistry: An Introduction. In Privileged Scaffolds in Medicinal Chemistry: Design, Synthesis, Evaluation; Bräse, S., Ed.; The Royal Society of Chemistry: London, UK, 2016; pp. 1–15. [Google Scholar]
- Khan, Z.A.; Iqbal, A.; Shahzad, S.A. Synthetic approaches toward stilbenes and their related structures. Mol. Divers. 2017, 21, 483–509. [Google Scholar] [CrossRef] [PubMed]
- De Filippis, B.; Ammazzalorso, A.; Fantacuzzi, M.; Giampietro, L.; Maccallini, C.; Amoroso, R. Anticancer Activity of Stilbene-Based Derivatives. ChemMedChem 2017, 12, 558–570. [Google Scholar] [CrossRef] [PubMed]
- Sirerol, J.A.; Rodríguez, M.L.; Mena, S.; Asensi, M.A.; Estrela, J.M.; Ortega, A.L. Role of Natural Stilbenes in the Prevention of Cancer. Oxid. Med. Cell. Longev. 2016, 2016, 3128951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pezzuto, J.M. Resveratrol: Twenty Years of Growth, Development and Controversy. Biomol. Ther. (Seoul) 2019, 27, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska, H.; Kucinska, M.; Murias, M. Biological activity of piceatannol: Leaving the shadow of resveratrol. Mutat. Res. 2012, 750, 60–82. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.-S.; Leland, J.V.; Ho, C.-T.; Pan, M.-H. Occurrence, Bioavailability, Anti-inflammatory, and Anticancer Effects of Pterostilbene. J. Agric. Food Chem. 2020. [Google Scholar] [CrossRef]
- Sherbet, G.V. Combretastatin analogues in cancer biology: A prospective view. J. Cell. Biochem. 2020, 121, 2127–2138. [Google Scholar] [CrossRef]
- Li, S.-G.; Huang, X.-J.; Zhong, Y.-L.; Li, M.-M.; Li, Y.-L.; Wang, Y.; Ye, W.-C. Stilbene Glycoside Oligomers from the Roots of Polygonum multiflorum. Chem. Biodivers. 2019, 16, e1900192. [Google Scholar] [CrossRef]
- Yan, S.; Huang, Q.; Song, X.; Chen, Z.; Huang, M.; Zhang, J. A series of photosensitizers with incremental positive electric charges for photodynamic antitumor therapy. RSC Adv. 2019, 9, 24560–24567. [Google Scholar] [CrossRef] [Green Version]
- Dvorakova, M.; Landa, P. Anti-inflammatory activity of natural stilbenoids: A review. Pharmacol. Res. 2017, 124, 126–145. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Mendonsa, R.; Koli, M.; Subramanian, M.; Nayak, S.K. Antibacterial activity of resveratrol structural analogues: A mechanistic evaluation of the structure-activity relationship. Toxicol. Appl. Pharmacol. 2019, 367, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Filippis, B.D.; Ammazzalorso, A.; Amoroso, R.; Giampietro, L. Stilbene derivatives as new perspective in antifungal medicinal chemistry. Drug Dev. Res. 2019, 80, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-C.; Tsai, W.-J.; Ueng, Y.-F.; Tzeng, T.-T.; Chen, H.-L.; Zhu, P.-R.; Huang, C.-H.; Shiao, Y.-J.; Li, W.-T. Neuroprotective and Antineuroinflammatory Effects of Hydroxyl-Functionalized Stilbenes and 2-Arylbenzo[b]furans. J. Med. Chem. 2017, 60, 4062–4073. [Google Scholar]
- Chu, X.Y.; Yang, S.Z.; Zhu, M.Q.; Zhang, D.Y.; Shi, X.C.; Xia, B.; Yuan, Y.; Liu, M.; Wu, J.W. Isorhapontigenin Improves Diabetes in Mice via Regulating the Activity and Stability of PPARγ in Adipocytes. J. Agric. Food Chem. 2020, 68, 3976–3985. [Google Scholar] [CrossRef]
- Chou, Y.-C.; Ho, C.-T.; Pan, M.-H. Stilbenes: Chemistry and Molecular Mechanisms of Anti-obesity. Curr. Pharmacol. Rep. 2018, 4, 202–209. [Google Scholar] [CrossRef]
- Li, Y.-Q.; Li, Z.-L.; Zhao, W.-J.; Wen, R.-X.; Meng, Q.-W.; Zeng, Y. Synthesis of stilbene derivatives with inhibition of SARS coronavirus replication. Eur. J. Med. Chem. 2006, 41, 1084–1089. [Google Scholar] [CrossRef]
- Wahedi, H.M.; Ahmad, S.; Abbasi, S.W. Stilbene-based natural compounds as promising drug candidates against COVID-19. J. Biomol. Struct. Dyn. 2020, 1–10. [Google Scholar] [CrossRef]
- Shagufta; Ahmad, I. Tamoxifen a pioneering drug: An update on the therapeutic potential of tamoxifen derivatives. Eur. J. Med. Chem. 2018, 143, 515–531. [Google Scholar] [CrossRef]
- Wolfe, C.; Pagano, P.; Pillar, C.M.; Shinabarger, D.L.; Boulos, R.A. Comparison of the in vitro antibacterial activity of Ramizol, fidaxomicin, vancomycin, and metronidazole against 100 clinical isolates of Clostridium difficile by broth microdilution. Diagn. Microbiol. Infect. Dis. 2018, 92, 250–252. [Google Scholar] [CrossRef] [Green Version]
- Sibley, K.; Chen, J.; Koetzner, L.; Mendes, O.; Kimzey, A.; Lansita, J.; Boulos, R.A. A 14-day repeat dose oral gavage range-finding study of a first-in-class CDI investigational antibiotic, in rats. Sci. Rep. 2019, 9, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, S.; Prestidge, C.A.; Miesel, L.; Sweeney, D.; Shinabarger, D.L.; Boulos, R.A. Preclinical development of Ramizol, an antibiotic belonging to a new class, for the treatment of Clostridium difficile colitis. J. Antibiot. 2016, 69, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-H.; Huang, K.; Chen, S.-F.; Chen, Y.-Z.; Tung, C.-H.; Wu, L.-Z. Stiff-stilbene derivatives as new bright fluorophores with aggregation-induced emission. Sci. China Chem. 2019, 62, 1194–1197. [Google Scholar] [CrossRef]
- Villarón, D.; Wezenberg, S. Stiff-Stilbene Photoswitches: From Fundamental Studies to Emergent Applications. Angew. Chem. Int. Ed. 2020. [Google Scholar] [CrossRef]
- O’Hagan, M.; Peñalver, P.; Gibson, R.S.L.; Morales, J.C.; Galan, M.C. Stiff-Stilbene Ligands Target G-Quadruplex DNA and Exhibit Selective Anticancer and Antiparasitic Activity. Chem. Eur. J. 2019, 26, 6224–6233. [Google Scholar] [CrossRef]
- Sordon, S.; Popłoński, J.; Milczarek, M.; Stachowicz, M.; Tronina, T.; Kucharska, A.Z.; Wietrzyk, J.; Huszcza, E. Structure-Antioxidant-Antiproliferative Activity Relationships of Natural C7 and C7-C8 Hydroxylated Flavones and Flavanones. Antioxidants 2019, 8, 210. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.K.; Park, J.C.; Chong, Y. Aromatic Hydroxyl Group Plays a Critical Role in Antibacterial Activity of the Curcumin Analogues. Nat. Prod. Commun. 2012, 7, 57–58. [Google Scholar] [CrossRef] [Green Version]
- Kamauchi, H.; Oda, T.; Horiuchi, K.; Takao, K.; Sugita, Y. Synthesis of natural product-like polyprenylated phenols and quinones: Evaluation of their neuroprotective activities. Bioorg. Med. Chem. 2020, 28, 115156. [Google Scholar] [CrossRef]
- Ashikawa, K.; Majumdar, S.; Banerjee, S.; Bharti, A.C.; Shishodia, S.; Aggarwal, B.B. Piceatannol Inhibits TNF-Induced NF-κB Activation and NF-κB-Mediated Gene Expression Through Suppression of IκBα Kinase and p65 Phosphorylation. J. Immunol. 2002, 169, 6490–6497. [Google Scholar] [CrossRef] [Green Version]
- Murias, M.; Handler, N.; Erker, T.; Pleban, K.; Ecker, G.; Saiko, P.; Szekeres, T.; Jäger, W. Resveratrol analogues as selective cyclooxygenase-2 inhibitors: Synthesis and structure-activity relationship. Bioorg. Med. Chem. 2004, 12, 5571–5578. [Google Scholar] [CrossRef]
- Kucinska, M.; Piotrowska, H.; Luczak, M.W.; Mikula-Pietrasik, J.; Ksiazek, K.; Wozniak, M.; Wierzchowski, M.; Dudka, J.; Jäger, W.; Murias, M. Effects of hydroxylated resveratrol analogs on oxidative stress and cancer cells death in human acute T cell leukemia cell line: Prooxidative potential of hydroxylated resveratrol analogs. Chem. Biol. Interact. 2014, 209, 96–110. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Fu, Z.; Wei, Y.; Zhang, X.; Ma, L.; Gu, L.; Li, J. Antioxidant Activity and Neuroprotective Activity of Stilbenoids in Rat Primary Cortex Neurons via the PI3K/Akt Signalling Pathway. Molecules 2018, 23, 2328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, F.; Xie, Y.; Cao, H.; Yang, H.; Chen, X.; Xiao, J. Fetal bovine serum influences the stability and bioactivity of resveratrol analogues: A polyphenol-protein interaction approach. Food Chem. 2017, 219, 321–328. [Google Scholar] [CrossRef]
- Murias, M.; Jäger, W.; Handler, N.; Erker, T.; Horvath, Z.; Szekeres, T.; Nohl, H.; Gille, L. Antioxidant, prooxidant and cytotoxic activity of hydroxylated resveratrol analogues: Structure–activity relationship. Biochem. Pharmacol. 2005, 69, 903–912. [Google Scholar] [CrossRef] [PubMed]
- Saiko, P.; Szakmary, A.; Jaeger, W.; Szekeres, T. Resveratrol and its analogs: Defense against cancer, coronary disease and neurodegenerative maladies or just a fad? Mutat. Res. 2008, 658, 68–94. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Go, M.L. Quinone reductase induction activity of methoxylated analogues of resveratrol. Eur. J. Med. Chem. 2007, 42, 841–850. [Google Scholar] [CrossRef]
- Wang, P.; Sang, S. Metabolism and pharmacokinetics of resveratrol and pterostilbene. Biofactors 2018, 44, 16–25. [Google Scholar] [CrossRef]
- Ravishankar, D.; Albadawi, D.A.I.; Chaggar, V.; Patra, P.H.; Williams, H.F.; Salamah, M.; Vaiyapuri, R.; Dash, P.R.; Patel, K.; Watson, K.A.; et al. Isorhapontigenin, a resveratrol analogue selectively inhibits ADP-stimulated platelet activation. Eur. J. Pharmacol. 2019, 862, 172627. [Google Scholar] [CrossRef]
- Dai, Y.; Yeo, S.C.M.; Barnes, P.J.; Donnelly, L.E.; Loo, L.C.; Lin, H.-S. Pre-clinical Pharmacokinetic and Metabolomic Analyses of Isorhapontigenin, a Dietary Resveratrol Derivative. Front. Pharmacol. 2018, 9, 753. [Google Scholar] [CrossRef] [Green Version]
- Sergides, C.; Chirilă, M.; Silvestro, L.; Pitta, D.; Pittas, A. Bioavailability and safety study of resveratrol 500 mg tablets in healthy male and female volunteers. Exp. Ther. Med. 2016, 11, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Yeo, S.C.M.; Fenwick, P.S.; Barnes, P.J.; Lin, H.S.; Donnelly, L.E. Isorhapontigenin, a bioavailable dietary polyphenol, suppresses airway epithelial cell inflammation through a corticosteroid-independent mechanism. Br. J. Pharmacol. 2017, 174, 2043–2059. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wang, A.; Shi, P.; Zhang, H. A Theoretical Study on the Antioxidant Activity of Piceatannol and Isorhapontigenin Scavenging Nitric Oxide and Nitrogen Dioxide Radicals. PLoS ONE 2017, 12, e0169773. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wang, A.; Shi, P.; Zhang, H.; Li, Z. Quantum Chemical Study on the Antioxidation Mechanism of Piceatannol and Isorhapontigenin toward Hydroxyl and Hydroperoxyl Radicals. PLoS ONE 2015, 10, e0133259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treml, J.; Leláková, V.; Šmejkal, K.; Paulíčková, T.; Labuda, Š.; Granica, S.; Havlík, J.; Jankovská, D.; Padrtová, T.; Hošek, J. Antioxidant Activity of Selected Stilbenoid Derivatives in a Cellular Model System. Biomolecules 2019, 9, 468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Tu, C.; Liu, W.; Xiao, Y.; Wu, H. Isorhapontigenin Suppresses Interleukin-1β-Induced Inflammation and Cartilage Matrix Damage in Rat Chondrocytes. Inflammation 2019, 42, 2278–2285. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.-J.; Li, Z.-H.; Zhang, Y.; Zhou, G.; Zhang, J.-Q.; Deng, J.-M.; Bai, J.; Liu, G.-N.; Li, M.-H.; MacNee, W.; et al. Combination of erythromycin and dexamethasone improves corticosteroid sensitivity induced by CSE through inhibiting PI3K-δ/Akt pathway and increasing GR expression. Am. J. Physiol. Lung Cell Mol. Physiol. 2015, 309, L139–L146. [Google Scholar] [CrossRef]
- Fang, Y.; Yu, Y.; Hou, Q.; Zheng, X.; Zhang, M.; Zhang, D.; Li, J.; Wu, X.-R.; Huang, C. The Chinese herb isolate isorhapontigenin induces apoptosis in human cancer cells by down-regulating overexpression of antiapoptotic protein XIAP. J. Biol. Chem. 2012, 287, 35234–35243. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.; Xu, Z.; Gu, J.; Huang, H.; Gao, G.; Zhang, X.; Li, J.; Jin, H.; Jiang, G.; Sun, H.; et al. Induction of miR-137 by Isorhapontigenin (ISO) Directly Targets Sp1 Protein Translation and Mediates Its Anticancer Activity Both In Vitro and In Vivo. Mol. Cancer Ther. 2016, 15, 512–522. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Zeng, X.; Xu, J.; Xu, D.; Li, J.; Jin, H.; Jiang, G.; Han, X.; Huang, C. Isorhapontigenin suppresses growth of patient-derived glioblastoma spheres through regulating miR-145/SOX2/cyclin D1 axis. Neuro. Oncol. 2016, 18, 830–839. [Google Scholar] [CrossRef] [Green Version]
- Jiang, G.; Wu, A.D.; Huang, C.; Gu, J.; Zhang, L.; Huang, H.; Liao, X.; Li, J.; Zhang, D.; Zeng, X.; et al. Isorhapontigenin (ISO) Inhibits Invasive Bladder Cancer Formation In Vivo and Human Bladder Cancer Invasion In Vitro by Targeting STAT1/FOXO1 Axis. Cancer Prev. Res. (Phila) 2016, 9, 567–580. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Tian, Z.; Hua, X.; Huang, M.; Xu, J.; Li, J.; Huang, H.; Cohen, M.; Huang, C. Isorhapontigenin (ISO) inhibits stem cell-like properties and invasion of bladder cancer cell by attenuating CD44 expression. Cell. Mol. Life Sci. 2020, 77, 351–363. [Google Scholar] [CrossRef] [PubMed]
- Subedi, L.; Teli, M.K.; Lee, J.H.; Gaire, B.P.; Kim, M.-H.; Kim, S.Y. A Stilbenoid Isorhapontigenin as a Potential Anti-Cancer Agent against Breast Cancer through Inhibiting Sphingosine Kinases/Tubulin Stabilization. Cancers 2019, 11, 1947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, C.; Zhu, Q.; Wu, Z.; Yin, Y.; Kang, D.; Lu, S.; Liu, P. Isorhapontigenin induced cell growth inhibition and apoptosis by targeting EGFR-related pathways in prostate cancer. J. Cell. Physiol. 2018, 233, 1104–1119. [Google Scholar] [CrossRef]
- Zakova, T.; Rondevaldova, J.; Bernardos, A.; Landa, P.; Kokoska, L. The relationship between structure and in vitro antistaphylococcal effect of plant-derived stilbenes. Acta Microbiol. Immunol. Hung. 2018, 65, 467–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moilanen, L.J.; Hämäläinen, M.; Lehtimäki, L.; Nieminen, R.M.; Muraki, K.; Moilanen, E. Pinosylvin Inhibits TRPA1-Induced Calcium Influx In Vitro and TRPA1-Mediated Acute Paw Inflammation In Vivo. Basic Clin. Pharmacol. Toxicol. 2016, 118, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Eräsalo, H.; Hämäläinen, M.; Leppänen, T.; Mäki-Opas, I.; Laavola, M.; Haavikko, R.; Yli-Kauhaluoma, J.; Moilanen, E. Natural Stilbenoids Have Anti-Inflammatory Properties in Vivo and Down-Regulate the Production of Inflammatory Mediators NO, IL6, and MCP1 Possibly in a PI3K/Akt-Dependent Manner. J. Nat. Prod. 2018, 81, 1131–1142. [Google Scholar] [CrossRef] [PubMed]
- Laavola, M.; Leppänen, T.; Hämäläinen, M.; Vuolteenaho, K.; Moilanen, T.; Nieminen, R.; Moilanen, E. IL-6 in Osteoarthritis: Effects of Pine Stilbenoids. Molecules 2019, 24, 109. [Google Scholar] [CrossRef] [Green Version]
- Laavola, M.; Nieminen, R.; Leppänen, T.; Eckerman, C.; Holmbom, B.; Moilanen, E. Pinosylvin and monomethylpinosylvin, constituents of an extract from the knot of Pinus sylvestris, reduce inflammatory gene expression and inflammatory responses in vivo. J. Agric. Food Chem. 2015, 63, 3445–3453. [Google Scholar] [CrossRef]
- Modi, S.; Yaluri, N.; Kokkola, T.; Laakso, M. Plant-derived compounds strigolactone GR24 and pinosylvin activate SIRT1 and enhance glucose uptake in rat skeletal muscle cells. Sci. Rep. 2017, 7, 17606. [Google Scholar] [CrossRef] [Green Version]
- Modi, S.; Yaluri, N.; Kokkola, T. Strigolactone GR24 and pinosylvin attenuate adipogenesis and inflammation of white adipocytes. Biochem. Biophys. Res. Commun. 2018, 499, 164–169. [Google Scholar] [CrossRef]
- Chen, M.-K.; Liu, Y.-T.; Lin, J.-T.; Lin, C.-C.; Chuang, Y.-C.; Lo, Y.-S.; Hsi, Y.-T.; Hsieh, M.-J. Pinosylvin reduced migration and invasion of oral cancer carcinoma by regulating matrix metalloproteinase-2 expression and extracellular signal-regulated kinase pathway. Biomed. Pharmacother. 2019, 117, 109160. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Seo, Y.; Park, H. Pinosylvin enhances leukemia cell death via down-regulation of AMPKα expression. Phytother. Res. 2018, 32, 2097–2104. [Google Scholar] [CrossRef]
- Miao, Y.; Cui, L.; Chen, Z.; Zhang, L. Gene expression profiling of DMU-212-induced apoptosis and anti-angiogenesis in vascular endothelial cells. Pharm. Biol. 2016, 54, 660–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastorková, B.; Vrzalová, A.; Bachleda, P.; Dvořák, Z. Hydroxystilbenes and methoxystilbenes activate human aryl hydrocarbon receptor and induce CYP1A genes in human hepatoma cells and human hepatocytes. Food Chem. Toxicol. 2017, 103, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Qiang, P.; Xu, Q.; Zhao, Y.; Dai, F.; Zhang, L. Trans-3,4,5,4′-tetramethoxystilbene, a resveratrol analog, potently inhibits angiogenesis in vitro and in vivo. Acta Pharmacol. Sin. 2013, 34, 1174–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Androutsopoulos, V.P.; Fragiadaki, I.; Tosca, A. Activation of ERK1/2 is required for the antimitotic activity of the resveratrol analogue 3,4,5,4′-tetramethoxystilbene (DMU-212) in human melanoma cells. Exp. Dermatol. 2015, 24, 632–634. [Google Scholar] [CrossRef] [Green Version]
- Piotrowska, H.; Kujawska, M.; Nowicki, M.; Petzke, E.; Ignatowicz, E.; Krajka-Kuźniak, V.; Zawierucha, P.; Wierzchowski, M.; Murias, M.; Jodynis-Liebert, J. Effect of resveratrol analogue, DMU-212, on antioxidant status and apoptosis-related genes in rat model of hepatocarcinogenesis. Hum. Exp. Toxicol. 2017, 36, 160–175. [Google Scholar] [CrossRef]
- Castelli, G.; Bruno, F.; Vitale, F.; Roberti, M.; Colomba, C.; Giacomini, E.; Guidotti, L.; Cascio, A.; Tolomeo, M. In vitro antileishmanial activity of trans-stilbene and terphenyl compounds. Exp. Parasitol. 2016, 166, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Belleri, M.; Ribatti, D.; Nicoli, S.; Cotelli, F.; Forti, L.; Vannini, V.; Stivala, L.A.; Presta, M. Antiangiogenic and vascular targeting activity of the microtubule-destabilizing trans-resveratrol derivative 3,5,4′-trimethoxystilbene. Mol. Pharmacol. 2005, 67, 1451–1459. [Google Scholar] [CrossRef]
- Traversi, G.; Fiore, M.; Percario, Z.; Degrassi, F.; Cozzi, R. The resveratrol analogue trimethoxystilbene inhibits cancer cell growth by inducing multipolar cell mitosis. Mol. Carcinog. 2017, 56, 1117–1126. [Google Scholar] [CrossRef]
- Sale, S.; Verschoyle, R.D.; Boocock, D.; Jones, D.J.L.; Wilsher, N.; Ruparelia, K.C.; Potter, G.A.; Farmer, P.B.; Steward, W.P.; Gescher, A.J. Pharmacokinetics in mice and growth-inhibitory properties of the putative cancer chemopreventive agent resveratrol and the synthetic analogue trans 3,4,5,4′-tetramethoxystilbene. Br. J. Cancer 2004, 90, 736–744. [Google Scholar] [CrossRef]
- Androutsopoulos, V.P.; Ruparelia, K.C.; Papakyriakou, A.; Filippakis, H.; Tsatsakis, A.M.; Spandidos, D.A. Anticancer effects of the metabolic products of the resveratrol analogue, DMU-212: Structural requirements for potency. Eur. J. Med. Chem. 2011, 46, 2586–2595. [Google Scholar] [CrossRef]
- Piotrowska-Kempisty, H.; Ruciński, M.; Borys, S.; Kucińska, M.; Kaczmarek, M.; Zawierucha, P.; Wierzchowski, M.; Łażewski, D.; Murias, M.; Jodynis-Liebert, J. 3′-hydroxy-3,4,5,4′-tetramethoxystilbene, the metabolite of resveratrol analogue DMU-212, inhibits ovarian cancer cell growth in vitro and in a mice xenograft model. Sci. Rep. 2016, 6, 32627. [Google Scholar] [CrossRef] [Green Version]
- McErlane, V.M.; Ulhaq, S.; Hylands, F.M.; Honess, D.J.; Stratford, M.R.; Everett, S.A.; Wilsher, N.; Butler, P.J.; Potter, G.A. Pre-clinical development of DMU212, a cytochrome P450 CYP1A1 and CYP1B1-activated prodrug for targeted cancer therapy. Cancer. Res. 2005, 65, 930–931. [Google Scholar]
- Piotrowska-Kempisty, H.; Klupczyńska, A.; Trzybulska, D.; Kulcenty, K.; Sulej-Suchomska, A.M.; Kucińska, M.; Mikstacka, R.; Wierzchowski, M.; Murias, M.; Baer-Dubowska, W.; et al. Role of CYP1A1 in the biological activity of methylated resveratrol analogue, 3,4,5,4′-tetramethoxystilbene (DMU-212) in ovarian cancer A-2780 and non-cancerous HOSE cells. Toxicol. Lett. 2017, 267, 59–66. [Google Scholar] [CrossRef]
- Chun, Y.-J.; Oh, Y.-K.; Kim, B.J.; Kim, D.; Kim, S.S.; Choi, H.-K.; Kim, M.-Y. Potent inhibition of human cytochrome P450 1B1 by tetramethoxystilbene. Toxicol. Lett. 2009, 189, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Chang, I.; Mitsui, Y.; Kim, S.K.; Sun, J.S.; Jeon, H.S.; Kang, J.Y.; Kang, N.J.; Fukuhara, S.; Gill, A.; Shahryari, V.; et al. Cytochrome P450 1B1 inhibition suppresses tumorigenicity of prostate cancer via caspase-1 activation. Oncotarget 2017, 8, 39087–39100. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska, H.; Kucinska, M.; Murias, M. Expression of CYP1A1, CYP1B1 and MnSOD in a panel of human cancer cell lines. Mol. Cell. Biochem. 2013, 383, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Androutsopoulos, V.P.; Spyrou, I.; Ploumidis, A.; Papalampros, A.E.; Kyriakakis, M.; Delakas, D.; Spandidos, D.A.; Tsatsakis, A.M. Expression Profile of CYP1A1 and CYP1B1 Enzymes in Colon and Bladder Tumors. PLoS ONE 2013, 8, e82487. [Google Scholar] [CrossRef]
- Go, R.-E.; Hwang, K.-A.; Choi, K.-C. Cytochrome P450 1 family and cancers. J. Steroid. Biochem. Mol. Biol. 2015, 147, 24–30. [Google Scholar] [CrossRef]
- Shimada, T. Inhibition of Carcinogen-Activating Cytochrome P450 Enzymes by Xenobiotic Chemicals in Relation to Antimutagenicity and Anticarcinogenicity. Toxicol. Res. 2017, 33, 79–96. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Hu, B.; He, X.; Mao, J.; Wang, Y.; Wang, J.; Zhang, T.; Zheng, J.; Peng, Y.; Zhang, F. Overcoming Taxol-resistance in A549 cells: A comprehensive strategy of targeting P-gp transporter, AKT/ERK pathways, and cytochrome P450 enzyme CYP1B1 by 4-hydroxyemodin. Biochem. Pharmacol. 2020, 171, 113733. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Chen, W.; Cao, C.; Shi, Y.; Ye, W.; Hu, J.; Wang, L.; Zhou, W. Design and synthesis of α-naphthoflavone chimera derivatives able to eliminate cytochrome P450 (CYP)1B1-mediated drug resistance via targeted CYP1B1 degradation. Eur. J. Med. Chem. 2020, 189, 112028. [Google Scholar] [CrossRef]
- Abdul aziz, A.A.; MD Salleh, M.S.; Mohamad, I.; Bhavaraju, V.M.K.; Yahya, M.M.; Zakaria, A.D.; Gan, S.H.; Ankathil, R. Single-nucleotide polymorphisms and mRNA expression of CYP1B1 influence treatment response in triple negative breast cancer patients undergoing chemotherapy. J. Genet. 2018, 97, 1185–1194. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Molavi, O.; Haddadi, A.; Lai, R.; Gossage, R.A.; Lavasanifar, A. Resveratrol analog trans 3,4,5,4′-tetramethoxystilbene (DMU-212) mediates anti-tumor effects via mechanism different from that of resveratrol. Cancer Chemother. Pharmacol. 2008, 63, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Cichocki, M.; Baer-Dubowska, W.; Wierzchowski, M.; Murias, M.; Jodynis-Liebert, J. 3,4,5,4′-trans-tetramethoxystilbene (DMU-212) modulates the activation of NF-κB, AP-1, and STAT3 transcription factors in rat liver carcinogenesis induced by initiation-promotion regimen. Mol. Cell. Biochem. 2014, 391, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.-X.; Yao, X.-J.; Xu, S.W.; Wong, V.K.-W.; He, J.-X.; Ding, J.; Xue, W.-W.; Mujtaba, T.; Michelangeli, F.; Huang, M.; et al. (Z)3,4,5,4′-trans-tetramethoxystilbene, a new analogue of resveratrol, inhibits gefitinb-resistant non-small cell lung cancer via selectively elevating intracellular calcium level. Sci. Rep. 2015, 5, 16348. [Google Scholar] [CrossRef] [Green Version]
- McLoughlin, E.C.; O’Boyle, N.M. Colchicine-Binding Site Inhibitors from Chemistry to Clinic: A Review. Pharmaceuticals 2020, 13, 8. [Google Scholar] [CrossRef] [Green Version]
- Gaspari, R.; Prota, A.E.; Bargsten, K.; Cavalli, A.; Steinmetz, M.O. Structural Basis of cis- and trans-Combretastatin Binding to Tubulin. Chem 2017, 2, 102–113. [Google Scholar] [CrossRef] [Green Version]
- Siemann, D.W.; Chaplin, D.J.; Walicke, P.A. A review and update of the current status of the vasculature-disabling agent combretastatin-A4 phosphate (CA4P). Expert Opin. Investig. Drugs 2009, 18, 189–197. [Google Scholar] [CrossRef]
- Sherbet, G.V. Suppression of angiogenesis and tumour progression by combretastatin and derivatives. Cancer Lett. 2017, 403, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Hamze, A.; Alami, M.; Provot, O. Developments of isoCombretastatin A-4 derivatives as highly cytotoxic agents. Eur. J. Med. Chem. 2020, 190, 112110. [Google Scholar] [CrossRef] [PubMed]
- Nainwal, L.M.; Alam, M.M.; Shaquiquzzaman, M.; Marella, A.; Kamal, A. Combretastatin-based compounds with therapeutic characteristics: A patent review. Expert. Opin. Ther. Pat. 2019, 29, 703–731. [Google Scholar] [CrossRef] [PubMed]
- Thébault, C.J.; Ramniceanu, G.; Boumati, S.; Michel, A.; Seguin, J.; Larrat, B.; Mignet, N.; Ménager, C.; Doan, B.-T. Theranostic MRI liposomes for magnetic targeting and ultrasound triggered release of the antivascular CA4P. J. Control. Release 2020, 322, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Assali, M.; Kittana, N.; Alhaj Qasem, S.; Adas, R.; Saleh, D.; Arar, A.; Zohud, O. Combretastatin A4-camptothecin micelles as combination therapy for effective anticancer activity. RSC Adv. 2019, 9, 1055–1061. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Shen, N.; Song, W.; Yu, H.; Sakurai, K.; Tang, Z.; Li, G. Combretastatin A4 nanodrug combined plerixafor for inhibiting tumor growth and metastasis simultaneously. Biomater. Sci. 2019, 7, 5283–5291. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Tang, Z.; Hu, C.; Zhang, D.; Shen, N.; Yu, H.; Chen, X. Selectively Potentiating Hypoxia Levels by Combretastatin A4 Nanomedicine: Toward Highly Enhanced Hypoxia-Activated Prodrug Tirapazamine Therapy for Metastatic Tumors. Adv. Mater. 2019, 31, 1805955. [Google Scholar] [CrossRef]
- Shen, N.; Wu, J.; Yang, C.; Yu, H.; Yang, S.; Li, T.; Chen, J.; Tang, Z.; Chen, X. Combretastatin A4 Nanoparticles Combined with Hypoxia-Sensitive Imiquimod: A New Paradigm for the Modulation of Host Immunological Responses during Cancer Treatment. Nano Lett. 2019, 19, 8021–8031. [Google Scholar] [CrossRef]
- Bukhari, S.N.A.; Kumar, G.B.; Revankar, H.M.; Qin, H.-L. Development of combretastatins as potent tubulin polymerization inhibitors. Bioorg. Chem. 2017, 72, 130–147. [Google Scholar] [CrossRef]
- Seddigi, Z.S.; Malik, M.S.; Saraswati, A.P.; Ahmed, S.A.; Babalghith, A.O.; Lamfon, H.A.; Kamal, A. Recent advances in combretastatin based derivatives and prodrugs as antimitotic agents. MedChemComm 2017, 8, 1592–1603. [Google Scholar] [CrossRef]
- Gaukroger, K.; Hadfield, J.A.; Lawrence, N.J.; Nolan, S.; McGown, A.T. Structural requirements for the interaction of combretastatins with tubulin: How important is the trimethoxy unit? Org. Biomol. Chem. 2003, 1, 3033–3037. [Google Scholar] [CrossRef] [PubMed]
- Dallavalle, S.; Dobričić, V.; Lazzarato, L.; Gazzano, E.; Machuqueiro, M.; Pajeva, I.; Tsakovska, I.; Zidar, N.; Fruttero, R. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. Drug Resist. Updates 2020, 50, 100682. [Google Scholar] [CrossRef] [PubMed]
- Thi, T.H.N.; Thi, Y.T.; Nguyen, L.A.; Vo, N.B.; Ngo, Q.A. Design, Synthesis and Biological Activities of New Pyrazole Derivatives Possessing Both Coxib and Combretastatins Pharmacophores. Chem. Biodiver. 2019, 16, e1900108. [Google Scholar] [CrossRef] [PubMed]
- Jadala, C.; Sathish, M.; Reddy, T.S.; Reddy, V.G.; Tokala, R.; Bhargava, S.K.; Shankaraiah, N.; Nagesh, N.; Kamal, A. Synthesis and in vitro cytotoxicity evaluation of β-carboline-combretastatin carboxamides as apoptosis inducing agents: DNA intercalation and topoisomerase-II inhibition. Bioorg. Med. Chem. 2019, 27, 3285–3298. [Google Scholar] [CrossRef]
- Punganuru, S.R.; Madala, H.R.; Venugopal, S.N.; Samala, R.; Mikelis, C.; Srivenugopal, K.S. Design and synthesis of a C7-aryl piperlongumine derivative with potent antimicrotubule and mutant p53-reactivating properties. Eur. J. Med. Chem. 2016, 107, 233–244. [Google Scholar] [CrossRef]
- Basak, D.; Punganuru, S.R.; Srivenugopal, K.S. Piperlongumine exerts cytotoxic effects against cancer cells with mutant p53 proteins at least in part by restoring the biological functions of the tumor suppressor. Int. J. Oncol. 2016, 48, 1426–1436. [Google Scholar] [CrossRef] [Green Version]
- Meegan, M.J.; Nathwani, S.; Twamley, B.; Zisterer, D.M.; O’Boyle, N.M. Piperlongumine (piplartine) and analogues: Antiproliferative microtubule-destabilising agents. Eur. J. Med. Chem. 2017, 125, 453–463. [Google Scholar] [CrossRef]
- Liu, W.; Liang, L.; Zhao, L.; Tan, H.; Wu, J.; Qin, Q.; Gou, X.; Sun, X. Synthesis and characterization of a photoresponsive doxorubicin/combretastatin A4 hybrid prodrug. Bioorg. Med. Chem. Lett. 2019, 29, 487–490. [Google Scholar] [CrossRef]
- Doura, T.; Takahashi, K.; Ogra, Y.; Suzuki, N. Combretastatin A4-β-Galactosyl Conjugates for Ovarian Cancer Prodrug Monotherapy. ACS Med. Chem. Lett. 2017, 8, 211–214. [Google Scholar] [CrossRef] [Green Version]
- Zefirov, N.A.; Zefirova, O.N. Heterocycles as classical and nonclassical ring B isosters in combretastatin A-4. Chem. Heterocycl. Comp. 2017, 53, 273–280. [Google Scholar] [CrossRef]
- Kakkar, S.; Tahlan, S.; Lim, S.M.; Ramasamy, K.; Mani, V.; Shah, S.A.A.; Narasimhan, B. Benzoxazole derivatives: Design, synthesis and biological evaluation. Chem. Cent. J. 2018, 12, 92. [Google Scholar] [CrossRef] [PubMed]
- Jonckers, T.H.M.; Rouan, M.-C.; Haché, G.; Schepens, W.; Hallenberger, S.; Baumeister, J.; Sasaki, J.C. Benzoxazole and benzothiazole amides as novel pharmacokinetic enhancers of HIV protease inhibitors. Bioorg. Med. Chem. Lett. 2012, 22, 4998–5002. [Google Scholar] [CrossRef] [PubMed]
- Desai, S.; Desai, V.; Shingade, S. In-vitro Anti-cancer assay and apoptotic cell pathway of newly synthesized benzoxazole-N-heterocyclic hybrids as potent tyrosine kinase inhibitors. Bioorg. Chem. 2020, 94, 103382. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Yang, Q.; Liu, T.; Li, K.; Liu, Y.; Zhu, C.; Zhang, Z.; Li, L.; Zhang, C.; Xie, M.; et al. Design, synthesis and in vitro evaluation of 6-amide-2-aryl benzoxazole/benzimidazole derivatives against tumor cells by inhibiting VEGFR-2 kinase. Eur. J. Med. Chem. 2019, 179, 147–165. [Google Scholar] [CrossRef] [PubMed]
- Sattar, R.; Mukhtar, R.; Atif, M.; Hasnain, M.; Irfan, A. Synthetic transformations and biological screening of benzoxazole derivatives: A review. J. Heterocycl. Chem. 2020, 57, 2079–2107. [Google Scholar] [CrossRef]
- Gerova, M.S.; Stateva, S.R.; Radonova, E.M.; Kalenderska, R.B.; Rusew, R.I.; Nikolova, R.P.; Chanev, C.D.; Shivachev, B.L.; Apostolova, M.D.; Petrov, O.I. Combretastatin A-4 analogues with benzoxazolone scaffold: Synthesis, structure and biological activity. Eur. J. Med. Chem. 2016, 120, 121–133. [Google Scholar] [CrossRef]
- Kumar, V.K.; Puli, V.S.; Babu, A.V.; Ruddarraju, R.R.; Prasad, K.R.S. Synthesis, anticancer evaluation, and molecular docking studies of benzoxazole linked combretastatin analogues. Med. Chem. Res. 2020, 29, 528–537. [Google Scholar] [CrossRef]
- Maguire, C.J.; Chen, Z.; Mocharla, V.P.; Sriram, M.; Strecker, T.E.; Hamel, E.; Zhou, H.; Lopez, R.; Wang, Y.; Mason, R.P.; et al. Synthesis of dihydronaphthalene analogues inspired by combretastatin A-4 and their biological evaluation as anticancer agents. Med. Chem. Commun. 2018, 9, 1649–1662. [Google Scholar] [CrossRef]
- Maguire, C.J.; Carlson, G.J.; Ford, J.W.; Strecker, T.E.; Hamel, E.; Trawick, M.L.; Pinney, K.G. Synthesis and biological evaluation of structurally diverse α-conformationally restricted chalcones and related analogues. Med. Chem. Commun. 2019, 10, 1445–1456. [Google Scholar] [CrossRef]
- Brand, Y.M.; Kouznetsov, V.V.; Puerto, C.E.; Linares, V.C.R.; Castaño, V.T.; Betancur-Galvis, L.; Brand, Y.M.; Kouznetsov, V.V.; Puerto, C.E.; Linares, V.C.R.; et al. Combretastatin A-4: The Antitubulin Agent that Inspired the Design and Synthesis of Styrene and Spiroisatin Hybrids as Promising Cytotoxic, Antifungal and Antiviral Compounds. J. Braz. Chem. Soc. 2020, 31, 999–1010. [Google Scholar] [CrossRef]
- González, M.; Ellahioui, Y.; Álvarez, R.; Gallego-Yerga, L.; Caballero, E.; Vicente-Blázquez, A.; Ramudo, L.; Marín, M.; Sanz, C.; Medarde, M.; et al. The Masked Polar Group Incorporation (MPGI) Strategy in Drug Design: Effects of Nitrogen Substitutions on Combretastatin and Isocombretastatin Tubulin Inhibitors. Molecules 2019, 24, 4319. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Li, G.; Wang, X.; Xu, H.; Zhang, Y.; Gao, Q. Deciphering the origins of molecular toxicity of combretastatin A4 and its glycoconjugates: Interactions with major drug transporters and their safety profiles in vitro and in vivo. Med. Chem. Commun. 2017, 8, 1542–1552. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Huang, R.; Gou, S.; Wang, Z.; Liao, Z.; Wang, H. Combretastatin A-4 Analogue: A Dual-Targeting and Tubulin Inhibitor Containing Antitumor Pt(IV) Moiety with a Unique Mode of Action. Bioconjugate Chem. 2016, 27, 2132–2148. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Hu, M.; Qiu, L. Drug resistance reversal by combretastatin-A4 phosphate loaded with doxorubicin in polymersomes independent of angiogenesis effect. J. Pharm. Pharmacol. 2017, 69, 844–855. [Google Scholar] [CrossRef] [PubMed]
- Ojike, F.O.; Lavignac, N.; Casely-Hayford, M.A. Synthesis and in Vitro Bioactivity of Polyunsaturated Fatty Acid Conjugates of Combretastatin A-4. J. Nat. Prod. 2018, 81, 2101–2105. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Ma, J.; Fu, Z.; Xu, Y.; Gao, B.; Yao, J.; Xu, W.; Chu, K.; Chen, J. Development Of Novel Liposome-Encapsulated Combretastatin A4 Acylated Derivatives: Prodrug Approach For Improving Antitumor Efficacy. Int. J. Nanomed. 2019, 14, 8805–8818. [Google Scholar] [CrossRef] [Green Version]
- Conesa-Milián, L.; Falomir, E.; Murga, J.; Carda, M.; Meyen, E.; Liekens, S.; Alberto Marco, J. Synthesis and biological evaluation of carbamates derived from aminocombretastatin A-4 as vascular disrupting agents. Eur. J. Med. Chem. 2018, 147, 183–193. [Google Scholar] [CrossRef]
- Richter, M.; Leuthold, M.M.; Graf, D.; Bartenschlager, R.; Klein, C.D. Prodrug Activation by a Viral Protease: Evaluating Combretastatin Peptide Hybrids To Selectively Target Infected Cells. ACS Med. Chem. Lett. 2019, 10, 1115–1121. [Google Scholar] [CrossRef]
- Agut, R.; Falomir, E.; Murga, J.; Martín-Beltrán, C.; Gil-Edo, R.; Pla, A.; Carda, M.; Marco, J.A. Synthesis of Combretastatin A-4 and 3′-Aminocombretastatin A-4 derivatives with Aminoacid Containing Pendants and Study of Their Interaction with Tubulin and as Downregulators of the VEGF, hTERT and c-Myc Gene Expression. Molecules 2020, 25, 660. [Google Scholar] [CrossRef] [Green Version]
- Richter, M.; Boldescu, V.; Graf, D.; Streicher, F.; Dimoglo, A.; Bartenschlager, R.; Klein, C.D. Synthesis, Biological Evaluation, and Molecular Docking of Combretastatin and Colchicine Derivatives and their hCE1-Activated Prodrugs as Antiviral Agents. ChemMedChem 2019, 14, 469–483. [Google Scholar] [CrossRef]
- Qin, H.; Yu, H.; Sheng, J.; Zhang, D.; Shen, N.; Liu, L.; Tang, Z.; Chen, X. PI3Kgamma Inhibitor Attenuates Immunosuppressive Effect of Poly(l-Glutamic Acid)-Combretastatin A4 Conjugate in Metastatic Breast Cancer. Adv. Sci. 2019, 6, 1900327. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, D.; Song, W.; Tang, Z.; Zhu, J.; Ma, Z.; Wang, X.; Chen, X.; Tong, T. A poly(l-glutamic acid)-combretastatin A4 conjugate for solid tumor therapy: Markedly improved therapeutic efficiency through its low tissue penetration in solid tumor. Acta Biomater. 2017, 53, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Penthala, N.R.; Janganati, V.; Bommagani, S.; Crooks, P.A. Synthesis and evaluation of a series of quinolinyl trans-cyanostilbene analogs as anticancer agents. Med. Chem. Commun. 2014, 5, 886–890. [Google Scholar] [CrossRef]
- Rasolofonjatovo, E.; Provot, O.; Hamze, A.; Bignon, J.; Thoret, S.; Brion, J.-D.; Alami, M. Regioselective hydrostannation of diarylalkynes directed by a labile ortho bromine atom: An easy access to stereodefined triarylolefins, hybrids of combretastatin A-4 and isocombretastatin A-4. Eur. J. Med. Chem. 2010, 45, 3617–3626. [Google Scholar] [CrossRef]
- Keely, N.O.; Carr, M.; Yassin, B.; Ana, G.; Lloyd, D.G.; Zisterer, D.; Meegan, M.J. Design, Synthesis and Biochemical Evaluation of Novel Selective Estrogen Receptor Ligand Conjugates Incorporating an Endoxifen-Combretastatin Hybrid Scaffold. Biomedicines 2016, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Kelly, P.M.; Keely, N.O.; Bright, S.A.; Yassin, B.; Ana, G.; Fayne, D.; Zisterer, D.M.; Meegan, M.J. Novel Selective Estrogen Receptor Ligand Conjugates Incorporating Endoxifen-Combretastatin and Cyclofenil-Combretastatin Hybrid Scaffolds: Synthesis and Biochemical Evaluation. Molecules 2017, 22, 1440. [Google Scholar] [CrossRef]
- Jadala, C.; Sathish, M.; Anchi, P.; Tokala, R.; Lakshmi, U.J.; Reddy, V.G.; Shankaraiah, N.; Godugu, C.; Kamal, A. Synthesis of Combretastatin-A4 Carboxamidest that Mimic Sulfonyl Piperazines by a Molecular Hybridization Approach: In vitro Cytotoxicity Evaluation and Inhibition of Tubulin Polymerization. ChemMedChem 2019, 14, 2052–2060. [Google Scholar] [CrossRef] [Green Version]
- O’Boyle, N.M.; Ana, G.; Kelly, P.M.; Nathwani, S.M.; Noorani, S.; Fayne, D.; Bright, S.A.; Twamley, B.; Zisterer, D.M.; Meegan, M.J. Synthesis and evaluation of antiproliferative microtubule-destabilising combretastatin A-4 piperazine conjugates. Org. Biomol. Chem. 2019, 17, 6184–6200. [Google Scholar] [CrossRef]
- Jung, E.-K.; Leung, E.; Barker, D. Synthesis and biological activity of pyrrole analogues of combretastatin A-4. Bioorg. Med. Chem. Lett. 2016, 26, 3001–3005. [Google Scholar] [CrossRef]
- Stefański, T.; Mikstacka, R.; Kurczab, R.; Dutkiewicz, Z.; Kucińska, M.; Murias, M.; Zielińska-Przyjemska, M.; Cichocki, M.; Teubert, A.; Kaczmarek, M.; et al. Design, synthesis, and biological evaluation of novel combretastatin A-4 thio derivatives as microtubule targeting agents. Eur. J. Med. Chem. 2018, 144, 797–816. [Google Scholar] [CrossRef]
- Chaudhary, V.; Venghateri, J.B.; Dhaked, H.P.S.; Bhoyar, A.S.; Guchhait, S.K.; Panda, D. Novel Combretastatin-2-aminoimidazole Analogues as Potent Tubulin Assembly Inhibitors: Exploration of Unique Pharmacophoric Impact of Bridging Skeleton and Aryl Moiety. J. Med. Chem. 2016, 59, 3439–3451. [Google Scholar] [PubMed]
- Ashraf, M.; Shaik, T.B.; Malik, M.S.; Syed, R.; Mallipeddi, P.L.; Vardhan, M.V.P.S.V.; Kamal, A. Design and synthesis of cis-restricted benzimidazole and benzothiazole mimics of combretastatin A-4 as antimitotic agents with apoptosis inducing ability. Bioorg. Med. Chem. Lett. 2016, 26, 4527–4535. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Srivastava, S.; Manne, R.K.; Sisodiya, S.; Santra, M.K.; Guchhait, S.K.; Panda, D. C12, a combretastatin-A4 analog, exerts anticancer activity by targeting microtubules. Biochem. Pharmacol. 2019, 170, 113663. [Google Scholar] [CrossRef]
- Mahal, K.; Biersack, B.; Schruefer, S.; Resch, M.; Ficner, R.; Schobert, R.; Mueller, T. Combretastatin A-4 derived 5-(1-methyl-4-phenyl-imidazol-5-yl)indoles with superior cytotoxic and anti-vascular effects on chemoresistant cancer cells and tumors. Eur. J. Med. Chem. 2016, 118, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Wang, P.; Zhang, W.; Li, J.; Zhang, Q.; Qi, X.; Liu, M. CA-1H, a novel oxazole bearing analogue of combretastatin A-4, disrupts the tumor vasculatures and inhibits the tumor growth via inhibiting tubulin polymerization. Biomed. Pharmacoth. 2016, 80, 151–161. [Google Scholar] [CrossRef]
- Wang, Z.; Qi, H.; Shen, Q.; Lu, G.; Li, M.; Bao, K.; Wu, Y.; Zhang, W. 4,5-Diaryl-3H-1,2-dithiole-3-thiones and related compounds as combretastatin A-4/oltipraz hybrids: Synthesis, molecular modelling and evaluation as antiproliferative agents and inhibitors of tubulin. Eur. J. Med. Chem. 2016, 122, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, D.; Hong, Z.; Guo, S.; Liu, M.; Zuo, D.; Ge, D.; Qin, M.; Sun, D. Synthesis and biological evaluation of 4,6-diphenyl-2-(1H-pyrrol-1-yl)nicotinonitrile analogues of crolibulin and combretastatin A-4. Eu.r J. Med. Chem. 2018, 146, 185–193. [Google Scholar] [CrossRef]
- Shringare, S.N.; Chavan, H.V.; Bhale, P.S.; Dongare, S.B.; Mule, Y.B.; Patil, S.B.; Bandgar, B.P. Synthesis and pharmacological evaluation of combretastatin-A4 analogs of pyrazoline and pyridine derivatives as anticancer, anti-inflammatory and antioxidant agents. Med. Chem. Res. 2018, 27, 1226–1237. [Google Scholar] [CrossRef]
- Kumar, B.; Sharma, P.; Gupta, V.P.; Khullar, M.; Singh, S.; Dogra, N.; Kumar, V. Synthesis and biological evaluation of pyrimidine bridged combretastatin derivatives as potential anticancer agents and mechanistic studies. Bioorg. Chem. 2018, 78, 130–140. [Google Scholar] [CrossRef]
- Brown, A.W.; Fisher, M.; Tozer, G.M.; Kanthou, C.; Harrity, J.P.A. Sydnone Cycloaddition Route to Pyrazole-Based Analogs of Combretastatin A4. J. Med. Chem. 2016, 59, 9473–9488. [Google Scholar]
- Khandaker, T.A.; Hess, J.D.; Aguilera, R.; Andrei, G.; Snoeck, R.; Schols, D.; Pradhan, P.; Lakshman, M.K. Synthesis and Evaluations of “1,4-Triazolyl Combretacoumarins” and Desmethoxy Analogs. Eur. J. Org.Chem. 2019, 5610–5623. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, M.; Anwar, S.; Elgamal, F.; Ahmed, E.R.; Aly, O.M. Potent combretastatin A-4 analogs containing 1,2,4-triazole: Synthesis, antiproliferative, anti-tubulin activity, and docking study. Eur. J. Med. Chem. 2019, 183, 111697. [Google Scholar] [CrossRef] [PubMed]
- Cahill, M.M.; O’Shea, K.D.; Pierce, L.T.; Winfield, H.J.; Eccles, K.S.; Lawrence, S.E.; McCarthy, F.O. Synthesis and Antiproliferative Activity of Novel Heterocyclic Indole-Trimethoxyphenyl Conjugates. Pharmaceuticals 2017, 10, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.-M.; Huang, Z.-N.; Zhou, Z.-S.; Hou, J.; Zheng, M.-Y.; Wang, L.-J.; Jiang, Y.; Zhou, X.-Y.; Chen, Q.-Y.; Li, S.-H.; et al. Structure-based design, structure–activity relationship analysis, and antitumor activity of diaryl ether derivatives. Arch. Pharm. Res. 2015, 38, 1761–1773. [Google Scholar] [CrossRef] [PubMed]
- An, R.; Hou, Z.; Li, J.-T.; Yu, H.-N.; Mou, Y.-H.; Guo, C. Design, Synthesis and Biological Evaluation of Novel 4-Substituted Coumarin Derivatives as Antitumor Agents. Molecules 2018, 23, 2281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, B.; Cai, X.; Chennamaneni, S.; Yi, X.; Liu, L.; Pink, J.J.; Dowlati, A.; Xu, Y.; Zhou, A.; Su, B. From COX-2 inhibitor nimesulide to potent anti-cancer agent: Synthesis, in vitro, in vivo and pharmacokinetic evaluation. Eur. J. Med. Chem. 2012, 47, 432–444. [Google Scholar] [CrossRef] [Green Version]
- Giurg, M.; Gołąb, A.; Suchodolski, J.; Kaleta, R.; Krasowska, A.; Piasecki, E.; Piętka-Ottlik, M. Reaction of bis[(2-chlorocarbonyl)phenyl] Diselenide with Phenols, Aminophenols, and Other Amines towards Diphenyl Diselenides with Antimicrobial and Antiviral Properties. Molecules 2017, 22, 974. [Google Scholar] [CrossRef] [Green Version]
- Krátký, M.; Vinšová, J.; Rodriguez, N.G.; Stolaříková, J. Antimycobacterial Activity of Salicylanilide Benzenesulfonates. Molecules 2012, 17, 492–503. [Google Scholar] [CrossRef]
- Brunhofer, G.; Handler, N.; Leisser, K.; Studenik, C.R.; Erker, T. Benzanilides with spasmolytic activity: Chemistry, pharmacology, and SAR. Bioorg. Med. Chem. 2008, 16, 5974–5981. [Google Scholar] [CrossRef]
- Biagi, G.; Giorgi, I.; Livi, O.; Nardi, A.; Calderone, V.; Martelli, A.; Martinotti, E.; LeRoy Salerni, O. Synthesis and biological activity of novel substituted benzanilides as potassium channel activators. V. Eur. J. Med. Chem. 2004, 39, 491–498. [Google Scholar] [CrossRef]
- Xu, Y.-J.; Miao, H.-Q.; Pan, W.; Navarro, E.C.; Tonra, J.R.; Mitelman, S.; Camara, M.M.; Deevi, D.S.; Kiselyov, A.S.; Kussie, P.; et al. N-(4-{[4-(1H-Benzoimidazol-2-yl)-arylamino]-methyl}-phenyl)-benzamide derivatives as small molecule heparanase inhibitors. Bioorg. Med. Chem. Lett. 2006, 16, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Asano, T.; Yoshikawa, T.; Usui, T.; Yamamoto, H.; Yamamoto, Y.; Uehara, Y.; Nakamura, H. Benzamides and benzamidines as specific inhibitors of epidermal growth factor receptor and v-Src protein tyrosine kinases. Bioorg. Med. Chem. 2004, 12, 3529–3542. [Google Scholar] [CrossRef] [PubMed]
- Puentes, C.O.; Höcherl, P.; Kühnle, M.; Bauer, S.; Bürger, K.; Bernhardt, G.; Buschauer, A.; König, B. Solid phase synthesis of tariquidar-related modulators of ABC transporters preferring breast cancer resistance protein (ABCG2). Bioorg. Med. Chem.Lett. 2011, 21, 3654–3657. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Puentes, C.; Bauer, S.; Kühnle, M.; Bernhardt, G.; Buschauer, A.; König, B. Benzanilide–Biphenyl Replacement: A Bioisosteric Approach to Quinoline Carboxamide-Type ABCG2 Modulators. ACS Med. Chem. Lett. 2013, 4, 393–396. [Google Scholar] [CrossRef] [Green Version]
- Dennison, S.R.; Snape, T.J.; Phoenix, D.A. Thermodynamic interactions of a cis and trans benzanilide with Escherichia coli bacterial membranes. Eur. Biophys. J. 2012, 41, 687–693. [Google Scholar] [CrossRef]
- Gleeson, E.C.; Graham, J.E.; Spiller, S.; Vetter, I.; Lewis, R.J.; Duggan, P.J.; Tuck, K.L. Inhibition of N-Type Calcium Channels by Fluorophenoxyanilide Derivatives. Mar. Drugs 2015, 13, 2030–2045. [Google Scholar] [CrossRef]
- Kucinska, M.; Giron, M.-D.; Piotrowska, H.; Lisiak, N.; Granig, W.H.; Lopez-Jaramillo, F.-J.; Salto, R.; Murias, M.; Erker, T. Novel Promising Estrogenic Receptor Modulators: Cytotoxic and Estrogenic Activity of Benzanilides and Dithiobenzanilides. PLoS ONE 2016, 11, e0145615. [Google Scholar] [CrossRef]
- Hu, W.-P.; Yu, H.-S.; Chen, Y.-R.; Tsai, Y.-M.; Chen, Y.-K.; Liao, C.-C.; Chang, L.-S.; Wang, J.-J. Synthesis and biological evaluation of thiobenzanilides as anticancer agents. Bioorg. Med. Chem. 2008, 16, 5295–5302. [Google Scholar] [CrossRef]
- Kucinska, M.; Piotrowska-Kempisty, H.; Lisiak, N.; Kaczmarek, M.; Dams-Kozlowska, H.; Granig, W.H.; Höferl, M.; Jäger, W.; Zehl, M.; Murias, M.; et al. Selective anticancer activity of the novel thiobenzanilide 63T against human lung adenocarcinoma cells. Toxicol. In Vitro 2016, 37, 148–161. [Google Scholar] [CrossRef]
- Kucinska, M.; Mieszczak, H.; Piotrowska-Kempisty, H.; Kaczmarek, M.; Granig, W.; Murias, M.; Erker, T. The role of oxidative stress in 63 T-induced cytotoxicity against human lung cancer and normal lung fibroblast cell lines. Investig. New Drugs 2019, 37, 849–864. [Google Scholar] [CrossRef] [Green Version]
- Lu, K.; Li, B.; Zhang, H.; Xu, Z.; Song, D.; Gao, L.; Sun, H.; Li, L.; Wang, Y.; Feng, Q.; et al. A novel silicone derivative of natural osalmid (DCZ0858) induces apoptosis and cell cycle arrest in diffuse large B-cell lymphoma via the JAK2/STAT3 pathway. Signal Transduct. Target Ther. 2020, 5, 31. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Duan, L.; Luo, J.; Zhang, L.; Lu, X.; Zhang, Y.; Zhang, Z.; Tu, Z.; Xu, Y.; Ren, X.; et al. Discovery and Optimization of 3-(2-(Pyrazolo[1,5-a]pyrimidin-6-yl)ethynyl)benzamides as Novel Selective and Orally Bioavailable Discoidin Domain Receptor 1 (DDR1) Inhibitors. J. Med. Chem. 2013, 56, 3281–3295. [Google Scholar] [PubMed]
- Fournel, M.; Bonfils, C.; Hou, Y.; Yan, P.T.; Trachy-Bourget, M.-C.; Kalita, A.; Liu, J.; Lu, A.-H.; Zhou, N.Z.; Robert, M.-F.; et al. MGCD0103, a novel isotype-selective histone deacetylase inhibitor, has broad spectrum antitumor activity in vitro and in vivo. Mol Cancer Ther. 2008, 7, 759–768. [Google Scholar] [CrossRef] [Green Version]
- Zhou, N.; Moradei, O.; Raeppel, S.; Leit, S.; Frechette, S.; Gaudette, F.; Paquin, I.; Bernstein, N.; Bouchain, G.; Vaisburg, A.; et al. Discovery of N-(2-Aminophenyl)-4-[(4-pyridin-3-ylpyrimidin-2-ylamino)methyl]benzamide (MGCD0103), an Orally Active Histone Deacetylase Inhibitor. J. Med. Chem. 2008, 51, 4072–4075. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.-C.; Huang, H.-S.; Huang, C.-Y.; Yang, R.; Chang, D.-M.; Lai, J.-H.; Ho, L.-J. A Benzamide-Linked Small Molecule HS-Cf Inhibits TNF-α-Induced Interferon Regulatory Factor-1 in Porcine Chondrocytes: A Potential Disease-Modifying Drug for Osteoarthritis Therapeutics. J. Clin. Immunol. 2011, 31, 1131–1142. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Peng, P.; Chang, J.; Liu, M.-M.; Yu, J.-M.; Zhou, L.; Sun, X. Selective non-zinc binding MMP-2 inhibitors: Novel benzamide Ilomastat analogs with anti-tumor metastasis. Bioorg. Med. Chem. Lett. 2016, 26, 2174–2178. [Google Scholar] [CrossRef]
- Calderone, V.; Fiamingo, F.L.; Giorgi, I.; Leonardi, M.; Livi, O.; Martelli, A.; Martinotti, E. Heterocyclic analogs of benzanilide derivatives as potassium channel activators. IX. Eur. J. Med. Chem. 2006, 41, 761–767. [Google Scholar] [CrossRef]
- St John, S.E.; Jensen, K.C.; Kang, S.; Chen, Y.; Calamini, B.; Mesecar, A.D.; Lipton, M.A. Design, synthesis, biological and structural evaluation of functionalized resveratrol analogues as inhibitors of quinone reductase 2. Bioorg. Med. Chem. 2013, 21, 6022–6037. [Google Scholar] [CrossRef] [Green Version]
- Shishido, Y.; Jinno, M.; Ikeda, T.; Ito, F.; Sudo, M.; Makita, N.; Ohta, A.; Iki-Taki, A.; Ohmi, T.; Kanai, Y.; et al. Synthesis of benzamide derivatives as TRPV1 antagonists. Bioorg. Med. Chem. Lett. 2008, 18, 1072–1078. [Google Scholar] [CrossRef]
- Matsuhisa, A.; Kikuchi, K.; Sakamoto, K.; Yatsu, T.; Tanaka, A. Nonpeptide arginine vasopressin antagonists for both V1A and V2 receptors: Synthesis and pharmacological properties of 4′-[5-(substituted methylidene)-2,3,4,5-tetrahydro-1H-1-ben zoazepine-1-carbonyl]benzanilide and 4′-[5-(substituted methyl)-2,3-dihydro-1H-1-benzoazepine-1- carbonyl]benzanilide derivatives. Chem. Pharm. Bull. 1999, 47, 329–339. [Google Scholar]
- Liu, X.; Xu, Z.; Hou, C.; Wang, M.; Chen, X.; Lin, Q.; Song, R.; Lou, M.; Zhu, L.; Qiu, Y.; et al. Inhibition of hepatitis B virus replication by targeting ribonucleotide reductase M2 protein. Biochem. Pharmacol. 2016, 103, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Gudmundsson, K.S.; Boggs, S.D.; Sebahar, P.R.; Richardson, L.D.; Spaltenstein, A.; Golden, P.; Sethna, P.B.; Brown, K.W.; Moniri, K.; Harvey, R.; et al. Tetrahydrocarbazole amides with potent activity against human papillomaviruses. Bioorg. Med. Chem. Lett. 2009, 19, 4110–4114. [Google Scholar] [CrossRef] [PubMed]
- Buckheit, R.W.; Kinjerski, T.L.; Fliakas-Boltz, V.; Russell, J.D.; Stup, T.L.; Pallansch, L.A.; Brouwer, W.G.; Dao, D.C.; Harrison, W.A.; Schultz, R.J. Structure-activity and cross-resistance evaluations of a series of human immunodeficiency virus type-1-specific compounds related to oxathiin carboxanilide. Antimicrob. Agents Chemother. 1995, 39, 2718–2727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, L.; Li, B.; Yang, G.; Liu, P.; Lan, X.; Chang, S.; Tao, Y.; Xu, Z.; Xie, B.; Sun, X.; et al. Dual inhibition of mTORC1/2 by DCZ0358 induces cytotoxicity in multiple myeloma and overcomes the protective effect of the bone marrow microenvironment. Cancer Lett. 2018, 421, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Pastorekova, S.; Gillies, R.J. The role of carbonic anhydrase IX in cancer development: Links to hypoxia, acidosis, and beyond. Cancer Metastasis Rev. 2019, 38, 65–77. [Google Scholar] [CrossRef]
- Aneja, B.; Queen, A.; Khan, P.; Shamsi, F.; Hussain, A.; Hasan, P.; Rizvi, M.M.A.; Daniliuc, C.G.; Alajmi, M.F.; Mohsin, M.; et al. Design, synthesis & biological evaluation of ferulic acid-based small molecule inhibitors against tumor-associated carbonic anhydrase IX. Bioorg. Med. Chem. 2020, 28, 115424. [Google Scholar]
- Brunhofer, G.; Studenik, C.; Ecker, G.F.; Erker, T. Synthesis, spasmolytic activity and structure-activity relationship study of a series of polypharmacological thiobenzanilides. Eur. J. Pharm. Sci. 2011, 42, 37–44. [Google Scholar] [CrossRef]
- Ronghe, A.; Chatterjee, A.; Singh, B.; Dandawate, P.; Abdalla, F.; Bhat, N.K.; Padhye, S.; Bhat, H.K. 4-(E)-{(p-tolylimino)-methylbenzene-1,2-diol}, 1 a novel resveratrol analog, differentially regulates estrogen receptors α and β in breast cancer cells. Toxicol. Appl. Pharmacol. 2016, 301, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, A.; Dandawate, P.; Rub, R.; Padhye, S.; Aphale, S.; Moghe, A.; Jagyasi, A.; Venkateswara Swamy, K.; Singh, B.; Chatterjee, A.; et al. Novel Aza-resveratrol analogs: Synthesis, characterization and anticancer activity against breast cancer cell lines. Bioorg. Med. Chem. Lett. 2013, 23, 635–640. [Google Scholar] [CrossRef]
- Shtaiwi, A.; Adnan, R.; Khairuddean, M.; Khan, S.U. Computational investigations of the binding mechanism of novel benzophenone imine inhibitors for the treatment of breast cancer. RSC Adv. 2019, 9, 35401–35416. [Google Scholar] [CrossRef] [Green Version]
- Landeros-Martínez, L.-L.; Glossman-Mitnik, D.; Flores-Holguín, N. Interaction of Tamoxifen Analogs With the Pocket Site of Some Hormone Receptors. A Molecular Docking and Density Functional Theory Study. Front. Chem. 2018, 6, 293. [Google Scholar] [CrossRef] [PubMed]
Agent | Mechanism | Model | Concentration | Effect | Ref. | |
---|---|---|---|---|---|---|
in vitro | in vivo | |||||
ISORHAPONTIGENIN | PI3K/Akt↓ CXCL8↓ Il-6↓ Akt↓ | Patient-derived AEC | Anti- inflammatory | [52] | ||
NfκB↓ AP-1↓ nuclear c-Fos↑ c-Jun↓ Akt↓ ROS generation↓ FOXO3A↑ | A549 | |||||
Platelet aggregation↓ | Human-derived platelets | 3.125 μM to 100 μM | [49] | |||
Haemostasis ↔ | C57BL/6 mice | 1.85 μM and 6.25 μM | ||||
NO↓ iNOS↓ PGE2↓ COX2↓ IL-1β↓ MAPK/ERK/p38↓ | Rat-derived chondrocytes | 10 µM and 20μM | [61] | |||
FFA↓ PPARγ↑ FaS Fabp4 Glut4 | db/db mice | 25 mg/kg b.w. | Anti-diabetic | [26] | ||
CEBPα↑ FaS↑ Fabp4↑ Glut4↑ PPARγ↑ | 3T3-L1 cells | 25 μM | ||||
↓glucose ↓fatty acid ↓amino acid ↓primary bile acid ↓linoleic acid ↓arachidonic acid ↓pyrimidine metabolism | rats | 90 μmol/kg-intravenous dose; 200 μmol/kg 100 μmol/kg-single oral doses; 100 μmol/kg-eight repeated daily oral doses | [50] | |||
in silico | Antioxidant | [53] | ||||
ROS↓ Nrf2↑ | THP-1-XBlue-MD2-CD14 HepG2 | 2 µM | [55] | |||
Cyclin D1↓ Sp1↓ | T24T mice xenograft | 150 mg/kg b.w. | Anticancer | [59] | ||
Sp1↓ Cyclin D1↓ | T24T UMUC3 | 10 µM | ||||
XIAP↓ | HCT116 | 20 µM, 40 µM, 60 µM | [58] | |||
Invasion↓ | C57BL/6J mice | 150 mg/kg b.w. | [61] | |||
FOXO1↑ | UMUC3 | 10 µM | ||||
T24T | 20 µM | |||||
SPHK1/2↓ ROS ↑ c-PARP↑ c-caspase-3↑ cytochrome c↑ c-caspase-9↑ TNFα ↓ IL-6↓ IL-1β↓ ERK↓ Akt↓ Tubulin polymerization↓ Cell cycle arrest | MCF-7 | 5 µM, 10 µM, 20 µM, 40 µM | [63] | |||
c-PARP↑ c-caspase-3↑ cytochrome c↑ SPHK1/2↓ Tubulin polymerization↓ | MDA-MB-231 | 20 µM 40 µM | ||||
c-caspase-3↑ c-PARP-1↑ XIAP↓ Cyclin D1↓ p53↓ p-FOXO1↓ p-Akt↓ p-ERK1/2↓ p-EGFR↓ p-SP1↓ AR↓ | LNCaP CWR22Rv1 | 20 µM, 50 µM, 100 µM | [64] | |||
c-capase-3↑ c-PARP↑ XIAP↓ Cyclin D1↓ p-FOXO1↓ p-Akt↓ p-ERK1/2↓ p-EGFR↓ AR↓ Ki-67↓ | CWR22Rv1 mice xenograft | 50 mg/kg b.w. | ||||
cd44↓ FOXO1↑ c-MYC↓ Sp1↓ USP28↓ miR-4295↑ | T24T | 20 μM | [61] | |||
Growth ↓ | S. aureus | MIC * ranging from 128 to 256 μg/ml | Antimicrobial | [65] | ||
Pinosylvin | TRPA1-mediated Ca2+ influx↓ | HEK293 | 0.1–100 µM | Anti- inflammatory | [66] | |
TRPA1-mediated Ca2+ influx ↓ IL-6 ↓ | C57BL/6N mice | 10 mg/kg b.w. | ||||
PI3K/ Akt↓ NO↓ IL-6↓ MCP1↓ | J774 | 1–30 µM | [67] | |||
IL-6↓ MCP1↓ | mice | 30 mg/kg b.w. | ||||
IL-6↓ IL-1β↓ IL-17 aggrecan expression↑ | osteoarthritis chondrocytes | 100 µM | [68] | |||
NF-κB↓ | T/C28a2 | |||||
iNOS↓ NO↓ MCP-1↓ IL-6↓ | J774 | 3 to 100 μg/mL (P. sylvestris extract) | [69] | |||
inflammation↓ | mice | 100 mg/kg b.w. | ||||
NF-κB↓ | HEK293 | 100 µM | Antioxidant | |||
GLUT4↑ p-AMPK↑ SIRT1 activity↑ | Rat L6 myoblasts | 20 µM, 60 µM, 100 µM | Anti-diabetic | [70] | ||
Adipocytes proliferation↓ PPARγ↓ C/EBPα↓ TNFα ↓/ IL-6↓ | Mouse 3T3-L1 preadipocyte | 20–60 μM | Adipogenesis inhibition/ anti- inflammatory | [71] | ||
MMP-2↓ TIMP-2↑ ERK1/2↓ | SCC- 9HSC-3 SAS | 20 µM, 40 µM 80 μM | Anticancer | [72] | ||
caspase-3↑ LC3-II↑ p62↓ AMPKα1↓ autophagy/ apoptosis↑ | THP-1 U937 | 0–100 μM | [73] | |||
DMU-212 | IL8↑ EGR1↑ ERRFI1↑ TRPC4↑ BIRC3↑ CYP1B1↓ MVK↓ | HUVECs | 20 µM for 6 h | Diverse range of genes regulation | [74] | |
AhR↑ | HepG2 | 10 µM to 50 µM | [75] | |||
Bcl-2↑ caspase-3 and -9↑ | HUVECs | 5–80 μM | Apoptosis | [76] | ||
VEGF- induced migration↓ VEGFR2 pathway↓ | Angiogenesis | |||||
VEGF- stimulated angiogenesis↓ | mice chick eggs | |||||
p21↑ p53↑ cyclin B1↑ caspase-3 and -9↑ Bax↑ Bcl-2↓ ERK1/2↑ MEK1/2↓ | A375, MeWo M5 Bro | 0.312–540 µM | Anticancer | [77] | ||
GPx-1↓ CAT↓ GR↓ SOD-2↓ GST↓ apaf-1 stat-1 pten↓ caspase-9 mRNA↓ Socs-2↑ Tnfsf10↓ Tnfrsf1a↓ Tnfsf1↑ | Wistar rats | 50 mg/kg by gavage 20 or 50 mg/kg b.w. twice/week for 16 weeks | Antioxidant system | [78] |
Derivative | Cytotoxicity | Anti-Tubulin Activity | Ref. | |||
---|---|---|---|---|---|---|
IC50 [µM] | IC50 [µM] | |||||
Cell line | ||||||
MDA-MB-231 | MCF-7 | A549 | HeLa | |||
Pyrolle | 0.07 ± 0.02 | nd * | [150] | |||
Positive control CA-4 | 0.03 ± 0.0001 | nd * | ||||
N-methylimidazole | 0.39 ± 0.28 | 1.63 ± 0.27 | >20 | 0.39 ± 0.02 | 6.67 | [151] |
Oxazole | 0.71 ± 0.16 | 0.45 ± 0.14 | >20 | 0.009 ± 0.002 | 1.05 | |
Positive control CA-4 | 0.56 ± 0.08 | 0.17 ± 0.04 | >20 | 0.11 ± 0.06 | 2.72 | |
Aminoimidazole | 0.096 ± 0.013 | 0.003 ± 0.002 | 0.010 ± 0.001 | 1.6 | [152] | |
Positive control CA-4 | 0.331 ± 0.032 | 0.018 ± 0.002 | 0.025 ± 0.002 | 1.7 | ||
Benzothiazole | 0.13 ± 0.01 | 0.06 ± 0.001 | 2.01 | [153] | ||
Positive control CA-4 | 0.06 ± 0.003 | 0.06 ± 0.002 | 1.87 |
Target/Activity | Mode of Action | Ref. | |
---|---|---|---|
ABCG2 | inhibition | [174,175] | |
Bacteria | Escherichia coli | inhibition | [168,176] |
Enterococcus faecalis | [168] Structure 4 and 5 | ||
Enterococcus hirae | |||
Staphylococcus aureus | |||
Staphylococcus epidermidis | |||
Mycobacterium tuberculosis | [169] Structure 6 | ||
Mycobacterium avium | |||
Mycobacterium kansasii | |||
Calcium channel | inhibition | [177] | |
Carbonic anhydrase IX | inhibition | [153] Structure 2 | |
Cancer cells | Breast | ||
MDA-MB-231 | growth inhibition | [178,179,180] Structure 2 and 3 | |
MCF-7 | [178] | ||
SKBR-3 | [179] Structure 3 | ||
Cervical | |||
HeLa | [165] Structure 1 | ||
Colon | |||
HT-29 | [165,167] Structure 1 and 3 | ||
Hepatoma | |||
HepG2 | [165] Structure 1 | ||
Hep3B | [165] Structure 1 | ||
PLC/PRF/5 | |||
SMMC-7721 | |||
Leukemia | |||
K562 | [165,167,179] Structure 1 and 3 | ||
Lung | |||
A549 | [165,167,178,180,181] Structure 1 and 3 | ||
Lymphoma | |||
DB | [182] | ||
TMD8 | |||
U2932 | |||
SUDHL-4 | |||
OCI-LY1 | |||
OCI-LY8 | |||
NU-DUL-1 | |||
Melanoma | |||
A375 | [165,179] Structure 1 | ||
DDR1 | inhibition | [183] | |
EGFR | inhibition | [173] Structure 10 | |
Estrogen receptor | estrogenic activity | [178] | |
Histone deacetylase 1 | inhibition | [184,185] | |
Histone deacetylase 2 | inhibition | ||
Histone deacetylase 3 | inhibition | ||
Histone deacetylase 11 | inhibition | ||
HPSE | inhibition | [172] Structure 9 | |
IRF-1 | inhibition | [186] | |
MMP-2 | inhibition | [187] | |
MMP-9 | |||
MMP-13 | inhibition | [186] | |
Potassium channel | activation | [171,188] Structure 8 | |
Quinone reductase-2 | inhibition | [189] | |
TRPV1 | inhibition | [190] | |
v-Src | inhibition | [173] Structure 11 | |
Vasopressin V1A V2 | inhibition | [191] | |
Viruses | HHV-1 | inhibition | [168] Structure 4 and 5 |
EMCV | |||
HBV | [192] | ||
HPV | [193] | ||
HIV-1 | [194] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pecyna, P.; Wargula, J.; Murias, M.; Kucinska, M. More Than Resveratrol: New Insights into Stilbene-Based Compounds. Biomolecules 2020, 10, 1111. https://doi.org/10.3390/biom10081111
Pecyna P, Wargula J, Murias M, Kucinska M. More Than Resveratrol: New Insights into Stilbene-Based Compounds. Biomolecules. 2020; 10(8):1111. https://doi.org/10.3390/biom10081111
Chicago/Turabian StylePecyna, Paulina, Joanna Wargula, Marek Murias, and Malgorzata Kucinska. 2020. "More Than Resveratrol: New Insights into Stilbene-Based Compounds" Biomolecules 10, no. 8: 1111. https://doi.org/10.3390/biom10081111
APA StylePecyna, P., Wargula, J., Murias, M., & Kucinska, M. (2020). More Than Resveratrol: New Insights into Stilbene-Based Compounds. Biomolecules, 10(8), 1111. https://doi.org/10.3390/biom10081111