Antioxidant Activity of Selected Stilbenoid Derivatives in a Cellular Model System
"> Figure 1
<p>The effects of stilbenoids <b>1–19</b> (at a concentration of 15 μM) on the lipid peroxidation of linoleic acid caused by 2,2´-azobis(2-amidinopropane)dihydrochloride (AAPH), and measured as the production of malondialdehyde (MDA) using the thiobarbituric acid reactive substances (TBARS) assay. Quercetin was used as a standard (15 μM) and AAPH alone served as the positive control (PC). The negative control (NC) contained linoleic acid alone, and thus, no lipid peroxidation occurred. The effects of the vehicle were subtracted from that of each stilbenoid. * = <span class="html-italic">p</span> < 0.05; ** = <span class="html-italic">p</span> < 0.01; *** = <span class="html-italic">p</span> < 0.001; and **** = <span class="html-italic">p</span> < 0.0001.</p> "> Figure 2
<p>Antioxidant and pro-oxidant effects of stilbenoids <b>1–19</b> (at a concentration of 2 μM) on the formation of ROS after 1 h of incubation. In the THP-1-XBlue-CD14-MD2 cell model, the formation of ROS was triggered by adding 100 μM pyocyanin; quercetin was used as the standard (2 μM), pyocyanin alone served as the positive control (PC; 100 μM) and the vehicle alone was the negative control (NC). ** = <span class="html-italic">p</span> < 0.01; **** = <span class="html-italic">p</span> < 0.0001.</p> "> Figure 3
<p>Antioxidant or pro-oxidant effects of stilbenoids <b>1–19</b> (at a concentration of 2 μM) on the formation of ROS after 24 h of incubation. In the THP-1-XBlue-CD14-MD2 cell model, the formation of ROS was triggered by adding 100 μM pyocyanin; quercetin was used as the standard (2 μM), pyocyanin alone served as the positive control (PC; 100 μM) and the vehicle alone was the negative control (NC). * = <span class="html-italic">p</span> < 0.05; ** = <span class="html-italic">p</span> < 0.01; and **** = <span class="html-italic">p</span> < 0.0001.</p> "> Figure 4
<p>Antioxidant and pro-oxidant effects of stilbenoids <b>1–19</b> alone (at a concentration of 2 μM) on the formation of ROS after 2 h of incubation. In the THP-1-XBlue-CD14-MD2 cell model, the formation of ROS was triggered by stilbenoids alone; quercetin was used as the standard (2 μM), pyocyanin alone served as the positive control (PC; 100 μM), and the vehicle alone was the negative control (NC). * = <span class="html-italic">p</span> < 0.05; ** = <span class="html-italic">p</span> < 0.01; *** = <span class="html-italic">p</span> < 0.001; and **** = <span class="html-italic">p</span> < 0.0001.</p> "> Figure 5
<p>Antioxidant and pro-oxidant effects of stilbenoids <b>1–19</b> alone (at a concentration of 2 μM) on the formation of ROS after 24 h of incubation. In the THP-1-XBlue-CD14-MD2 cell model, the formation of ROS was triggered by stilbenoids alone; quercetin was used as the standard (2 μM), pyocyanin alone served as the positive control (PC; 100 μM), and the vehicle alone was the negative control (NC).</p> "> Figure 6
<p>Effects of compounds <b>2</b>, <b>4</b>, and <b>18</b> (at a concentration of 2 µM) on the levels of selected antioxidant enzymes CAT, GPx, HO-1, and SOD-1 and -2, and on the expression of Nrf2 after 6 h of incubation. The THP-1-XBlue-CD14-MD2 cell model was used with quercetin as the standard (2 μM), pyocyanin alone (100 µM) as the positive control (PC), and the vehicle alone as the negative control (NC). ** = <span class="html-italic">p</span> < 0.01; *** = <span class="html-italic">p</span> < 0.001; and **** = <span class="html-italic">p</span> < 0.0001.</p> "> Figure 7
<p>The effects of selected stilbenoids <b>2</b>, <b>4</b>, and <b>18</b> (at a concentration of 2 μM) on the activation of Nrf2-ARE system. The HepG2 cell model was transiently transfected with the ARE luciferase reporter vector firefly luminescence and a constitutively expressing Renilla vector. The results are expressed as the ratio of firefly to Renilla luminescence. Quercetin was used as the standard (2 μM), DL-sulforaphane was used as a positive control at a concentration of 10µM (PC), and the vehicle alone served as the negative control (NC). * = <span class="html-italic">p</span> < 0.05; *** = <span class="html-italic">p</span> < 0.001.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Compounds
2.2. Induction of Lipid Peroxidation
2.2.1. Thiobarbituric Acid Reactive Substances Assay
2.3. Cell Culturing
2.4. Antioxidant Activity Testing
2.4.1. Determination of Antioxidant Activity
2.4.2. Determination of Antioxidant Activity—Pyocyanin Free Model
2.5. Protein Expression of Antioxidant Enzymes
2.6. Activation of Nrf2-Antioxidant Response Element System
2.7. Statistical Evaluation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dvorakova, M.; Landa, P. Anti-inflammatory activity of natural stilbenoids: A review. Pharmacol. Res. 2017, 124, 126–145. [Google Scholar] [CrossRef]
- Baur, J.A.; Sinclair, D.A. Therapeutic potential of resveratrol: The in vivo evidence. Nat. Rev. Drug Discov. 2006, 5, 493–506. [Google Scholar] [CrossRef] [PubMed]
- Leláková, V.; Šmejkal, K.; Jakubczyk, K.; Veselý, O.; Landa, P.; Václavík, J.; Bobáľ, P.; Pížová, H.; Temml, V.; Steinacher, T.; et al. Parallel in vitro and in silico investigations into anti-inflammatory effects of non-prenylated stilbenoids. Food Chem. 2019, 285, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Cottart, C.-H.; Nivet-Antoine, V.; Languillier-Morizot, C.; Beaudeux, J.-L. Resveratrol bioavailability and toxicity in humans. Mol. Nutr. Food Res. 2010, 54, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.; McDermott, C.; Anoopkumar-Dukie, S.; McFarland, A.J.; Forbes, A.; Perkins, A.V.; Davey, A.K.; Chess-Williams, R.; Kiefel, M.J.; Arora, D.; et al. Cellular Effects of Pyocyanin, a Secreted Virulence Factor of Pseudomonas aeruginosa. Toxins 2016, 8, 236. [Google Scholar] [CrossRef] [PubMed]
- D’Andrea, G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia 2015, 106, 256–271. [Google Scholar] [CrossRef] [PubMed]
- Granica, S.; Piwowarski, J.P.; Randazzo, A.; Schneider, P.; Żyżyńska-Granica, B.; Zidorn, C. Novel stilbenoids, including cannabispiradienone glycosides, from Tragopogon tommasinii (Asteraceae, Cichorieae) and their potential anti-inflammatory activity. Phytochemistry 2015, 117, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Peyrat-Maillard, M.N.; Cuvelier, M.E.; Berset, C. Antioxidant activity of phenolic compounds in 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced oxidation: Synergistic and antagonistic effects. J. Am. Oil Chem. Soc. 2003, 80, 1007. [Google Scholar] [CrossRef]
- Vasantha Rupasinghe, H.P.; Yasmin, A. Inhibition of oxidation of aqueous emulsions of omega-3 fatty acids and fish oil by phloretin and phloridzin. Molecules 2010, 15, 251–257. [Google Scholar] [CrossRef]
- Rastogi, R.P.; Singh, S.P.; Häder, D.P.; Sinha, R.P. Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′,7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem. Biophys. Res. Commun. 2010, 397, 603–607. [Google Scholar] [CrossRef]
- Gaschler, M.M.; Stockwell, B.R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun. 2017, 482, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Treml, J.; Šmejkal, K. Flavonoids as Potent Scavengers of Hydroxyl Radicals. Comp. Rev. Food Sci. Food Saf. 2016, 15, 720–738. [Google Scholar] [CrossRef]
- Smoliga, J.M.; Baur, J.A.; Hausenblas, H.A. Resveratrol and health—A comprehensive review of human clinical trials. Mol. Nutr. Food Res. 2011, 55, 1129–1141. [Google Scholar] [CrossRef] [PubMed]
- Murias, M.; Jäger, W.; Handler, N.; Erker, T.; Horvath, Z.; Szekeres, T.; Nohl, H.; Gille, L. Antioxidant, prooxidant and cytotoxic activity of hydroxylated resveratrol analogues: Structure–activity relationship. Biochem. Pharmacol. 2005, 69, 903–912. [Google Scholar] [CrossRef] [PubMed]
- Szekeres, T.; Saiko, P.; Fritzer-Szekeres, M.; Djavan, B.; Jäger, W. Chemopreventive effects of resveratrol and resveratrol derivatives. Ann. N. Y Acad. Sci. 2011, 1215, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Kucinska, M.; Piotrowska, H.; Luczak, M.W.; Mikula-Pietrasik, J.; Ksiazek, K.; Wozniak, M.; Wierzchowski, M.; Dudka, J.; Jäger, W.; Murias, M. Effects of hydroxylated resveratrol analogs on oxidative stress and cancer cells death in human acute T cell leukemia cell line: Prooxidative potential of hydroxylated resveratrol analogs. Chem.-Biol. Interact. 2014, 209, 96–110. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.O.; Son, Y.; Lee, J.H.; Cheong, Y.K.; Park, S.H.; Chung, H.T.; Pae, H.O. Resveratrol analog piceatannol restores the palmitic acid-induced impairment of insulin signaling and production of endothelial nitric oxide via activation of anti-inflammatory and antioxidative heme oxygenase-1 in human endothelial cells. Mol. Med. Rep. 2015, 12, 937–944. [Google Scholar] [CrossRef]
- Son, Y.; Chung, H.T.; Pae, H.O. Differential effects of resveratrol and its natural analogs, piceatannol and 3,5,4′-trans-trimethoxystilbene, on anti-inflammatory hemeoxigenase-1 expression in RAW264.7 macrophages. Biofactors 2014, 40, 138–145. [Google Scholar] [CrossRef]
- Saw, C.L.; Guo, Y.; Yang, A.Y.; Paredes-Gonzalez, X.; Ramirez, C.; Pung, D.; Kong, A.N. The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: Involvement of the Nrf2-ARE signaling pathway. Food Chem. Toxicol. 2014, 72, 303–311. [Google Scholar] [CrossRef]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef]
- Halliwell, B. Free radicals and antioxidants: Updating a personal view. Nutr. Rev. 2012, 70, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.X.; Kong, L.D.; Ye, W.C.; Cheng, C.H.; Tan, R.X. Inhibition of xanthine and monoamine oxidases by stilbenoids from Veratrum taliense. Planta Med. 2001, 67, 158–161. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.M. Cardioprotective effect of resveratrol analogue isorhapontigenin versus omega-3 fatty acids in isoproterenol-induced myocardial infarction in rats. J. Physiol. Biochem. 2016, 72, 469–484. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, Y.L.; Zhang, H.; Yan, H.; Wu, X.J.; Zhang, C.Z. Administration of the resveratrol analogues isorhapontigenin and heyneanol-A protects mice hematopoietic cells against irradiation injuries. BioMed Res. Int. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Chao, J.; Li, H.; Cheng, K.W.; Yu, M.S.; Chang, R.C.; Wang, M. Protective effects of pinostilbene, a resveratrol methylated derivative, against 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. J. Nutr. Biochem. 2010, 21, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Sandoval-Acuna, C.; Ferreira, J.; Speisky, H. Polyphenols and mitochondria: An update on their increasingly emerging ROS-scavenging independent actions. Arch. Biochem. Biophys. 2014, 559, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yang, J.; Huang, S.; Liu, R.; He, Y.; Zheng, D.; Liu, C. Mulberry crude extracts induce Nrf2 activation and expression of detoxifying enzymes in rat liver: Implication for its protection against NP-induced toxic effects. J. Funct. Foods 2017, 32, 367–374. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, W.; Wang, Z.; Wang, Z.; Jin, X.; Xu, J.; Bai, L.; Li, Y.; Cui, J.; Cai, L. Resveratrol attenuates testicular apoptosis in type 1 diabetic mice: Role of Akt-mediated Nrf2 activation and p62-dependent Keap1 degradation. Redox Biol. 2018, 14, 609–617. [Google Scholar] [CrossRef]
- Esatbeyoglu, T.; Ewald, P.; Yasui, Y.; Yokokawa, H.; Wagner, A.E.; Matsugo, S.; Winterhalter, P.; Rimbach, G. Chemical characterization, free radical scavenging, and cellular antioxidant and anti-inflammatory properties of a stilbenoid-rich root extract of Vitis vinifera. Oxid. Med. Cell. Longev. 2016, 2016. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, Y.; Su, Z.; Kou, R.; Xie, K.; Song, F. Activation of p62-keap1-Nrf2 antioxidant pathway in the early stage of acetaminophen-induced acute liver injury in mice. Chem. Biol. Interact. 2018, 282, 22–28. [Google Scholar] [CrossRef]
- Jia, Y.N.; Lu, H.P.; Peng, Y.L.; Zhang, B.S.; Gong, X.B.; Su, J.; Zhou, Y.; Pan, M.H.; Xu, L. Oxyresveratrol prevents lipopolysaccharide/d-galactosamine-induced acute liver injury in mice. Int. Immunopharmacol. 2018, 56, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.H.; Park, S.A.; Almazari, I.; Kim, E.H.; Na, H.K.; Surh, Y.J. Piceatannol induces heme oxygenase-1 expression in human mammary epithelial cells through activation of ARE-driven Nrf2 signaling. Arch. Biochem. Biophys. 2010, 501, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.-Y.; Lin, J.; Lu, K.; Xu, H.-G.; Geng, Z.-Z.; Sun, P.-H.; Chen, W.-M. Anti-Inflammatory Effects of Cajaninstilbene Acid and Its Derivatives. J. Agric. Food Chem. 2016, 64, 2893–2900. [Google Scholar] [CrossRef] [PubMed]
R1 | R2 | R3 | R4 | R5 | R6 | ||
---|---|---|---|---|---|---|---|
1 | Trans-resveratrol | OH | H | H | OH | OH | H |
2 | Pinostilbene | OCH3 | H | H | OH | OH | H |
3 | Thunalbene | OCH3 | H | OH | H | OH | H |
4 | Piceatannol | OH | H | OH | OH | OH | H |
5 | Piceatannol-3´-O-β-glucopyranoside | OH | H | O-Glc | OH | OH | H |
7 | Pinostilbenoside | OCH3 | H | H | O-Glc | OH | H |
11 | 3,5-dimethoxystilbene | OCH3 | H | H | H | OCH3 | H |
12 | Trans-stilbene | H | H | H | H | H | H |
13 | Cis-stilbene | H | H | H | H | H | H |
14 | 4-Stilbenecarboxylic acid | H | H | H | COOH | H | H |
15 | Pterostilbene | OCH3 | H | H | OH | OCH3 | H |
16 | Trans-α-methylstilbene | H | H | H | H | H | CH3 |
17 | Pinosylvin monomethyl ether | OCH3 | H | H | H | OH | H |
18 | Isorhapontigenin | OH | H | OCH3 | OH | OH | H |
19 | 2,4,3´,5´-tetramethoxystilbene | OCH3 | OCH3 | H | OCH3 | OCH3 | H |
R1 | R2 | R3 | ||
---|---|---|---|---|
6 | Batatasin III | H | OH | H |
8 | 2-carboxyl-3-O-methyl-4´-β-D-glucopyranosyl-dihydroresveratrol | COOH | H | O-Glc |
3-O-caffeoyl-(9→5)-β-apiosyl-(1→6)-β-glucopyranosyl-5,3´-O-dimethyldihydropiceatannol (9) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Treml, J.; Leláková, V.; Šmejkal, K.; Paulíčková, T.; Labuda, Š.; Granica, S.; Havlík, J.; Jankovská, D.; Padrtová, T.; Hošek, J. Antioxidant Activity of Selected Stilbenoid Derivatives in a Cellular Model System. Biomolecules 2019, 9, 468. https://doi.org/10.3390/biom9090468
Treml J, Leláková V, Šmejkal K, Paulíčková T, Labuda Š, Granica S, Havlík J, Jankovská D, Padrtová T, Hošek J. Antioxidant Activity of Selected Stilbenoid Derivatives in a Cellular Model System. Biomolecules. 2019; 9(9):468. https://doi.org/10.3390/biom9090468
Chicago/Turabian StyleTreml, Jakub, Veronika Leláková, Karel Šmejkal, Tereza Paulíčková, Šimon Labuda, Sebastian Granica, Jaroslav Havlík, Dagmar Jankovská, Tereza Padrtová, and Jan Hošek. 2019. "Antioxidant Activity of Selected Stilbenoid Derivatives in a Cellular Model System" Biomolecules 9, no. 9: 468. https://doi.org/10.3390/biom9090468
APA StyleTreml, J., Leláková, V., Šmejkal, K., Paulíčková, T., Labuda, Š., Granica, S., Havlík, J., Jankovská, D., Padrtová, T., & Hošek, J. (2019). Antioxidant Activity of Selected Stilbenoid Derivatives in a Cellular Model System. Biomolecules, 9(9), 468. https://doi.org/10.3390/biom9090468