Superposition and Interaction Dynamics of Complexitons, Breathers, and Rogue Waves in a Landau–Ginzburg–Higgs Model for Drift Cyclotron Waves in Superconductors
<p>The visualization of solution (<a href="#FD6-axioms-13-00763" class="html-disp-formula">6</a>) with assumed parameters <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>m</mi> <mn>3</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>m</mi> <mn>4</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>. (<b>a</b>) 3D behavior in spatial and temporal coordinates. (<b>b</b>) Contour plot in 2D.</p> "> Figure 2
<p>The visualization of solution (<a href="#FD9-axioms-13-00763" class="html-disp-formula">9</a>) with assumed parameters <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>m</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>s</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>s</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>s</mi> <mn>5</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>s</mi> <mn>6</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>.</mo> </mrow> </semantics></math> (<b>a</b>) 3D behavior in spatial and temporal coordinates. (<b>b</b>) Contour plot in 2D.</p> "> Figure 3
<p>The visualization of solution (<a href="#FD12-axioms-13-00763" class="html-disp-formula">11</a>) with the parameters <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>m</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>=</mo> <msqrt> <mn>3</mn> </msqrt> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>s</mi> <mn>4</mn> </msub> <mo>=</mo> <msqrt> <mn>2</mn> </msqrt> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>n</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1.1</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>5.18</mn> <mo>.</mo> </mrow> </semantics></math> (<b>a</b>) 3D behavior in spatial and temporal coordinates. (<b>b</b>) Contour plot in 2D.</p> "> Figure 4
<p>The visualization of solution (<a href="#FD14-axioms-13-00763" class="html-disp-formula">14</a>) with parameters, <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>5</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>s</mi> <mn>6</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>s</mi> <mn>7</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>s</mi> <mn>8</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>s</mi> <mn>9</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>a</b>) 3D behavior in spatial and temporal coordinates. (<b>b</b>) Contour plot in 2D.</p> "> Figure 5
<p>The visualization of solution (<a href="#FD17-axioms-13-00763" class="html-disp-formula">17</a>) with parameters, <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>A</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>. (<b>a</b>) 3D behavior in spatial and temporal coordinates. (<b>b</b>) Contour plot in 2D.</p> "> Figure 6
<p>The visualization of solution (<a href="#FD25-axioms-13-00763" class="html-disp-formula">25</a>) with parameters, <math display="inline"><semantics> <msub> <mi>a</mi> <mn>0</mn> </msub> </semantics></math> = 0.3, <math display="inline"><semantics> <msub> <mi>h</mi> <mn>1</mn> </msub> </semantics></math> = 0.2, <math display="inline"><semantics> <msub> <mi>l</mi> <mn>1</mn> </msub> </semantics></math> = −2, <math display="inline"><semantics> <msub> <mi>l</mi> <mn>2</mn> </msub> </semantics></math> = 1, <math display="inline"><semantics> <msub> <mi>a</mi> <mn>1</mn> </msub> </semantics></math> = 0.3, <math display="inline"><semantics> <msub> <mi>a</mi> <mn>2</mn> </msub> </semantics></math> = 3. (<b>a</b>) 3D behavior in spatial and temporal coordinates. (<b>b</b>) Contour plot in 2D.</p> "> Figure 7
<p>The visualization of solution (<a href="#FD26-axioms-13-00763" class="html-disp-formula">26</a>) with parameters, <math display="inline"><semantics> <msub> <mi>a</mi> <mn>0</mn> </msub> </semantics></math> = −6.5, <math display="inline"><semantics> <msub> <mi>h</mi> <mn>1</mn> </msub> </semantics></math> = 2, <math display="inline"><semantics> <msub> <mi>l</mi> <mn>1</mn> </msub> </semantics></math> = −2, <math display="inline"><semantics> <msub> <mi>l</mi> <mn>2</mn> </msub> </semantics></math> = 1, <math display="inline"><semantics> <msub> <mi>a</mi> <mn>1</mn> </msub> </semantics></math> = 3, <math display="inline"><semantics> <msub> <mi>a</mi> <mn>2</mn> </msub> </semantics></math> = 0.3. (<b>a</b>) 3D behavior in spatial and temporal coordinates. (<b>b</b>) Contour plot in 2D.</p> "> Figure 8
<p>The visualization of solution (<a href="#FD29-axioms-13-00763" class="html-disp-formula">29</a>) with parameters, <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>4.3</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>h</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>l</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <msub> <mi>a</mi> <mn>1</mn> </msub> </semantics></math> = 0.3, <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>.</mo> </mrow> </semantics></math> (<b>a</b>) 3D behavior in spatial and temporal coordinates. (<b>b</b>) Contour plot in 2D.</p> "> Figure 9
<p>The visualization of solution (<a href="#FD31-axioms-13-00763" class="html-disp-formula">31</a>) with the parameters <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>6.5</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>h</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>l</mi> <mn>1</mn> </msub> </mrow> </semantics></math> = 0.5, <math display="inline"><semantics> <mrow> <msub> <mi>l</mi> <mn>2</mn> </msub> <mo>=</mo> <msqrt> <mn>3</mn> </msqrt> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <msub> <mi>a</mi> <mn>1</mn> </msub> </semantics></math> = 0.1, <math display="inline"><semantics> <msub> <mi>a</mi> <mn>2</mn> </msub> </semantics></math> = 0.1. (<b>a</b>) 3D behavior in spatial and temporal coordinates. (<b>b</b>) Contour plot in 2D.</p> ">
Abstract
:1. Introduction
2. Cole–Hopf Transformation and Analytical Solutions
2.1. The Multi-Waves Complexiton Solutions
2.2. The Multi-Wave Solutions
2.3. The Breather Wave Solutions
2.4. Interaction of a Rouge Wave with Kink Soliton
2.5. Lump-2-Kinks Interaction
3. The Traveling Wave Solutions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, X.-W.; Zhu, Y.-M.; Pan, T. Finite line method for solving high-order partial differential equations in science and engineering. Partial. Differ. Equ. Appl. Math. 2023, 7, 100477. [Google Scholar] [CrossRef]
- Rawashdeh, M. Using the reduced differential transform method to solve nonlinear PDEs arises in biology and physics. World Appl. Sci. J. 2013, 23, 1037–1043. [Google Scholar]
- Wazwaz, A.M.; Alhejaili, W.; El-Tantawy, S.A. On the Painlevé integrability and nonlinear structures to a (3 + 1)-dimensional Boussinesq-type equation in fluid mediums: Lumps and multiple soliton/shock solutions. Phys. Fluids 2024, 36, 033116. [Google Scholar] [CrossRef]
- Wazwaz, A.-M. Bright and dark optical solitons of the (2 + 1)-dimensional perturbed nonlinear Schrödinger equation in nonlinear optical fibers. Optik 2022, 251, 168334. [Google Scholar] [CrossRef]
- Pandir, Y.; Gurefe, Y. A New Version of the Generalized F-Expansion Method for the Fractional Biswas-Arshed Equation and Boussinesq Equation with the Beta-Derivative. J. Funct. Spaces 2023, 2023, 1980382. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Zaghrout, A.A.; Ahmed, H.M. Travelling wave solutions for the doubly dispersive equation using improved modified extended tanh-function method. Alex. Eng. J. 2022, 61, 7987–7994. [Google Scholar] [CrossRef]
- Rabie, W.B.; Hussein, H.H.; Ahmed, H.M.; Alnahhass, M.; Alexan, W. Abundant solitons for highly dispersive nonlinear Schrödinger equation with sextic-power law refractive index using modified extended direct algebraic method. Alex. Eng. J. 2024, 86, 680–689. [Google Scholar] [CrossRef]
- Kumar, S.; Nisar, K.S.; Niwas, M. On the dynamics of exact solutions to a (3 + 1)-dimensional YTSF equation emerging in shallow sea waves: Lie symmetry analysis and generalized Kudryashov method. Results Phys. 2023, 48, 106432. [Google Scholar] [CrossRef]
- Yang, Y.; Xia, T.; Liu, T. Darboux transformation and exact solution to the nonlocal Kundu–Eckhaus equation. Appl. Math. Lett. 2023, 141, 108602. [Google Scholar] [CrossRef]
- Zhou, T.-Y.; Tian, B.; Shen, Y.; Gao, X.-T. Auto-Bäcklund transformations and soliton solutions on the nonzero background for a (3 + 1)-dimensional Korteweg-de Vries-Calogero-Bogoyavlenskii-Schif equation in a fluid. Nonlinear Dyn. 2023, 111, 8647–8658. [Google Scholar] [CrossRef]
- Hossain, A.K.M.K.S.; Akbar, M.A. Multi-soliton solutions of the Sawada-Kotera equation using the Hirota direct method: Novel insights into nonlinear evolution equations. Partial. Differ. Equ. Appl. Math. 2023, 8, 100572. [Google Scholar] [CrossRef]
- Hirota, R. The Direct Method in Soliton Theory; No. 155; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Khan, A.; Saifullah, S.; Ahmad, S.; Khan, J.; Baleanu, D. Multiple bifurcation solitons, lumps and rogue waves solutions of a generalized perturbed KdV equation. Nonlinear Dyn. 2023, 111, 5743–5756. [Google Scholar] [CrossRef]
- Ceesay, B.; Ahmed, N.; Baber, M.Z.; Akgül, A. Breather, lump, M-shape and other interaction for the Poisson–Nernst–Planck equation in biological membranes. Opt. Quantum Electron. 2024, 56, 853. [Google Scholar] [CrossRef]
- Wang, K.-J. Resonant Y-type soliton, X-type soliton and some novel hybrid interaction solutions to the (3 + 1)-dimensional nonlinear evolution equation for shallow-water waves. Phys. Scr. 2024, 99, 025214. [Google Scholar] [CrossRef]
- Ma, Y.-L.; Li, B.-Q. Soliton interactions, soliton bifurcations and molecules, breather molecules, breather-to-soliton transitions, and conservation laws for a nonlinear (3 + 1)-dimensional shallow water wave equation. Nonlinear Dyn. 2024, 112, 2851–2867. [Google Scholar] [CrossRef]
- Ma, Y.-L.; Wazwaz, A.-M.; Li, B.-Q. Novel bifurcation solitons for an extended Kadomtsev–Petviashvili equation in fluids. Phys. Lett. A 2021, 413, 127585. [Google Scholar] [CrossRef]
- Hua, Y.-F.; Guo, B.-L.; Ma, W.-X.; Lü, X. Interaction behavior associated with a generalized (2 + 1)-dimensional Hirota bilinear equation for nonlinear waves. Appl. Math. Model. 2019, 74, 184–198. [Google Scholar] [CrossRef]
- Kumar, S.; Mohan, B. A novel and efficient method for obtaining Hirota’s bilinear form for the nonlinear evolution equation in (n + 1) dimensions. Partial. Differ. Equ. Appl. Math. 2022, 5, 100274. [Google Scholar] [CrossRef]
- Saifullah, S.; Ahmad, S.; Khan, M.A.; Rahman, M.U. Multiple solitons with fission and multi waves interaction solutions of a (3 + 1)-dimensional combined pKP-BKP integrable equation. Phys. Scr. 2024, 99, 065242. [Google Scholar] [CrossRef]
- Yang, L.; Gao, B. Multiple solitons solutions, lump solutions and rogue wave solutions of the complex cubic Ginzburg–Landau equation with the Hirota bilinear method. Indian J. Phys. 2024, 1–8. [Google Scholar] [CrossRef]
- Asjad, M.I.; Majid, S.Z.; Faridi, W.A.; Eldin, S.M. Sensitive analysis of soliton solutions of nonlinear Landau-Ginzburg-Higgs equation with generalized projective Riccati method. AIMS Math. 2023, 8, 10210–10227. [Google Scholar] [CrossRef]
- Ahmad, S.; Mahmoud, E.E.; Saifullah, S.; Ullah, A.; Ahmad, S.; Akgül, A.; Din, S.M.E. New waves solutions of a nonlinear Landau–Ginzburg–Higgs equation: The Sardar-subequation and energy balance approaches. Results Phys. 2023, 51, 106736. [Google Scholar] [CrossRef]
- Ahmad, S.; Lou, J.; Khan, M.A.; Rahman, M.U. Analysing the Landau-Ginzburg-Higgs equation in the light of superconductivity and drift cyclotron waves: Bifurcation, chaos and solitons. Phys. Scr. 2023, 99, 015249. [Google Scholar] [CrossRef]
- Rizvi, S.T.R.; Ali, K.; Aziz, N.; Seadawy, A.R. Lie symmetry analysis, conservation laws and soliton solutions by complete discrimination system for polynomial approach of Landau Ginzburg Higgs equation along with its stability analysis. Optik 2024, 300, 171675. [Google Scholar] [CrossRef]
- Ali, M.R.; Khattab, M.A.; Mabrouk, S.M. Travelling wave solution for the Landau-Ginburg-Higgs model via the inverse scattering transformation method. Nonlinear Dyn. 2023, 111, 7687–7697. [Google Scholar] [CrossRef]
- Chen, C.; Afzal, F.; Zhang, Y. Construction of conservation laws for the Gardner equation, Landau–Ginzburg–Higgs equation, and Hirota–Satsuma equation. Commun. Theor. Phys. 2024, 76, 055004. [Google Scholar] [CrossRef]
- Liu, H.-D.; Tian, B.; Chen, Y.-Q.; Cheng, C.-D.; Gao, X.-T. N-soliton, Hth-order breather, hybrid and multi-pole solutions for a generalized variable-coefficient Gardner equation with an external force in a plasma or fluid. Nonlinear Dyn. 2024, 1–18. [Google Scholar] [CrossRef]
- Yin, T.; Pang, J. Variable coefficient (2 + 1) D KP equation for Rossby waves and its dynamical analysis. Nonlinear Dyn. 2024, 112, 3725–3736. [Google Scholar] [CrossRef]
- Zeng, X.; Wu, X.; Liang, C.; Yuan, C.; Cai, J. Exact solutions for coupled variable coefficient KdV equation via quadratic Jacobi’s elliptic function expansion. Symmetry 2023, 15, 1021. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saber, H.; Suhail, M.; Alsulami, A.; Aldwoah, K.; Mustafa, A.; Hassan, M. Superposition and Interaction Dynamics of Complexitons, Breathers, and Rogue Waves in a Landau–Ginzburg–Higgs Model for Drift Cyclotron Waves in Superconductors. Axioms 2024, 13, 763. https://doi.org/10.3390/axioms13110763
Saber H, Suhail M, Alsulami A, Aldwoah K, Mustafa A, Hassan M. Superposition and Interaction Dynamics of Complexitons, Breathers, and Rogue Waves in a Landau–Ginzburg–Higgs Model for Drift Cyclotron Waves in Superconductors. Axioms. 2024; 13(11):763. https://doi.org/10.3390/axioms13110763
Chicago/Turabian StyleSaber, Hicham, Muntasir Suhail, Amer Alsulami, Khaled Aldwoah, Alaa Mustafa, and Mohammed Hassan. 2024. "Superposition and Interaction Dynamics of Complexitons, Breathers, and Rogue Waves in a Landau–Ginzburg–Higgs Model for Drift Cyclotron Waves in Superconductors" Axioms 13, no. 11: 763. https://doi.org/10.3390/axioms13110763
APA StyleSaber, H., Suhail, M., Alsulami, A., Aldwoah, K., Mustafa, A., & Hassan, M. (2024). Superposition and Interaction Dynamics of Complexitons, Breathers, and Rogue Waves in a Landau–Ginzburg–Higgs Model for Drift Cyclotron Waves in Superconductors. Axioms, 13(11), 763. https://doi.org/10.3390/axioms13110763