[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = multi-wave complexion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1145 KiB  
Article
Superposition and Interaction Dynamics of Complexitons, Breathers, and Rogue Waves in a Landau–Ginzburg–Higgs Model for Drift Cyclotron Waves in Superconductors
by Hicham Saber, Muntasir Suhail, Amer Alsulami, Khaled Aldwoah, Alaa Mustafa and Mohammed Hassan
Axioms 2024, 13(11), 763; https://doi.org/10.3390/axioms13110763 - 4 Nov 2024
Cited by 1 | Viewed by 800
Abstract
This article implements the Hirota bilinear (HB) transformation technique to the Landau–Ginzburg–Higgs (LGH) model to explore the nonlinear evolution behavior of the equation, which describes drift cyclotron waves in superconductivity. Utilizing the Cole–Hopf transform, the HB equation is derived, and symbolic manipulation combined [...] Read more.
This article implements the Hirota bilinear (HB) transformation technique to the Landau–Ginzburg–Higgs (LGH) model to explore the nonlinear evolution behavior of the equation, which describes drift cyclotron waves in superconductivity. Utilizing the Cole–Hopf transform, the HB equation is derived, and symbolic manipulation combined with various auxiliary functions (AFs) are employed to uncover a diverse set of analytical solutions. The study reveals novel results, including multi-wave complexitons, breather waves, rogue waves, periodic lump solutions, and their interaction phenomena. Additionally, a range of traveling wave solutions, such as dark, bright, periodic waves, and kink soliton solutions, are developed using an efficient expansion technique. The nonlinear dynamics of these solutions are illustrated through 3D and contour maps, accompanied by detailed explanations of their physical characteristics. Full article
Show Figures

Figure 1

Figure 1
<p>The visualization of solution (<a href="#FD6-axioms-13-00763" class="html-disp-formula">6</a>) with assumed parameters <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>m</mi> <mn>3</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>m</mi> <mn>4</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>. (<b>a</b>) 3D behavior in spatial and temporal coordinates. (<b>b</b>) Contour plot in 2D.</p>
Full article ">Figure 2
<p>The visualization of solution (<a href="#FD9-axioms-13-00763" class="html-disp-formula">9</a>) with assumed parameters <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>m</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>s</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>s</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>s</mi> <mn>5</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>s</mi> <mn>6</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>.</mo> </mrow> </semantics></math> (<b>a</b>) 3D behavior in spatial and temporal coordinates. (<b>b</b>) Contour plot in 2D.</p>
Full article ">Figure 3
<p>The visualization of solution (<a href="#FD12-axioms-13-00763" class="html-disp-formula">11</a>) with the parameters <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>m</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>=</mo> <msqrt> <mn>3</mn> </msqrt> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>s</mi> <mn>4</mn> </msub> <mo>=</mo> <msqrt> <mn>2</mn> </msqrt> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>n</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1.1</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>5.18</mn> <mo>.</mo> </mrow> </semantics></math> (<b>a</b>) 3D behavior in spatial and temporal coordinates. (<b>b</b>) Contour plot in 2D.</p>
Full article ">Figure 4
<p>The visualization of solution (<a href="#FD14-axioms-13-00763" class="html-disp-formula">14</a>) with parameters, <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>5</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>s</mi> <mn>6</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>s</mi> <mn>7</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>s</mi> <mn>8</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>s</mi> <mn>9</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>a</b>) 3D behavior in spatial and temporal coordinates. (<b>b</b>) Contour plot in 2D.</p>
Full article ">Figure 5
<p>The visualization of solution (<a href="#FD17-axioms-13-00763" class="html-disp-formula">17</a>) with parameters, <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>A</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>. (<b>a</b>) 3D behavior in spatial and temporal coordinates. (<b>b</b>) Contour plot in 2D.</p>
Full article ">Figure 6
<p>The visualization of solution (<a href="#FD25-axioms-13-00763" class="html-disp-formula">25</a>) with parameters, <math display="inline"><semantics> <msub> <mi>a</mi> <mn>0</mn> </msub> </semantics></math> = 0.3, <math display="inline"><semantics> <msub> <mi>h</mi> <mn>1</mn> </msub> </semantics></math> = 0.2, <math display="inline"><semantics> <msub> <mi>l</mi> <mn>1</mn> </msub> </semantics></math> = −2, <math display="inline"><semantics> <msub> <mi>l</mi> <mn>2</mn> </msub> </semantics></math> = 1, <math display="inline"><semantics> <msub> <mi>a</mi> <mn>1</mn> </msub> </semantics></math> = 0.3, <math display="inline"><semantics> <msub> <mi>a</mi> <mn>2</mn> </msub> </semantics></math> = 3. (<b>a</b>) 3D behavior in spatial and temporal coordinates. (<b>b</b>) Contour plot in 2D.</p>
Full article ">Figure 7
<p>The visualization of solution (<a href="#FD26-axioms-13-00763" class="html-disp-formula">26</a>) with parameters, <math display="inline"><semantics> <msub> <mi>a</mi> <mn>0</mn> </msub> </semantics></math> = −6.5, <math display="inline"><semantics> <msub> <mi>h</mi> <mn>1</mn> </msub> </semantics></math> = 2, <math display="inline"><semantics> <msub> <mi>l</mi> <mn>1</mn> </msub> </semantics></math> = −2, <math display="inline"><semantics> <msub> <mi>l</mi> <mn>2</mn> </msub> </semantics></math> = 1, <math display="inline"><semantics> <msub> <mi>a</mi> <mn>1</mn> </msub> </semantics></math> = 3, <math display="inline"><semantics> <msub> <mi>a</mi> <mn>2</mn> </msub> </semantics></math> = 0.3. (<b>a</b>) 3D behavior in spatial and temporal coordinates. (<b>b</b>) Contour plot in 2D.</p>
Full article ">Figure 8
<p>The visualization of solution (<a href="#FD29-axioms-13-00763" class="html-disp-formula">29</a>) with parameters, <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>4.3</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>h</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>l</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <msub> <mi>a</mi> <mn>1</mn> </msub> </semantics></math> = 0.3, <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>.</mo> </mrow> </semantics></math> (<b>a</b>) 3D behavior in spatial and temporal coordinates. (<b>b</b>) Contour plot in 2D.</p>
Full article ">Figure 9
<p>The visualization of solution (<a href="#FD31-axioms-13-00763" class="html-disp-formula">31</a>) with the parameters <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>6.5</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>h</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>l</mi> <mn>1</mn> </msub> </mrow> </semantics></math> = 0.5, <math display="inline"><semantics> <mrow> <msub> <mi>l</mi> <mn>2</mn> </msub> <mo>=</mo> <msqrt> <mn>3</mn> </msqrt> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <msub> <mi>a</mi> <mn>1</mn> </msub> </semantics></math> = 0.1, <math display="inline"><semantics> <msub> <mi>a</mi> <mn>2</mn> </msub> </semantics></math> = 0.1. (<b>a</b>) 3D behavior in spatial and temporal coordinates. (<b>b</b>) Contour plot in 2D.</p>
Full article ">
Back to TopTop