[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

N-soliton, Hth-order breather, hybrid and multi-pole solutions for a generalized variable-coefficient Gardner equation with an external force in a plasma or fluid

  • Research
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we investigate a generalized variable-coefficient Gardner equation with an external force in a plasma or fluid. Via the Hirota method, we obtain certain bilinear forms and N-soliton solutions, where N is a positive integer. We also derive the Hth-order breather and hybrid solutions through the complex conjugated transformations, where H is a positive integer. Moreover, multi-pole solutions are constructed with the limit method. Multi-soliton, breather-breather, soliton-breather and multi-pole interactions are studied. Influences of the external force and variable coefficients on the solutions are discussed analytically and graphically. For those nonlinear waves: (i) the external force affects the backgrounds and velocities; (ii) the damping coefficient affects the amplitudes, widths and velocities; (iii) the dispersive and dissipative coefficients affect the characteristic lines and velocities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statement

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Wazwaz, A.M., Alhejaili, W., El-Tantawy, S.A.: On the Painlevé integrability and nonlinear structures to a (3+1)-dimensional Boussinesq-type equation in fluid mediums: Lumps and multiple soliton/shock solutions. Phys. Fluids 36, 033116 (2024)

    ADS  Google Scholar 

  2. Mandal, U.M., Das, A., Ma, W.X.: Integrability, breather, rogue wave, lump, lump-multi-stripe, and lump-multi-soliton solutions of a (3+1)-dimensional nonlinear evolution equation. Phys. Fluids 36, 037151 (2024)

    ADS  Google Scholar 

  3. Iqbal, M., Lu, D.C., Seadawy, A.R., Zhang, Z.D.: Nonlinear behavior of dust acoustic periodic soliton structures of nonlinear damped modified Korteweg-de Vries equation in dusty plasma. Res. Phys. 59, 107533 (2024)

    Google Scholar 

  4. Zhao, W.G., Zuo, D.W., Tian, X.S., Xie, X.Y., Meng, G.Q.: Observation of primary rogue waves in solids. J. Phys. Soc. Jpn. 93, 044001 (2024)

    ADS  Google Scholar 

  5. Gao, X.Y.: Auto-Bäcklund transformation with the solitons and similarity reductions for a generalized nonlinear shallow water wave equation. Qual. Theory Dyn. Syst. 23, 181 (2024)

    Google Scholar 

  6. Gao, X.Y.: In the shallow water: auto-Bäcklund, hetero-Bäcklund and scaling transformations via a (2+1)-dimensional generalized Broer-Kaup system. Qual. Theory Dyn. Syst. 23, 184 (2024)

    Google Scholar 

  7. Wu, X.H., Gao, Y.T., Yu, X.: On a Hirota equation in oceanic fluid mechanics: Double-pole breather-to-soliton transitions, Chaos. Soliton. Fract. 183, 114874 (2024)

    Google Scholar 

  8. Yu, X.H., Zuo, D.W.: Breather and soliton solutions of a generalized (3+1)-dimensional Yu-CToda-CSasa-CFukuyama equation. Phys. Fluids 36, 037110 (2024)

    ADS  Google Scholar 

  9. Lan, Z.Z.: Semirational rogue waves of the three coupled higher-order nonlinear Schrodinger equations. Appl. Math. Lett. 147, 108845 (2024)

    MathSciNet  Google Scholar 

  10. Yin, X.L., Zuo, D.W.: Modulation instability, bifurcation and chaotic behaviors for a generalized (2+1)-dimensional nonlinear wave equation in a fluid or solid. Appl. Math. Lett. 159, 109287 (2024)

    MathSciNet  Google Scholar 

  11. Lan, Z.Z.: Multiple soliton asymptotics in a spin-one Bose-Einstein condensate. Chin. Phys. Lett. 41, 090501 (2024)

    Google Scholar 

  12. Lan, Z.Z.: Bound-state solitons in three-wave resonant interactions. Nonlinear Dyn. (2024). 112, 20173 (2024)

  13. Cheng, C.D., Tian, B., Shen, Y., Zhou, T.Y.: Bilinear form and Pfaffian solutions for a (2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics and plasma physics. Nonlinear Dyn. 111, 6659 (2023)

    Google Scholar 

  14. Liu, H.D., Tian, B., Cheng, C.D., Zhou, T.Y., Gao, X.T.: Painlevé analysis, bilinear forms, Bäcklund Transformations and solitons for a variable-coefficient extended Korteweg-de vries equation with an external-force term in fluid mechanics and plasma dynamics. Qual. Theory Dyn. Syst. 23, 242 (2024)

    Google Scholar 

  15. Bertola, M., Jenkins, R., Tovbis, A.: Partial degeneration of finite gap solutions to the Korteweg-de Vries equation: soliton gas and scattering on elliptic backgrounds. Nonlinearity 36, 3622 (2023)

    ADS  MathSciNet  Google Scholar 

  16. Saifullah, S., Alqarni, M.M., Ahmad, S., Baleanu, D., Khan, M.A., Mahmoud, E.E.: Some more bounded and singular pulses of a generalized scale-invariant analogue of the Korteweg-de Vries equation. Res. Phys. 52, 106836 (2023)

    Google Scholar 

  17. Zhao, P., Fan, E.G.: A Riemann-Hilbert method to algebrogeometric solutions of the Korteweg-de Vries equation. Physica D 454, 133879 (2023)

    Google Scholar 

  18. Kalita, J., Das, R., Hosseini, K., Balean, D., Hincal, E.: Ion acoustic soliton with thermal ions and non-thermal electrons in a high-relativistic electron-positron-ion plasma. Partial Differ. Equ. Appl. Math. 8, 100579 (2023)

    Google Scholar 

  19. Abdikian, A., Ghanbari, B.: On a modified Korteweg-de Vries equation for electrostatic structures in relativistic degenerate electron-positron plasma. Res. Phys. 48, 106399 (2023)

    Google Scholar 

  20. Yang, J.J., Tian, S.F., Li, Z.Q.: Inverse scattering problem for the matrix modified Korteweg-de Vries equation with finite density type initial data. Physica D 455, 133911 (2023)

    MathSciNet  Google Scholar 

  21. Seadawy, A.R., Iqbal, M., Lu, D.: Propagation of kink and anto-kink waves solitons for the nonlinear damped modified Korteweg-de Vries equation arising in ion-acoustic wave in an unmagnetized collisional dusty plasma. Physica A 544, 123560 (2020)

    Google Scholar 

  22. Khater, A.H., El-Kalaawy, O.H., Callebaut, D.K.: Bäcklund transformations and exact solutions for Akfv\({\rm \acute{e}}\)n solitons in relativistic electron-positron plasma. Phys. Scr. 6, 545 (1998)

    ADS  Google Scholar 

  23. Lan, Z.Z.: Multi-soliton solutions, breather-like and bound-state solitons for complex modified Korteweg-Cde Vries equation in optical fibers. Chin. Phys. B 33, 060201 (2024)

    ADS  Google Scholar 

  24. Liu, Y., Gao, Y.T., Sun, Z.Y., Yu, X.: Multi-soliton solutions of the forced variable-coefficient extended Korteweg-de Vries equation arisen in fluid dynamics of internal solitary waves. Nonlinear Dyn. 66, 575 (2011)

    MathSciNet  Google Scholar 

  25. Liu, Y.P., Gao, Y.T., Wei, G.M.: Integrable aspects and soliton interaction for a generalized inhomogeneous Gardner model with external force in plasmas and fluids. Phys. Rev. E 88, 053204 (2013)

    ADS  Google Scholar 

  26. Li, J., Xu, T., Meng, X.H., Zhang, Y.X., Zhang, H.Q., Tian, B.: Lax pair, Bäcklund transformation and N-soliton-like solution for a variable-coefficient Gardner equation from nonlinear lattice, plasma physics and ocean dynamics with symbolic computation. J. Math. Anal. Appl. 336, 1443 (2007)

    MathSciNet  Google Scholar 

  27. Allehiany, F.M., Fares, M.M., Abdelsalam, U.M., Zobaer, M.S.: Solitary and shocklike wave solutions for the Gardner equation in dusty plasmas. J. Taibah Univ. Sci. 14, 800 (2020)

    Google Scholar 

  28. Wang, K.J.: Traveling wave solutions of the Gardner equation in dusty plasmas. Res. Phys. 33, 105207 (2022)

    ADS  Google Scholar 

  29. Grimshaw, R., Pelinovsky, D., Pelinovsky, E., Talipova, T.: Wave group dynamics in weakly nonlinear long-wave models. Physica D 159, 35 (2001)

    ADS  MathSciNet  Google Scholar 

  30. Watanabe, S.: Ion acoustic soliton in plasma with negative ion. J. Phys. Soc. Japan 53, 950 (1984)

    ADS  Google Scholar 

  31. Mathanaranjan, T.: Exact and explicit traveling wave solutions to the generalized Gardner and BBMB equations with dual high-order nonlinear terms. Partial Differ. Equ. Appl. Math. 4, 100120 (2021)

    Google Scholar 

  32. Chen, Y.Q., Tian, B., Qu, Q.X., Li, H., Zhao, X.H., Tian, H.Y., Wang, M.: Ablowitz-Kaup-Newell-Segur system, conservation laws and Bäcklund transformation of a variable-coefficient Korteweg-de Vries equation in plasma physics, fluid dynamics or atmospheric science. Int. J. Mod. Phys. B 34, 2050226 (2020)

    ADS  Google Scholar 

  33. Chai, J., Tian, B., Qu, Q.X., Zhen, H.L., Chai, H.P.: Solitonic properties for a forced generalized variable coefficient Korteweg-de Vries equation for the atmospheric blocking phenomenon. Wave Random Complex. 2, 1366084 (2017)

    Google Scholar 

  34. Wang, X., Geng, X.G.: N-Soliton solution and soliton resonances for the (2+1)-dimensional inhomogeneous Gardner equation. Commun. Theor. Phys. 68, 155 (2017)

    ADS  MathSciNet  Google Scholar 

  35. Lan, Z.Z.: N-soliton solutions, Bäcklund transformation and Lax pair for a generalized variable-coefficient cylindrical Kadomtsev-Petviashvili equation. Appl. Math. Lett. 158, 109239 (2024)

    Google Scholar 

  36. Zhao, X.H.: Multi-solitons and integrability for a (2+1)-dimensional variable coefficients Date-Jimbo-Kashiwara-Miwa equation. Appl. Math. Lett. 149, 108895 (2024)

    MathSciNet  Google Scholar 

  37. Liu, P., Huang, B., Ren, B., Yang, J.R.: Consistent Riccati expansion solvability, symmetries, and analytic solutions of a forced variable-coefficient extended Korteweg-de Vries equation in fluid dynamics of internal solitary waves. Chin. Phys. B 30, 080203 (2021)

    ADS  Google Scholar 

  38. Liu, H.D., Tian, B., Feng, S.P., Chen, Y.Q., Zhou, T.Y.: Integrability, bilinearization, Bäcklund transformations and solutions for a generalized variable-coefficient Gardner equation with an external-force term in a fluid or plasma. Nonlinear Dyn. 112, 12345 (2024)

    Google Scholar 

  39. Zhang, L.H., Dong, L.H., Yan, L.M.: Construction of non-travelling wave solutions for the generalized variable-coefficient Gardner equation. Appl. Math. Comput. 203, 784 (2008)

    MathSciNet  Google Scholar 

  40. Grimshaw, R.H., Pelinovsky, E., Talipova, T., Kurkin, A.: Simulation of the transformation of internal solitary waves on oceanic shelves. J. Phys. Oceanogr. 34, 2774 (2004)

    ADS  MathSciNet  Google Scholar 

  41. Marchant, T.R., Smyth, N.F.: The extended Korteweg-de Vries equation and the resonant flow of a fluid over topography. J. Fluid. Mech. 221, 263 (1990)

    ADS  MathSciNet  Google Scholar 

  42. Raut, S., Ma, W.X., Barman, R., Roy, S.: A non-autonomous Gardner equation and its integrability: solitons, positons and breathers, Chaos. Soliton. Fract. 176, 114089 (2023)

    Google Scholar 

  43. Grimshaw, R., Malewoong, M.: Transcritical flow over obstacles and holes: forced Korteweg-de Vries framework. J. Fluid Mech. 881, 660 (2019)

    ADS  MathSciNet  Google Scholar 

  44. Ermakov, A., Stepanyants, Y.: Soliton interaction with external forcing within the Korteweg-de Vries equation. Chaos 29, 013117 (2019)

    ADS  MathSciNet  Google Scholar 

  45. Zhang, Y.P., Liu, J., Wei, G.M.: Lax pair, auto-Bäcklund transformation and conservation law for a generalized variable-coefficient KdV equation with external-force term. Appl. Math. Lett. 45, 58 (2015)

    ADS  MathSciNet  Google Scholar 

  46. Gandarias, M.L., Bruz\({\rm \acute{o}}\)n, M.S.: Some conservation laws for a forced KdV equation. Nonlinear Anal. RWA 13, 2692 (2012)

  47. Zhao, J.X., Guo, B.L.: Analytic solutions to forced KdV equation. Commun. Theor. Phys. 52, 279 (2009)

    ADS  MathSciNet  Google Scholar 

  48. Salas, A.H.: Computing solutions to a forced KdV equation. Nonlinear Anal. RWA 12, 1314 (2011)

    MathSciNet  Google Scholar 

  49. Das, A., Mandal, U.K.: Integrability, bilinearization, solitons and exact three wave solutions for a forced Korteweg-de Vries equation. Commun. Nonlinear Sci. Numer. Simul. 102, 105936 (2021)

    MathSciNet  Google Scholar 

  50. Flamarion, M.V., Pelinovsky, E.: Soliton interactions with an external forcing: the modified Korteweg-de Vries framework, Chaos. Soliton. Fract. 165, 112889 (2022)

  51. Hirota, R.: The Direct Method in Soliton Theory. Cambridge Univ. Press, New York (2004)

    Google Scholar 

  52. Zhang, Z., Li, B., Wazwaz, A.M., Guo, Q.: The generation mechanism of multiple-pole solutions for the fifth-order mKdV equation. Eur. Phys. J. Plus 137, 193 (2022)

    ADS  Google Scholar 

  53. Wang, Y.Y., Su, C.Q., Liu, X.Q., Li, J.G.: Nonautonomous solitons for an extended forced Korteweg-de Vries equation with variable coefficients in the fluid or plasma. Wave. Random. Complex. 28, 411 (2018)

    ADS  MathSciNet  Google Scholar 

  54. Wang, P., Tian, B., Liu, W.J., Jiang, Y., Xue, Y.S.: Interactions of breathers and solitons of a generalized variable-coefficient Korteweg-de Vries-modified Korteweg-de Vries equation with symbolic computation. Eur. Phys. J. D 66, 233 (2012)

    ADS  Google Scholar 

  55. Yu, X., Gao, Y.T., Sun, Z.Y., Liu, Y.: Wronskian solutions and integrability for a genralized variable-coefficient forced Korteweg-de Vries equation in fluid. Nonlinear Dyn. 67, 1023 (2012)

    Google Scholar 

  56. Wu, Q.L., Zhang, H.Q., Hang, C.: Breather, soliton-breather interaction and double-pole solutions of the fifth-order modifed KdV equation. Appl. Math. Lett. 120, 107256 (2021)

    Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the Editors and Reviewers for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant No. 11772017.

Funding

This work has been supported by the National Natural Science Foundation of China under Grant. 11772017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, HD., Tian, B., Chen, YQ. et al. N-soliton, Hth-order breather, hybrid and multi-pole solutions for a generalized variable-coefficient Gardner equation with an external force in a plasma or fluid. Nonlinear Dyn 113, 3655–3672 (2025). https://doi.org/10.1007/s11071-024-10397-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-10397-1

Keywords

Navigation