Abstract
In this paper, we investigate a generalized variable-coefficient Gardner equation with an external force in a plasma or fluid. Via the Hirota method, we obtain certain bilinear forms and N-soliton solutions, where N is a positive integer. We also derive the Hth-order breather and hybrid solutions through the complex conjugated transformations, where H is a positive integer. Moreover, multi-pole solutions are constructed with the limit method. Multi-soliton, breather-breather, soliton-breather and multi-pole interactions are studied. Influences of the external force and variable coefficients on the solutions are discussed analytically and graphically. For those nonlinear waves: (i) the external force affects the backgrounds and velocities; (ii) the damping coefficient affects the amplitudes, widths and velocities; (iii) the dispersive and dissipative coefficients affect the characteristic lines and velocities.
Similar content being viewed by others
Data Availability Statement
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
References
Wazwaz, A.M., Alhejaili, W., El-Tantawy, S.A.: On the Painlevé integrability and nonlinear structures to a (3+1)-dimensional Boussinesq-type equation in fluid mediums: Lumps and multiple soliton/shock solutions. Phys. Fluids 36, 033116 (2024)
Mandal, U.M., Das, A., Ma, W.X.: Integrability, breather, rogue wave, lump, lump-multi-stripe, and lump-multi-soliton solutions of a (3+1)-dimensional nonlinear evolution equation. Phys. Fluids 36, 037151 (2024)
Iqbal, M., Lu, D.C., Seadawy, A.R., Zhang, Z.D.: Nonlinear behavior of dust acoustic periodic soliton structures of nonlinear damped modified Korteweg-de Vries equation in dusty plasma. Res. Phys. 59, 107533 (2024)
Zhao, W.G., Zuo, D.W., Tian, X.S., Xie, X.Y., Meng, G.Q.: Observation of primary rogue waves in solids. J. Phys. Soc. Jpn. 93, 044001 (2024)
Gao, X.Y.: Auto-Bäcklund transformation with the solitons and similarity reductions for a generalized nonlinear shallow water wave equation. Qual. Theory Dyn. Syst. 23, 181 (2024)
Gao, X.Y.: In the shallow water: auto-Bäcklund, hetero-Bäcklund and scaling transformations via a (2+1)-dimensional generalized Broer-Kaup system. Qual. Theory Dyn. Syst. 23, 184 (2024)
Wu, X.H., Gao, Y.T., Yu, X.: On a Hirota equation in oceanic fluid mechanics: Double-pole breather-to-soliton transitions, Chaos. Soliton. Fract. 183, 114874 (2024)
Yu, X.H., Zuo, D.W.: Breather and soliton solutions of a generalized (3+1)-dimensional Yu-CToda-CSasa-CFukuyama equation. Phys. Fluids 36, 037110 (2024)
Lan, Z.Z.: Semirational rogue waves of the three coupled higher-order nonlinear Schrodinger equations. Appl. Math. Lett. 147, 108845 (2024)
Yin, X.L., Zuo, D.W.: Modulation instability, bifurcation and chaotic behaviors for a generalized (2+1)-dimensional nonlinear wave equation in a fluid or solid. Appl. Math. Lett. 159, 109287 (2024)
Lan, Z.Z.: Multiple soliton asymptotics in a spin-one Bose-Einstein condensate. Chin. Phys. Lett. 41, 090501 (2024)
Lan, Z.Z.: Bound-state solitons in three-wave resonant interactions. Nonlinear Dyn. (2024). 112, 20173 (2024)
Cheng, C.D., Tian, B., Shen, Y., Zhou, T.Y.: Bilinear form and Pfaffian solutions for a (2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics and plasma physics. Nonlinear Dyn. 111, 6659 (2023)
Liu, H.D., Tian, B., Cheng, C.D., Zhou, T.Y., Gao, X.T.: Painlevé analysis, bilinear forms, Bäcklund Transformations and solitons for a variable-coefficient extended Korteweg-de vries equation with an external-force term in fluid mechanics and plasma dynamics. Qual. Theory Dyn. Syst. 23, 242 (2024)
Bertola, M., Jenkins, R., Tovbis, A.: Partial degeneration of finite gap solutions to the Korteweg-de Vries equation: soliton gas and scattering on elliptic backgrounds. Nonlinearity 36, 3622 (2023)
Saifullah, S., Alqarni, M.M., Ahmad, S., Baleanu, D., Khan, M.A., Mahmoud, E.E.: Some more bounded and singular pulses of a generalized scale-invariant analogue of the Korteweg-de Vries equation. Res. Phys. 52, 106836 (2023)
Zhao, P., Fan, E.G.: A Riemann-Hilbert method to algebrogeometric solutions of the Korteweg-de Vries equation. Physica D 454, 133879 (2023)
Kalita, J., Das, R., Hosseini, K., Balean, D., Hincal, E.: Ion acoustic soliton with thermal ions and non-thermal electrons in a high-relativistic electron-positron-ion plasma. Partial Differ. Equ. Appl. Math. 8, 100579 (2023)
Abdikian, A., Ghanbari, B.: On a modified Korteweg-de Vries equation for electrostatic structures in relativistic degenerate electron-positron plasma. Res. Phys. 48, 106399 (2023)
Yang, J.J., Tian, S.F., Li, Z.Q.: Inverse scattering problem for the matrix modified Korteweg-de Vries equation with finite density type initial data. Physica D 455, 133911 (2023)
Seadawy, A.R., Iqbal, M., Lu, D.: Propagation of kink and anto-kink waves solitons for the nonlinear damped modified Korteweg-de Vries equation arising in ion-acoustic wave in an unmagnetized collisional dusty plasma. Physica A 544, 123560 (2020)
Khater, A.H., El-Kalaawy, O.H., Callebaut, D.K.: Bäcklund transformations and exact solutions for Akfv\({\rm \acute{e}}\)n solitons in relativistic electron-positron plasma. Phys. Scr. 6, 545 (1998)
Lan, Z.Z.: Multi-soliton solutions, breather-like and bound-state solitons for complex modified Korteweg-Cde Vries equation in optical fibers. Chin. Phys. B 33, 060201 (2024)
Liu, Y., Gao, Y.T., Sun, Z.Y., Yu, X.: Multi-soliton solutions of the forced variable-coefficient extended Korteweg-de Vries equation arisen in fluid dynamics of internal solitary waves. Nonlinear Dyn. 66, 575 (2011)
Liu, Y.P., Gao, Y.T., Wei, G.M.: Integrable aspects and soliton interaction for a generalized inhomogeneous Gardner model with external force in plasmas and fluids. Phys. Rev. E 88, 053204 (2013)
Li, J., Xu, T., Meng, X.H., Zhang, Y.X., Zhang, H.Q., Tian, B.: Lax pair, Bäcklund transformation and N-soliton-like solution for a variable-coefficient Gardner equation from nonlinear lattice, plasma physics and ocean dynamics with symbolic computation. J. Math. Anal. Appl. 336, 1443 (2007)
Allehiany, F.M., Fares, M.M., Abdelsalam, U.M., Zobaer, M.S.: Solitary and shocklike wave solutions for the Gardner equation in dusty plasmas. J. Taibah Univ. Sci. 14, 800 (2020)
Wang, K.J.: Traveling wave solutions of the Gardner equation in dusty plasmas. Res. Phys. 33, 105207 (2022)
Grimshaw, R., Pelinovsky, D., Pelinovsky, E., Talipova, T.: Wave group dynamics in weakly nonlinear long-wave models. Physica D 159, 35 (2001)
Watanabe, S.: Ion acoustic soliton in plasma with negative ion. J. Phys. Soc. Japan 53, 950 (1984)
Mathanaranjan, T.: Exact and explicit traveling wave solutions to the generalized Gardner and BBMB equations with dual high-order nonlinear terms. Partial Differ. Equ. Appl. Math. 4, 100120 (2021)
Chen, Y.Q., Tian, B., Qu, Q.X., Li, H., Zhao, X.H., Tian, H.Y., Wang, M.: Ablowitz-Kaup-Newell-Segur system, conservation laws and Bäcklund transformation of a variable-coefficient Korteweg-de Vries equation in plasma physics, fluid dynamics or atmospheric science. Int. J. Mod. Phys. B 34, 2050226 (2020)
Chai, J., Tian, B., Qu, Q.X., Zhen, H.L., Chai, H.P.: Solitonic properties for a forced generalized variable coefficient Korteweg-de Vries equation for the atmospheric blocking phenomenon. Wave Random Complex. 2, 1366084 (2017)
Wang, X., Geng, X.G.: N-Soliton solution and soliton resonances for the (2+1)-dimensional inhomogeneous Gardner equation. Commun. Theor. Phys. 68, 155 (2017)
Lan, Z.Z.: N-soliton solutions, Bäcklund transformation and Lax pair for a generalized variable-coefficient cylindrical Kadomtsev-Petviashvili equation. Appl. Math. Lett. 158, 109239 (2024)
Zhao, X.H.: Multi-solitons and integrability for a (2+1)-dimensional variable coefficients Date-Jimbo-Kashiwara-Miwa equation. Appl. Math. Lett. 149, 108895 (2024)
Liu, P., Huang, B., Ren, B., Yang, J.R.: Consistent Riccati expansion solvability, symmetries, and analytic solutions of a forced variable-coefficient extended Korteweg-de Vries equation in fluid dynamics of internal solitary waves. Chin. Phys. B 30, 080203 (2021)
Liu, H.D., Tian, B., Feng, S.P., Chen, Y.Q., Zhou, T.Y.: Integrability, bilinearization, Bäcklund transformations and solutions for a generalized variable-coefficient Gardner equation with an external-force term in a fluid or plasma. Nonlinear Dyn. 112, 12345 (2024)
Zhang, L.H., Dong, L.H., Yan, L.M.: Construction of non-travelling wave solutions for the generalized variable-coefficient Gardner equation. Appl. Math. Comput. 203, 784 (2008)
Grimshaw, R.H., Pelinovsky, E., Talipova, T., Kurkin, A.: Simulation of the transformation of internal solitary waves on oceanic shelves. J. Phys. Oceanogr. 34, 2774 (2004)
Marchant, T.R., Smyth, N.F.: The extended Korteweg-de Vries equation and the resonant flow of a fluid over topography. J. Fluid. Mech. 221, 263 (1990)
Raut, S., Ma, W.X., Barman, R., Roy, S.: A non-autonomous Gardner equation and its integrability: solitons, positons and breathers, Chaos. Soliton. Fract. 176, 114089 (2023)
Grimshaw, R., Malewoong, M.: Transcritical flow over obstacles and holes: forced Korteweg-de Vries framework. J. Fluid Mech. 881, 660 (2019)
Ermakov, A., Stepanyants, Y.: Soliton interaction with external forcing within the Korteweg-de Vries equation. Chaos 29, 013117 (2019)
Zhang, Y.P., Liu, J., Wei, G.M.: Lax pair, auto-Bäcklund transformation and conservation law for a generalized variable-coefficient KdV equation with external-force term. Appl. Math. Lett. 45, 58 (2015)
Gandarias, M.L., Bruz\({\rm \acute{o}}\)n, M.S.: Some conservation laws for a forced KdV equation. Nonlinear Anal. RWA 13, 2692 (2012)
Zhao, J.X., Guo, B.L.: Analytic solutions to forced KdV equation. Commun. Theor. Phys. 52, 279 (2009)
Salas, A.H.: Computing solutions to a forced KdV equation. Nonlinear Anal. RWA 12, 1314 (2011)
Das, A., Mandal, U.K.: Integrability, bilinearization, solitons and exact three wave solutions for a forced Korteweg-de Vries equation. Commun. Nonlinear Sci. Numer. Simul. 102, 105936 (2021)
Flamarion, M.V., Pelinovsky, E.: Soliton interactions with an external forcing: the modified Korteweg-de Vries framework, Chaos. Soliton. Fract. 165, 112889 (2022)
Hirota, R.: The Direct Method in Soliton Theory. Cambridge Univ. Press, New York (2004)
Zhang, Z., Li, B., Wazwaz, A.M., Guo, Q.: The generation mechanism of multiple-pole solutions for the fifth-order mKdV equation. Eur. Phys. J. Plus 137, 193 (2022)
Wang, Y.Y., Su, C.Q., Liu, X.Q., Li, J.G.: Nonautonomous solitons for an extended forced Korteweg-de Vries equation with variable coefficients in the fluid or plasma. Wave. Random. Complex. 28, 411 (2018)
Wang, P., Tian, B., Liu, W.J., Jiang, Y., Xue, Y.S.: Interactions of breathers and solitons of a generalized variable-coefficient Korteweg-de Vries-modified Korteweg-de Vries equation with symbolic computation. Eur. Phys. J. D 66, 233 (2012)
Yu, X., Gao, Y.T., Sun, Z.Y., Liu, Y.: Wronskian solutions and integrability for a genralized variable-coefficient forced Korteweg-de Vries equation in fluid. Nonlinear Dyn. 67, 1023 (2012)
Wu, Q.L., Zhang, H.Q., Hang, C.: Breather, soliton-breather interaction and double-pole solutions of the fifth-order modifed KdV equation. Appl. Math. Lett. 120, 107256 (2021)
Acknowledgements
We express our sincere thanks to the Editors and Reviewers for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant No. 11772017.
Funding
This work has been supported by the National Natural Science Foundation of China under Grant. 11772017.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Liu, HD., Tian, B., Chen, YQ. et al. N-soliton, Hth-order breather, hybrid and multi-pole solutions for a generalized variable-coefficient Gardner equation with an external force in a plasma or fluid. Nonlinear Dyn 113, 3655–3672 (2025). https://doi.org/10.1007/s11071-024-10397-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-024-10397-1