Climatological Study on Cyclone Genesis and Tracks in Southern Brazil from 1979 to 2019
<p>Map of the study region with cyclone genesis areas indicated by rectangles. Area A1 covers the continental region near the discharge of the Rio de la Plata, spanning Uruguay, Argentina, and southern Brazil (~30° latitude). Area A2 includes the oceanic region between the Rio de la Plata and the Brazil–Malvinas confluence. Area A3 encompasses the southeastern coast of Argentina, particularly near and south of the Gulf of San Matías.</p> "> Figure 2
<p>Trajectory and cyclogenesis densities calculated for P01 ((<b>A</b>) and (<b>D</b>), respectively) and P02 ((<b>B</b>) and (<b>E</b>), respectively). The trajectory bias (<b>C</b>) and cyclogenesis bias (<b>F</b>) are also presented in the figure.</p> "> Figure 3
<p>Time series of trajectory density (<b>A</b>), cyclogenesis (<b>B</b>), and distribution of mean vorticity values (<b>C</b>) for identified cyclones.</p> "> Figure 4
<p>Statistically significant annual trends (Mann-Kendall test) of trajectory and cyclogenesis density in P01 ((<b>A</b>) and (<b>C</b>), respectively) and P02 ((<b>B</b>) and (<b>D</b>), respectively). The white areas do not show trends.</p> "> Figure 5
<p>Seasonal cyclogenesis density from P01 and P02 during the positive and negative phase of the Antarctic Oscillation Climate Index (AAO). Summer patterns are shown in (<b>A</b>–<b>D</b>), fall in (<b>E</b>–<b>H</b>), winter in (<b>I</b>–<b>L</b>), and spring in (<b>M</b>–<b>P</b>). Cyclone densities for P01 and P02 during positive phase are represented in (<b>A</b>,<b>E</b>,<b>I</b>,<b>M</b>) and (<b>B</b>,<b>F</b>,<b>J</b>,<b>N</b>), respectively. Cyclogenesis densities for P01 and P02 during negative phase are shown in (<b>C</b>,<b>G</b>,<b>K</b>,<b>O</b>) and (<b>D</b>,<b>H</b>,<b>L</b>,<b>P</b>), respectively.</p> "> Figure 6
<p>Trajectory density and cyclogenesis of cyclones separated by directions for P01 and P02. The trajectory density and cyclogenesis from south to north for P01 are shown in (<b>A</b>) and (<b>C</b>), respectively. For P02, they are shown in (<b>B</b>) and (<b>D</b>), respectively. The trajectory density and cyclogenesis from north to south for P01 are shown in (<b>E</b>) and (<b>G</b>), respectively, while for P02, they are shown in (<b>F</b>) and (<b>H</b>), respectively.</p> "> Figure 7
<p>Trajectory density and seasonal cyclogenesis of identified cyclones from the south to north (S to N). On the left (right) panel is seasonal track (cyclogenesis) density. Summer patterns are shown in (<b>A</b>–<b>D</b>), fall in (<b>E</b>–<b>H</b>), winter in (<b>I</b>–<b>L</b>), and spring in (<b>M</b>–<b>P</b>). Track densities for P01 and P02 are represented in (<b>A</b>,<b>E</b>,<b>I</b>,<b>M</b>) and (<b>B</b>,<b>F</b>,<b>J</b>,<b>N</b>), respectively. Cyclogenesis densities for P01 and P02 are shown in (<b>C</b>,<b>G</b>,<b>K</b>,<b>O</b>) and (<b>D</b>,<b>H</b>,<b>L</b>,<b>P</b>), respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The Dataset Derived from the Algorithm cycloTRACK
2.3. The Dataset Derived from Algorithm TRACK
2.4. Comparisons Between the CycloTRACK and TRACK Methods
2.5. Characterization of Cyclones by Direction and Seasonal Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Densities of Cyclone Trajectories and Genesis Events in and Around Southern Brazil
3.2. Temporal Evolution of Trajectory Density, Cyclogenesis, and Mean Cyclone Vorticity
3.3. Spatial Annual Trends
3.4. Seasonal Cyclogenesis Density During AAO Phases
3.5. The Impacts over the Southern Brazilian Area
3.6. Seasonal Variability of Cyclones Moving Northward
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castellanos, E.J.; Lemos, M.F.; Astigarraga, L.; Chacón, N.; Cuvi, N.; Huggel, C.; Miranda, L.; Vale, M.M.; Ometto, J.P.; Peri, P.L.; et al. Central and South America. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M.M.B., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK, 2022; Available online: https://www.ipcc.ch/report/ar6/wg2/ (accessed on 5 November 2024).
- Bindoff, N.; Boyd, P.; Constable, A.; King, M.; McGee, J.; Pecl, G. Antarctica and the Southern Ocean: Insights from the 2022 IPCC WGII Report; University of Tasmania: Hobart, Australia, 2022. [Google Scholar]
- Nicholls, R.J.; Cazenave, A. Sea-Level Rise and Its Impact on Coastal Zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Sutton, P.; Van Der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the Global Value of Ecosystem Services. Glob. Environ. Change 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Muehe, D. Brazilian Coastal Vulnerability to Climate Change. Panam. J. Aquat. Sci. 2010, 5, 173–183. [Google Scholar]
- Satyamurty, P.; Ferreira, C.D.A.C.; Gan, M.A. Cyclonic Vortices over South America. Tellus A 1990, 42, 194–201. [Google Scholar] [CrossRef]
- Gan, M.A.; Rao, V.B. Surface Cyclogenesis over South America. Mon. Wea. Rev. 1991, 119, 1293–1302. [Google Scholar] [CrossRef]
- Hoskins, B.J.; Hodges, K.I. A New Perspective on Southern Hemisphere Storm Tracks. J. Clim. 2005, 18, 4108–4129. [Google Scholar] [CrossRef]
- Reboita, M.S.; da Rocha, R.P.; Ambrizzi, T. Climatologia de Ciclones sobre o Atlântico Sul utilizando Métodos Objetivos na Detecção destes Sistemas. In Proceedings of the IX Congresso Argentino de Meteorologia (CONGREMET), Buenos Aires, Argentina, 3–7 October 2005. [Google Scholar]
- Gramcianinov, C.B. Changes in South Atlantic Cyclones Due Climate Change. Doutorado em Meteorologia; Universidade de São Paulo: São Paulo, Brazil, 2019. [Google Scholar]
- De Jesus, E.M.; Da Rocha, R.P.; Crespo, N.M.; Reboita, M.S.; Gozzo, L.F. Future Climate Trends of Subtropical Cyclones in the South Atlantic Basin in an Ensemble of Global and Regional Projections. Clim. Dyn. 2022, 58, 1221–1236. [Google Scholar] [CrossRef]
- Crespo, N.M.; Da Rocha, R.P.; Sprenger, M.; Wernli, H. A Potential Vorticity Perspective on Cyclogenesis over centre-eastern South America. Int. J. Climatol. 2021, 41, 663–678. [Google Scholar] [CrossRef]
- Simmonds, I.; Murray, R.J. Southern Extratropical Cyclone Behavior in ECMWF Analyses during the FROST Special Observing Periods. Weather Forecast. 1999, 14, 878–891. [Google Scholar] [CrossRef]
- Reboita, M.S.; Da Rocha, R.P.; Ambrizzi, T.; Gouveia, C.D. Trend and Teleconnection Patterns in the Climatology of Extratropical Cyclones over the Southern Hemisphere. Clim. Dyn. 2015, 45, 1929–1944. [Google Scholar] [CrossRef]
- Reboita, M.S.; da Rocha, R.P. Monitoramento e Previsão de Ciclones Extratropicais. In Proceedings of the XV Congresso Brasileiro de Meteorologia, São Paulo, Brazil, 24–29 August 2008; A Meteorologia e as Cidades. [Google Scholar]
- Pezza, A.B.; Ambrizzi, T. Variability of Southern Hemisphere Cyclone and Anticyclone Behavior: Further Analysis. J. Clim. 2003, 16, 1075–1083. [Google Scholar] [CrossRef]
- Seluchi, M.E. Diagnóstico y pronóstico de situaciones sinópticas conducentes a ciclogénesis sobre el este de Sudamérica. Geofísica Int. 1995, 34, 171–186. Available online: https://pdfs.semanticscholar.org/fe6b/47a1c0cdb3ff9ddc78d6aa1a7ca2ba5994ce.pdf (accessed on 5 November 2024). [CrossRef]
- Gong, D.; Wang, S. Definition of Antarctic Oscillation Index. Geophys. Res. Lett. 1999, 26, 459–462. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Wallace, J.M.; Hegerl, G.C. Annular Modes in the Extratropical Circulation. Part II: Trends. J. Clim. 2000, 13, 1018–1036. [Google Scholar] [CrossRef]
- Reboita, M.S.; Ambrizzi, T.; Rocha, R.P.D. Relationship between the Southern Annular Mode and Southern Hemisphere Atmospheric Systems. Rev. Bras. Meteorol. 2009, 24, 48–55. [Google Scholar] [CrossRef]
- Rosso, F.V.; Boiaski, N.T.; Ferraz, S.E.T.; Robles, T.C. Influence of the Antarctic Oscillation on the South Atlantic Convergence Zone. Atmosphere 2018, 9, 431. [Google Scholar] [CrossRef]
- Alves, M.; Brito Silveira, R.; Boligon Minuzzi, R.; Elvino Franke, A. The Influence of the Antarctic Oscillation (AAO) on Cold Waves and Occurrence of Frosts in the State of Santa Catarina, Brazil. Climate 2017, 5, 17. [Google Scholar] [CrossRef]
- Silvestri, G.E.; Vera, C.S. Antarctic Oscillation Signal on Precipitation Anomalies over Southeastern South America. Geophys. Res. Lett. 2003, 30, 2003GL018277. [Google Scholar] [CrossRef]
- Paegle, J.N.; Byerle, L.A.; Mo, K.C. Intraseasonal Modulation of South American Summer Precipitation. Mon. Weather Rev. 2000, 128, 837–850. [Google Scholar] [CrossRef]
- Scheuer, P.R. Sistemas Frontais Associados à Zona de Convergência do Atlântico Sul; TCC (Graduação em Meteorologia), Universidade Federal de Santa Catarina, Centro de Ciências Físicas e Matemáticas: Florianópolis, Brazil, 2017. [Google Scholar]
- Murray, R.J.; Simmonds, I. A numerical scheme for tracking cyclone centres from digital data. Part II: Application to January and July general circulation model simulations. Aust. Meteorol. Mag. 1991, 39, 167–180. [Google Scholar]
- Flaounas, E.; Aragão, L.; Bernini, L.; Dafis, S.; Doiteau, B.; Flocas, H.; Gray, S.L.; Karwat, A.; Kouroutzoglou, J.; Lionello, P.; et al. A Composite Approach to Produce Reference Datasets for Extratropical Cyclone Tracks: Application to Mediterranean Cyclones. Weather Clim. Dynam. 2023, 4, 639–661. [Google Scholar] [CrossRef]
- Reale, M.; Cabos Narvaez, W.D.; Cavicchia, L.; Conte, D.; Coppola, E.; Flaounas, E.; Giorgi, F.; Gualdi, S.; Hochman, A.; Li, L.; et al. Future Projections of Mediterranean Cyclone Characteristics Using the Med-CORDEX Ensemble of Coupled Regional Climate System Models. Clim. Dyn. 2022, 58, 2501–2524. [Google Scholar] [CrossRef]
- Bengtsson, L.; Hodges, K.I.; Roeckner, E. Storm Tracks and Climate Change. J. Clim. 2006, 19, 3518–3543. [Google Scholar] [CrossRef]
- Raible, C.C.; Della-Marta, P.M.; Schwierz, C.; Wernli, H.; Blender, R. Northern Hemisphere Extratropical Cyclones: A Comparison of Detection and Tracking Methods and Different Reanalyses. Mon. Weather Rev. 2008, 136, 880–897. [Google Scholar] [CrossRef]
- Reboita, M.S.; Da Rocha, R.P.; Ambrizzi, T.; Sugahara, S. South Atlantic Ocean Cyclogenesis Climatology Simulated by Regional Climate Model (RegCM3). Clim. Dyn. 2010, 35, 1331–1347. [Google Scholar] [CrossRef]
- Colle, B.A.; Booth, J.F.; Chang, E.K.M. A Review of Historical and Future Changes of Extratropical Cyclones and Associated Impacts Along the US East Coast. Curr. Clim. Change Rep. 2015, 1, 125–143. [Google Scholar] [CrossRef] [PubMed]
- Hodges, K.I. A General Method for Tracking Analysis and Its Application to Meteorological Data. Mon. Weather Rev. 1994, 122, 2573–2586. [Google Scholar] [CrossRef]
- Hodges, K.I. Feature Tracking on the Unit Sphere. Mon. Weather Rev. 1995, 123, 3458–3465. [Google Scholar] [CrossRef]
- Sinclair, M.R. An Objective Cyclone Climatology for the Southern Hemisphere. Mon. Weather Rev. 1994, 122, 2239–2256. [Google Scholar] [CrossRef]
- Flaounas, E.; Kotroni, V.; Lagouvardos, K.; Flaounas, I. CycloTRACK (v1.0)—Tracking Winter Extratropical Cyclones Based on Relative Vorticity: Sensitivity to Data Filtering and Other Relevant Parameters. Geosci. Model Dev. 2014, 7, 1841–1853. [Google Scholar] [CrossRef]
- Gramcianinov, C.B.; Campos, R.M.; Guedes Soares, C.; Camargo, R.D. Extreme Waves Generated by Cyclonic Winds in the Western Portion of the South Atlantic Ocean. Ocean. Eng. 2020, 213, 107745. [Google Scholar] [CrossRef]
- Souza, R.; Pezzi, L.; Swart, S.; Oliveira, F.; Santini, M. Air-Sea Interactions over Eddies in the Brazil-Malvinas Confluence. Remote Sens. 2021, 13, 1335. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of Trend Analysis for Monthly Water Quality Data. Water Resour. Res. 1982, 18, 107–121. [Google Scholar] [CrossRef]
- Goossens, C.; Berger, A. Annual and Seasonal Climatic Variations over the Northern Hemisphere and Europe during the Last Century. Ann. Geophys. 1986, 4, 385–400. [Google Scholar]
- Acevedo, O.C.; Pezzi, L.P.; Souza, R.B.; Anabor, V.; Degrazia, G.A. Atmospheric Boundary Layer Adjustment to the Synoptic Cycle at the Brazil-Malvinas Confluence, South Atlantic Ocean. J. Geophys. Res. 2010, 115, 2009JD013785. [Google Scholar] [CrossRef]
- Ciotti, Á.M.; Odebrecht, C.; Fillmann, G.; Moller, O.O. Freshwater Outflow and Subtropical Convergence Influence on Phytoplankton Biomass on the Southern Brazilian Continental Shelf. Cont. Shelf Res. 1995, 15, 1737–1756. [Google Scholar] [CrossRef]
- Nagy, G.J.; Gómez-Erache, M.; López, C.H.; Perdomo, A.C. Distribution Patterns of Nutrients and Symptoms of Eutrophication in the Rio de La Plata River Estuary System. In Nutrients and Eutrophication in Estuaries and Coastal Waters; Orive, E., Elliott, M., De Jonge, V.N., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 125–139. ISBN 9789048161232/9789401724647. [Google Scholar]
- Garcia, C.A.E.; Garcia, V.M.T. Variability of Chlorophyll-a from Ocean Color Images in the La Plata Continental Shelf Region. Cont. Shelf Res. 2008, 28, 1568–1578. [Google Scholar] [CrossRef]
- Piola, A.R.; Matano, R.P.; Palma, E.D.; Möller, O.O.; Campos, E.J.D. The Influence of the Plata River Discharge on the Western South Atlantic Shelf. Geophys. Res. Lett. 2005, 32, 2004GL021638. [Google Scholar] [CrossRef]
- Reboita, M.S.; Ambrizzi, T. Monitoramento dos Ciclones Extratropicais no Hemisfério Sul. In Proceedings of the XIV Congresso Brasileiro de Meteorologia, Florianópolis, Brazil, 27 November–1 December 2006. [Google Scholar]
- Hopkins, W.G. A New View of Statistics. 2002. Available online: https://www.sportsci.org/resource/stats/effectmag.html (accessed on 16 February 2021).
- Pezza, A.B.; Rashid, H.A.; Simmonds, I. Climate Links and Recent Extremes in Antarctic Sea Ice, High-Latitude Cyclones, Southern Annular Mode and ENSO. Clim. Dyn. 2012, 38, 57–73. [Google Scholar] [CrossRef]
- Wang, X.L.; Feng, Y.; Compo, G.P.; Swail, V.R.; Zwiers, F.W.; Allan, R.J.; Sardeshmukh, P.D. Trends and Low Frequency Variability of Extra-Tropical Cyclone Activity in the Ensemble of Twentieth Century Reanalysis. Clim. Dyn. 2013, 40, 2775–2800. [Google Scholar] [CrossRef]
- Krüger, L.F.; Da Rocha, R.P.; Reboita, M.S.; Ambrizzi, T. RegCM3 Nested in HadAM3 Scenarios A2 and B2: Projected Changes in Extratropical Cyclogenesis, Temperature and Precipitation over the South Atlantic Ocean. Clim. Change 2012, 113, 599–621. [Google Scholar] [CrossRef]
- Reboita, M.S.; Da Rocha, R.P.; De Souza, M.R.; Llopart, M. Extratropical Cyclones over the Southwestern South Atlantic Ocean: HadGEM2-ES and RegCM4 Projections. Int. J. Climatol. 2018, 38, 2866–2879. [Google Scholar] [CrossRef]
- Reboita, M.S.; Reale, M.; Da Rocha, R.P.; Giorgi, F.; Giuliani, G.; Coppola, E.; Nino, R.B.L.; Llopart, M.; Torres, J.A.; Cavazos, T. Future Changes in the Wintertime Cyclonic Activity over the CORDEX-CORE Southern Hemisphere Domains in a Multi-Model Approach. Clim. Dyn. 2021, 57, 1533–1549. [Google Scholar] [CrossRef]
- Gramcianinov, C.B.; Hodges, K.I.; Camargo, R. The Properties and Genesis Environments of South Atlantic Cyclones. Clim. Dyn. 2019, 53, 4115–4140. [Google Scholar] [CrossRef]
- Sondermann, M.; Chou, S.C.; Martins, R.G.; Amaro, L.C.; Gomes, R.D.O. Explosive Cyclone Impact on the Power Distribution Grid in Rio Grande Do Sul, Brazil. Climate 2024, 12, 29. [Google Scholar] [CrossRef]
- Costa, M.C.D.O.; Kampel, M.; Paiva, V.G.D.; Batista, R.; Soares, I.; Barreto, F.T.C.; Rodrigues, D.F.; Silva Junior, C.L.D. Reliability of Operational Global Forecast System and a Local Implementation of WAVEWATCH III during an Explosive Cyclone in South America in June 2020. Rev. Bras. Meteorol. 2023, 38, e38230002. [Google Scholar] [CrossRef]
- Marshall, G.J. Trends in Antarctic Geopotential Height and Temperature: A Comparison between Radiosonde and NCEP–NCAR Reanalysis Data. J. Clim. 2002, 15, 659–674. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Destéfani, B.A.O.; Broggio, M.F.; Garcia, C.A.E. Climatological Study on Cyclone Genesis and Tracks in Southern Brazil from 1979 to 2019. Atmosphere 2025, 16, 92. https://doi.org/10.3390/atmos16010092
Destéfani BAO, Broggio MF, Garcia CAE. Climatological Study on Cyclone Genesis and Tracks in Southern Brazil from 1979 to 2019. Atmosphere. 2025; 16(1):92. https://doi.org/10.3390/atmos16010092
Chicago/Turabian StyleDestéfani, Bruna Alves Oliveira, Micael Fernando Broggio, and Carlos Alberto Eiras Garcia. 2025. "Climatological Study on Cyclone Genesis and Tracks in Southern Brazil from 1979 to 2019" Atmosphere 16, no. 1: 92. https://doi.org/10.3390/atmos16010092
APA StyleDestéfani, B. A. O., Broggio, M. F., & Garcia, C. A. E. (2025). Climatological Study on Cyclone Genesis and Tracks in Southern Brazil from 1979 to 2019. Atmosphere, 16(1), 92. https://doi.org/10.3390/atmos16010092