The Weather On-Demand Framework
<p>Diagram of essential components of the WOD system and their interconnections. See text for further details.</p> "> Figure 2
<p>Volcanic cloud (<b>top panel</b>) emanating from the Mt. Fagradalsfjall eruption, SW Iceland, on 30 May 2021 (photo courtesy of Kristján Sævald) and a dispersion forecast (<b>bottom panel</b>) of SO<sub>2</sub> at 500 m AGL, valid at the time of the photoshoot, created by the WOD system. The red star shows the approximate location from where the photo was taken.</p> "> Figure 3
<p>Example of how the location of observation sides in Iceland, from a wide range of providers, can be presented within the WOD framework. Screenshot taken from <a href="https://obs.belgingur.is" target="_blank">https://obs.belgingur.is</a> on 11 July 2024.</p> "> Figure 4
<p>Comparison between observations (<b>left</b>) of 24 h rainfall [mm/day] over South America on 19 January 2023 estimated by the MERGE system of the Brazilian Centre for Weather Forecast and Climatic Studies (CPTEC in Portuguese), the results of a one-day-ahead WOD system with data assimilation (<b>centre</b>), and the same results without data assimilation (<b>right</b>). Areas limit the main hydro basins used for hydropower in Brazil, and numbers show the average precipitation over each basin. Numbers in red are precipitation significantly below daily average, while blues are significantly above daily average. Red circles highlight the regions where precipitation has the greatest impact on the Brazilian electric sector and where we identified the most significant improvements using the data assimilation system.</p> "> Figure 5
<p>Example of a power production forecast where WOD model output has been post-processed using a novel machine learning software that takes observed winds and power production, among other factors, into account.</p> "> Figure A1
<p>Example of a typical landing page for the graphical user interface (GUI) of the WOD API.</p> "> Figure A2
<p>Step two in running an on-demand forecast; click the encircled <tt>/meta/job</tt> button.</p> "> Figure A3
<p>The user now types in the latitude and longitude of the centre point of the outermost domain, in addition to the specific, pre-defined model configuration and forecast duration. In the encircled example shown here, the name of the job_type is <tt>small.9</tt>.</p> "> Figure A4
<p>The final step to set up an operational forecast is to set the unique identification number of the prototype forecast as the “Job” the schedule should be based on. In addition, the user should define the forecast duration and choose a (preferably) sensible name for the new schedule. More fine-tuning can be conducted by modifying individual entries linked to the schedule in the WOD database.</p> "> Figure A5
<p>The landing page (<b>top panel</b>) of the Verif web service offers the user the choice of a set of observed and modelled variables as well as plot options (<b>lower panel, left</b>); data range options (<b>lower panel, middle</b>); and the option of customizing which observation locations are to be investigated (<b>lower panel, right</b>).</p> "> Figure A6
<p>The Verif web service offers six types of graphs. These are scatter plots (<b>top left</b>), Taylor diagrams (<b>top centre</b>), quantile–quantile plots (<b>top right</b>), and maps showing mean absolute error (<b>bottom left</b>), bias (<b>bottom centre</b>), and root-mean-square error (<b>bottom right</b>).</p> ">
Abstract
:1. Introduction
2. System Description
2.1. Design Philosophy
2.2. Software Architecture
- -
- Upstream gatherer: It retrieves data from a variety of upstream sources, including the NOAA, ECMWF, Icelandic Met Office, and more. It notifies the conductor upon the availability of initial and boundary condition files to initiate modelling. Additionally, the service converts incoming data to the WOD standardized comprehensive netCDF file format, allowing convenient access to upstream data through the WOD API.
- -
- Post-processing trigger: A service connected to the conductor via a message broker, receiving notifications about the completion of diverse modelling tasks. Configurable triggers enable the execution of various post-processing actions in response to these events.
- -
- Observation importer: This module handles surface observation data from different sources, whether pulled from external providers or received from third-party providers. The processed data are then stored in a PostgreSQL database.
- -
- ObservationQC: A service responsible for evaluating imported observation data and assigning credibility scores to the observations.
- -
- API: A RESTful API that enables access to the forecasting results and upstream data, starting on-demand forecasts and browsing observations. It is the main gateway for accessing the weather data from outside of the system.
- -
- Archive service: A service providing access to reanalysis data series.
- -
- Frontend components: Diverse clients designed to visualize both forecasts and observations.
- -
- Forecast verification: This service enables the comparison of WOD forecasts and those from upstream sources against observational data.
2.3. Data Assimilation Capabilities
2.4. Observation and Forecast Verification
3. Examples of Applications
4. Discussions and Future Development
4.1. Cloud Deployment
4.2. Hybrid Options
4.3. Additional DA Options
4.4. Very High-Resolution Simulations
4.5. Importance of Aerosols
4.6. Machine Learning-Based Forecasting
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Geogrid.tpl—handles the “geogrid” part of the conventional namelist.wps file
- Iofields.txt—here, the user can control which variables are written to the history files
- Meta.yml—here, the user defines parameters such as model resolution and history interval
- Metgrid.tpl—handles the “metgrid” part of the conventional namelist.wps file
- Wrf.tpl—handles the “wrf” part of the conventional namelist.input file
- Da_wrfvar_XXX.namelist.input—(optional) handles the specifics of the variational data assimilation method in question, and the available options currently include 3DVar, 3DEnVar, 4DVar, and 4DEnVar
- #!jinja|yaml
- # Config fragment for the trigger daemon. It is included from /etc/wod/trigger.yml
- # After changing, restart `wod_trigger` to re-read config e.g., by running `trigger_restart`.
- # Then follow the log to verify that changes work.
- tasks:
- subset_wrf_out_dk:
- exchange: jobs
- key: job.admin.dk-9-3-da3d.*.done
- show_stdout: True
- cmd: ‘. /wodroot/bin/in-clickless python subset_wrf.py --input /wodroot/jobs/{dir}/wrf --analysis {analysis} --d01 2 4 --d02 6 12 >> /wodroot/post_process/dk-9-3-da3d/log_subset.log’
- timeout: 10
Appendix B
References
- Rögnvaldsson, Ó.; Search and Rescue, Weather Prediction System Assists Humanitarian Aid. Meteorological Technology International. September 2011, pp. 81–83. Available online: http://ftp.belgingur.is/publications/SARWeather_IntMetTech.pdf (accessed on 25 December 2024).
- Stanislawska, K.; Ragnarsson, L.; Rögnvaldsson, Ó. WOD—Weather On Demand System Description and User Manual; UNECA: Addis Ababa, Ethiopia, 2016; Available online: http://ftp.belgingur.is/publications/ISOR_16022_WOD_UNECA.pdf (accessed on 25 December 2024).
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Zhiquan, L.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Version 4. NCAR Tech. Note NCAR/TN-556+STR 2019, 145. [Google Scholar] [CrossRef]
- Rognvaldsson, O.; Arnason, G.; Palsson, T.; Eliasson, J.; Weber, K.; Böhlke, C.; Thorsteinsson, T.; Tirpitz, L.; Platt, U.; Smith, P.D.; et al. Modeling of SO2 Dispersion from the 2014 Holuhraun Eruption in Iceland Using WRF-Chem. Geophys. Res. Abstr. 2015, 17, 10113. Available online: https://meetingorganizer.copernicus.org/EGU2015/EGU2015-10113.pdf (accessed on 25 December 2024).
- Nipen, T.N.; Stull, R.B.; Lussana, C.; Seierstad, I.A. Verif: A Weather-Prediction Verification Tool for Effective Product Development. Bull. Am. Meteorol. Soc. 2023, 104, E1610–E1618. Available online: https://doi.org/10.1175/BAMS-D-22-0253.1 (accessed on 25 December 2024). [CrossRef]
- Hatheway, W.; Snoun, H.; Rehman, H.U.; Mwanthi, A. WRF-MOSIT: A modular and cross-platform tool for configuring and installing the WRF model. Earth Sci. Informatics 2023, 16, 4327–4336. [Google Scholar] [CrossRef]
- Warner, T.T.; Bowers, J.F.; Swerdlin, S.P.; Beitler, B.A. A Rapidly Deployable Operational Mesoscale Modeling System for Emergency-Response Applications. Bull. Am. Meteorol. Soc. 2004, 85, 709–716. [Google Scholar] [CrossRef]
- Grell, G.A.; Dudhia, J.; Stauffer, D.R. A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5); University Corporation for Atmospheric Research: Boulder, CO, USA, 1994; p. 122. [Google Scholar] [CrossRef]
- Stauffer, D.R.; Deng, A.; Hunter, G.K.; Gibbs, A.M.; Zielonka, J.R.; Tinklepaugh, K.; Dobek, J. NWP goes to war. In Proceedings of the 22nd Conference on Weather Analysis and Forecasting, 18th Conference on Numerical Weather Prediction, Park City, UT, USA, 25–29 June 2007; Volume 13. [Google Scholar]
- Kumar, A.; Alexieva, A. Global Status of Multi-Hazard Early Warning Systems; United Nations Office for Disaster Risk Reduction and World Meteorological Organization: Geneva, Switzerland, 2023; Available online: https://www.undrr.org/media/91954/download (accessed on 25 December 2024).
- Barker, D.; Huang, X.Y.; Liu, Z.; Auligné, T.; Zhang, X.; Rugg, S.; Ajjaji, R.; Bourgeois, A.; Bray, J.; Chen, Y.; et al. The Weather Research and Forecasting Model’s Community Variational/Ensemble Data Assimilation System: WRFDA. Bull. Am. Meteorol. Soc. 2012, 93, 831–843. [Google Scholar] [CrossRef]
- Huang, X.-Y.; Xiao, Q.; Barker, D.M.; Zhang, X.; Michalakes, J.; Huang, W.; Henderson, T.; Bray, J.; Chen, Y.; Ma, Z.; et al. Four-Dimensional Variational Data Assimilation for WRF: Formulation and Preliminary Results. Mon. Weather Rev. 2009, 137, 299–314. [Google Scholar] [CrossRef]
- Wang, X.; Barker, D.M.; Snyder, C.; Hamill, T.M. A hybrid ETKF–3DVAR data assimilation scheme for the WRF model. Part I: Observing system simulation experiment. Mon. Weather Rev. 2008, 136, 5116–5131. [Google Scholar] [CrossRef]
- Wang, X.; Barker, D.M.; Snyder, C.; Hamill, T.M. A Hybrid ETKF–3DVAR Data Assimilation Scheme for the WRF Model. Part II: Real Observation Experiments. Mon. Weather Rev. 2008, 136, 5132–5147. [Google Scholar] [CrossRef]
- Descombes, G.; Auligné, T.; Vandenberghe, F.; Barker, D.M.; Barré, J. Generalized background error covariance matrix model (GEN_BE v2.0). Geosci. Model Dev. 2015, 8, 669–696. [Google Scholar] [CrossRef]
- Potthast, R. Ensemble data assimilation for estimating analysis uncertainty. In Uncertainties in Numerical Weather Prediction; Ólafsson, H., Bao, J.-W., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2021; Volume 351, pp. 179–204. ISBN 978-0-12-815491-5. [Google Scholar]
- Stauffer, D.R.; Seaman, N.L. Multiscale Four-Dimensional Data Assimilation. J. Appl. Meteorol. 1994, 33, 416–434. [Google Scholar] [CrossRef]
- Jonassen, M.O.; Ólafsson, H.; Ágústsson, H.; Rögnvaldsson, Ó.; Reuder, J. Improving high resolution numerical weather simulations by assimilating data from an unmanned aerial system. Mon. Weather Rev. 2012, 140, 3734–3756. [Google Scholar] [CrossRef]
- Ágústsson, H.; Ólafsson, H.; Jonassen, M.O.; Rögnvaldsson, Ó. The impact of assimilating data from a remotely piloted aircraft on simulations of weak-wind orographic flow. Tellus A 2014, 66, 25421. [Google Scholar] [CrossRef]
- Shafer, M.A.; Fiebrich, C.A.; Arndt, D.S.; Fredrickson, S.E.; Hughes, T.W. Quality assurance procedures in the Oklahoma network. J. Atm. Ocean. Tech. 2000, 17, 474–494. [Google Scholar] [CrossRef]
- Technique Specification Package 88-21-R2 For AWIPS-90 RFP Appendix G Requirements Numbers: Quality Control Incoming Data. AWIPS Document Number TSP-032-1992R2, NOAA, National Weather Service, Office of Systems Development. 1994. Available online: https://library.oarcloud.noaa.gov/noaa_documents.lib/NWS/NWS_TSP_88-21-R2.pdf (accessed on 25 December 2024).
- Stuefer, M.; Freitas, S.R.; Grell, G.; Webley, P.; Peckham, S.; McKeen, S.A.; Egan, S.D. Inclusion of ash and SO2 emissions from volcanic eruptions in WRF-Chem: Development and some applications. Geosci. Model Dev. 2013, 6, 457–468. [Google Scholar] [CrossRef]
- Hong, M.; Lee, S.-H.; Lee, S.-J.; Choi, J.-Y. Application of high-resolution meteorological data from NCAM-WRF to characterize agricultural drought in small-scale farmlands based on soil moisture deficit. Agric. Water Manag. 2021, 243, 106494. [Google Scholar] [CrossRef]
- Kioutsioukis, I.; de Meij, A.; Jakobs, H.; Katragkou, E.; Vinuesa, J.-F.; Kazantzidis, A. High resolution WRF ensemble forecasting for irrigation: Multi-variable evaluation. Atmospheric Res. 2016, 167, 156–174. [Google Scholar] [CrossRef]
- Nahian, R.; Nazem, A.; Nambiar, M.K.; Byerlay, R.; Mahmud, S.; Seguin, A.M.; Robe, F.R.; Ravenhill, J.; Aliabadi, A.A. Complex Meteorology over a Complex Mining Facility: Assessment of Topography, Land Use, and Grid Spacing Modifications in WRF. J. Appl. Meteorol. Clim. 2020, 59, 769–789. [Google Scholar] [CrossRef]
- Dubus, L.; Muralidharan, S.; Troccoli, A. What does the energy industry require from meteorology? In Weather & Climate Services for the Energy Industry; Palgrave Macmillan Cham: London, UK, 2018; pp. 41–63. [Google Scholar] [CrossRef]
- Ólafsson, H.; Ágústsson, H. Mesoscale Orographic Flows, in Uncertainties in Numerical Weather Prediction; Olafsson, H., Bao, J.-W., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2021; Volume 351, pp. 297–308. ISBN 978-0-12-815491-5. [Google Scholar]
- Ólafsson, H.; Bao, J.-W. Uncertainties in Numerical Weather Prediction; Elsevier Inc.: Amsterdam, The Netherlands, 2021; 351p, ISBN 978-0-12-815491-5. [Google Scholar]
- Zhang, X.; Bao, J.-W.; Chen, B.; Grell, E. A Three-Dimensional Scale-Adaptive Turbulent Kinetic Energy Scheme in the WRF-ARW Model. Mon. Weather Rev. 2018, 146, 2023–2045. [Google Scholar] [CrossRef]
- Cui, C.; Bao, Y.; Yuan, C.; Li, Z.; Zong, C. Comparison of the performances between the WRF and WRF-LES models in radiation fog—A case study. Atmos. Res. 2019, 226, 76–86. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Muñoz-Esparza, D.; Hu, F.; Yan, C.; Miao, S. Simulation of Flow Fields in Complex Terrain with WRF-LES: Sensitivity Assessment of Different PBL Treatments. J. Appl. Meteorol. Clim. 2020, 59, 1481–1501. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service, Climate Data Store. Land Cover Classification Gridded Maps from 1992 to Present Derived from Satellite Observation; Copernicus Climate Change Service (C3S): Göttingen, Germany, 2019. [Google Scholar] [CrossRef]
- Grell, G.; Baklanov, A. Integrated modeling for forecasting weather and air quality: A call for fully coupled approaches. Atmospheric Environ. 2011, 45, 6845–6851. [Google Scholar] [CrossRef]
- Grell, G.; Freitas, S.R.; Stuefer, M.; Fast, J. Inclusion of biomass burning in WRF-Chem: Impact of wildfires on weather forecasts. Atmospheric Meas. Tech. 2011, 11, 5289–5303. [Google Scholar] [CrossRef]
- López-Romero, J.M.; Montávez, J.P.; Jerez, S.; Lorente-Plazas, R.; Palacios-Peña, L.; Jiménez-Guerrero, P. Precipitation response to aerosol–radiation and aerosol–cloud interactions in regional climate simulations over Europe. Atmospheric Meas. Tech. 2021, 21, 415–430. [Google Scholar] [CrossRef]
- Xi, J.; Li, R.; Fan, X.; Wang, Y. Aerosol effects on the three-dimensional structure of organized precipitation systems over Beijing-Tianjin-Hebei region in summer. Atmospheric Res. 2024, 298, 107146. [Google Scholar] [CrossRef]
- Chantry, M.; Alexe, M.; Lang, S.; Raoult, B.; Dramsch, J.; Pinault, F.; Bouallegue, Z.B.; Clare, M.; Lessig, C.; Magnusson, L.; et al. AIFS—ECMWF’s data-driven forecasting system. arXiv 2024, arXiv:2406.0146. [Google Scholar] [CrossRef]
- Mardani, M.; Brenowitz, N.; Cohen, Y.; Pathak, J.; Chen, C.Y.; Liu, C.C.; Vahdat, A.; Kashinath, K.; Kautz, J.; Pritchard, M. Residual Diffusion Modeling for Km-scale Atmospheric Downscaling. arXiv 2023, arXiv:2309.15214v3. [Google Scholar] [CrossRef]
- Price, I.; Sanchez-Gonzalez, A.; Alet, F.; Andersson, T.R.; El-Kadi, A.; Masters, D.; Ewalds, T.; Stott, J.; Mohamed, S.; Battaglia, P.; et al. Probabilistic weather forecasting with machine learning. Nature 2024, 637, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Copernicus Climate Change Service (C3S). ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate. Copernicus Climate Change Service Climate Data Store (CDS). 2017. Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-pressure-levels?tab=overview (accessed on 25 December 2024).
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Nguyen, T.; Brandstetter, J.; Kapoor, A.; Gupta, J.K.; Grover, A. ClimaX: A foundation model for weather and climate. arXiv 2023, arXiv:2301.10343. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rögnvaldsson, Ó.; Stanislawska, K.; Hackerott, J.A. The Weather On-Demand Framework. Atmosphere 2025, 16, 91. https://doi.org/10.3390/atmos16010091
Rögnvaldsson Ó, Stanislawska K, Hackerott JA. The Weather On-Demand Framework. Atmosphere. 2025; 16(1):91. https://doi.org/10.3390/atmos16010091
Chicago/Turabian StyleRögnvaldsson, Ólafur, Karolina Stanislawska, and João A. Hackerott. 2025. "The Weather On-Demand Framework" Atmosphere 16, no. 1: 91. https://doi.org/10.3390/atmos16010091
APA StyleRögnvaldsson, Ó., Stanislawska, K., & Hackerott, J. A. (2025). The Weather On-Demand Framework. Atmosphere, 16(1), 91. https://doi.org/10.3390/atmos16010091