Decadal Prediction of the Summer Extreme Precipitation over Southern China
<p>(<b>a</b>) The spatial pattern of the leading EOF mode and (<b>b</b>) the corresponding normalized time series of the 5-year smoothing mean of the total summer extreme precipitation in East China during 1963–2018 (PC1, red line), as well as the time series of the EPSC (R95p, blue line) and DI_EPSC during 1966–2018. EPSC is defined as the 5-year running mean of regional averaged summer extreme precipitation over southern China. DI_EPSC is calculated as the 3-year decadal increment of the EPSC.</p> "> Figure 2
<p>Spatial pattern of correlation coefficients between the predictand (DI_EPSC) during the time period 1966–2018 and the predictors: (<b>a</b>) the 3-year increment of the summer SST 7 years ahead of the DI_EPSC during 1959–2011, (<b>b</b>) the 3-year increment of the spring SIC 5 years ahead of DI_EPSC during 1961–2013. The dotted regions indicate significant variability at the 95% confidence level based on the Student’s <span class="html-italic">t</span>-test. The rectangles indicate the area-weighted averaged regions of the predictors, including the DI_SST (26°–39° N, 43°–60° W minus 49°–57° N, 14°–49° W), and the DI_SIC (71°–77° N, 149°–157° E).</p> "> Figure 3
<p>(<b>a</b>) Wavelet analysis and (<b>b</b>) the autocorrelation coefficients of the DI_SST predictor. In Panel (<b>a</b>), the dotted regions indicate significant variability at the 95% confidence level. In Panel (<b>b</b>), the horizontal coordinates indicate the years lagged by the predictors and the dashed lines indicate significant variability at the 90% confidence level. Additionally, the effective sample size is 21.</p> "> Figure 4
<p>Correlation coefficients between the DI_SST with (<b>a</b>) the summer surface winds, (<b>b</b>) the SST, (<b>d</b>) the 850 hPa winds, and (<b>e</b>) the 500 hPa winds during 1959–2011. Correlation coefficients between the eastern Pacific SST (red rectangle region in Panel (<b>b</b>), SST is multiplied by −1) with (<b>c</b>) the mean SLP during 1959–2011. Correlation coefficients between the DI_SST during 1959–2011 with (<b>f</b>) the 500 hPa vertical velocity during 1966–2018. Thus, the negative value in (<b>f</b>) should indicate the descent motion due to the negative autocorrelation with a lag of 7 years. The dotted regions and shaded regions indicate significant variability at the 90% confidence level, and the red rectangle region in Panels (<b>d</b>–<b>f</b>) is the study area (southern China). The variables including SST, surface winds, SLP, 850 hPa winds, 500 hPa winds, and 500 hPa vertical velocity are in the form of a 3-year decadal increment.</p> "> Figure 5
<p>(<b>a</b>) Wavelet analysis and (<b>b</b>) the autocorrelation coefficients of the DI_SIC predictor. In Panel (<b>a</b>), the dotted regions indicate significant variability at the 95% confidence level. In Panel (<b>b</b>), the horizontal coordinates indicate the years lagged by the predictors and the dashed lines indicate significant variability at the 90% confidence level. Additionally, the effective sample size is 18.</p> "> Figure 6
<p>Correlation coefficients between the DI_SIC with (<b>a</b>) the spring SLP, (<b>b</b>) the SST, and (<b>d</b>) 500 hPa vertical velocity during 1961–2013. Correlation coefficients between the SST over North Pacific (red rectangle region of Panel (<b>b</b>)), with the summer (<b>c</b>) 850 hPa winds and (<b>e</b>) vertical integral of the divergence of the water vapor flux during 1961–2013. The dotted and shaded regions indicate significant variability at the 90% confidence level, and the red rectangle region of Panels (<b>c</b>,<b>d</b>) represent the study area (southern China). The variables including SST, SLP, 850 hPa winds, 500 hPa vertical velocity, and vertical integral of the divergence of the water vapor flux are in the form of a 3-year decadal increment.</p> "> Figure 7
<p>Time series of the DI_EPSC during 1966–2019 (bars), the leading 7-year DI_SST during 1959–2015 (red line), and the leading 5-year DI_SIC during 1961–2017 (blue line). The results in this figure were standardized.</p> "> Figure 8
<p>The results of the cross-validation for the period of 1966–2019 (<b>a</b>,<b>c</b>) and the independent hindcast for the period of 2009–2019 (<b>b</b>,<b>d</b>). The panels show the decadal increment of the EPSC (DI_EPSC) predicted by the statistical model (<b>a</b>,<b>b</b>); the final predicted EPSC, achieved by adding the predicted DI_EPSC to the observed EPSC at 3 years ago (<b>c</b>,<b>d</b>), where the light pink regions indicate significant variability at the 95% prediction interval. The results in this figure were standardized. Cor indicates the correlation coefficient between the observations and the prediction results, and the MSSS is the prediction skill of the statistical model.</p> "> Figure 9
<p>Spatial pattern of the anomaly extreme precipitation (unit: mm) over eastern China after a 5-year running mean in 2019 related to the climatology (1991–2020). The black rectangle region represents the study area (southern China).</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Definition of the Extreme Precipitation Index
2.3. Methods
3. Results
3.1. Decadal Variation
3.2. Predictors
3.3. Decadal Prediction Model
3.4. Real-Time Prediction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhai, P.; Zhang, X.; Wan, H.; Pan, X. Trends in Total Precipitation and Frequency of Daily Precipitation Extremes over China. J. Clim. 2005, 18, 1096–1108. [Google Scholar] [CrossRef]
- Sun, J. The contribution of extreme precipitation to the total precipitation in China. Atmos. Ocean. Sci. Lett. 2012, 5, 499–503. [Google Scholar]
- Zheng, G.; Yang, L.; Chen, Q.; Zhou, X. The increasing predominance of extreme precipitation in Southwest China since the late 1970s. Atmos. Ocean. Sci. Lett. 2022, 15, 100227. [Google Scholar] [CrossRef]
- Cui, D.; Wang, C.; Santisirisomboon, J. Characteristics of extreme precipitation over eastern Asia and its possible connections with Asian summer monsoon activity. Int. J. Climatol. 2019, 39, 711–723. [Google Scholar] [CrossRef]
- Zhang, T.; Wei, F. Probability distribution of precipitation extremes during raining seasons in South China. Acta Meteorol. Sin. 2009, 67, 442–451. [Google Scholar]
- Lin, A.; Liang, J.; Li, C.; Gu, D. Monsoon circulation background of ‘0506’ continuous rainstorm in South China. Adv. Water Sci. 2007, 18, 424–434. [Google Scholar]
- Ning, L.; Qian, Y. Interdecadal change in extreme precipitation over South China and its mechanism. Adv. Atmos. Sci. 2009, 26, 109–118. [Google Scholar] [CrossRef]
- Li, H.; Chen, H.; Wang, H. Changes in clustered extreme precipitation events in South China and associated atmospheric circulations. Int. J. Climatol. 2016, 36, 3226–3236. [Google Scholar] [CrossRef]
- He, L.; Hao, X.; Han, T. How do extreme summer precipitation events over eastern China subregions change? Geophys. Res. Lett. 2021, 48, e2020GL091849. [Google Scholar] [CrossRef]
- Xiang, B.; Dong, X.; Li, Y. Climate change trend and causes of tropical cyclones affecting the South China Sea during the past 50 years. Atmos. Ocean. Sci. Lett. 2020, 13, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Yuan, J.; Wen, Z.; Huang, S.; Chen, X.; Guo, Y.; Lin, Q. The impacts of the East Asian subtropical westerly jet on weather extremes over China in early and late summer. Atmos. Ocean. Sci. Lett. 2022, 15, 100212. [Google Scholar] [CrossRef]
- Qi, Q.; Cai, R.; Zhang, Q. Primarily analyses on variations of summer extreme precipitation in South China and its relation to the sea-air anomaly in Northwestern Pacific Ocean. Plateau Meteorol. 2013, 32, 110–121. [Google Scholar]
- Xie, S.-P.; Hu, K.; Hafner, J.; Tokinaga, H.; Du, Y.; Huang, G.; Sampe, T. Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Clim. 2009, 22, 730–747. [Google Scholar] [CrossRef]
- Zhong, Y.; Yang, M.; Yuan, C. Temporal and spatial characteristics of summer extreme precipitation in Eastern China and possible causalities. J. Geosci. Environ. Prot. 2020, 8, 36–46. [Google Scholar] [CrossRef]
- Li, J.; Wang, B. Predictability of summer extreme precipitation days over eastern China. Clim. Dyn. 2018, 51, 4543–4554. [Google Scholar] [CrossRef]
- Chan, J.; Zhou, W. PDO, ENSO and the early summer monsoon rainfall over south China. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Xu, H.; Chen, H.; Wang, H. Interannual variation in summer extreme precipitation over Southwestern China and the possible associated mechanisms. Int. J. Climatol. 2021, 41, 3425–3438. [Google Scholar] [CrossRef]
- Chen, X.; Dai, A.; Wen, Z.; Song, Y. Contributions of Arctic sea-ice loss and East Siberian atmospheric blocking to 2020 rec-ord-breaking Meiyu-Baiu rainfall. Geophys. Res. Lett. 2021, 48, e2021GL092748. [Google Scholar]
- Zhang, K.; Li, L.; Cheng, S. Analysis of interdecadal variation of precipitation and impact factors during the pre-rainy season in South China. J. Arid. Meteorol. 2016, 34, 64–74. [Google Scholar]
- Yang, H.; Gong, Z.; Wang, X.; Feng, G. Analysis of the characteristics and causes of interdecadal changes in the summer extreme precipitation over Eastern China. Chin. J. Atmos. Sci. 2021, 45, 683–696. [Google Scholar]
- Meehl, G.A.; Goddard, L.; Murphy, J.; Stouffer, R.; Boer, G. Decadal prediction: Can it be skillful? Bull. Amer. Meteorol. Soc. 2009, 90, 1467–1486. [Google Scholar] [CrossRef]
- Monerie, P.A.; Robson, J.; Dong, B.; Dunstone, N. A role of the Atlantic Ocean in predicting summer surface air temperature over North East Asia? Clim. Dyn. 2018, 51, 473–491. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.M.; Eade, R.; Scaife, A.A.; Caron, L. Robust skill of decadal climate predictions. Npj Clim. Atmos. Sci. 2019, 2, 13. [Google Scholar] [CrossRef] [Green Version]
- Dunstone, N.; Smith, D.; Yeager, S. Skilful interannual climate prediction from two large initialised model ensembles. Environ. Res. Lett. 2020, 15, 094083. [Google Scholar] [CrossRef]
- Doblas-Reyes, F.J.; Andreu-Burillo, L.; Chikamoto, Y.; García-Serrano, J. Initialized near-term regional climate change prediction. Nat. Commun. 2013, 4, 1715. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Wang, H.; Fan, K. Improving the prediction of the summer Asian-Pacific Oscillation using the interannual increment approach. J. Clim. 2014, 27, 8126–8134. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, H. Is the Regional Precipitation Predictable in Decadal Scale? A Possible Approach for the Decadal Prediction of the Summer Precipitation Over North China. Earth Space Sci. 2020, 7, e2019EA000986. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, H. A possible approach for the decadal prediction of PDO. Acta Meteorol. Sin. 2020, 78, 177–186. [Google Scholar] [CrossRef]
- Qian, D.; Huang, Y.; Wang, H. A preliminary attempt on decadal prediction of the East Asian summer monsoon. Theor. Appl. Climatol. 2022, 148, 1499–1511. [Google Scholar] [CrossRef]
- Wu, J.; Gao, X. A gridded daily observation dataset over China region and comparison with the other datasets. Chin. J. Geophys. 2013, 56, 1102–1111. [Google Scholar]
- Huang, B.; Thorne, P.W.; Banzon, V.F.; Boyer, T. Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons. J. Clim. 2017, 30, 8179–8205. [Google Scholar] [CrossRef]
- Rayner, N.A.; Parker, D.; Horton, E.B.; Folland, C. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 2003, 108, 4407. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S. The ERA5 global reanalysis. Quart. J. Roy. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Wilks, D.S. Principal component (EOF) analysis. Int. Geophys. 2011, 100, 519–562. [Google Scholar]
- Bretherton, C.S.; Widmann, M.; Dymnikov, V.P.; Wallace, J. The effective number of spatial degrees of freedom of a time-varying field. J. Clim. 1999, 12, 1990–2009. [Google Scholar] [CrossRef]
- Murphy, A.H. Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Weather Rev. 1988, 116, 2417–2424. [Google Scholar] [CrossRef]
- Chen, J.; Wen, Z.; Wu, R.; Wang, X.; He, C.; Chen, Z. An interdecadal change in the intensity of interannual variability in summer rainfall over southern China around early 1990s. Clim. Dyn. 2017, 48, 191–207. [Google Scholar] [CrossRef]
- Lü, J.; Li, Y.; Zhai, P.; Chen, J. Teleconnection patterns impacting on the summer consecutive extreme rainfall in Central-Eastern China. Int. J. Climatol. 2017, 37, 3367–3380. [Google Scholar] [CrossRef]
- Sun, X.; Li, S.; Hong, X.; Lu, R. Simulated Influence of the Atlantic Multidecadal Oscillation on Summer Eurasian Nonuniform Warming since the Mid-1990s. Adv. Atmos. Sci. 2019, 36, 811–822. [Google Scholar] [CrossRef]
- Chen, L.; Li, G.; Lu, B.; Li, Y.; Gao, C.; Long, S.-M.; Li, X.; Wang, Z. Two approaches of the spring North Atlantic sea surface temperature affecting the following July precipitation over central China: The tropical and extratropical pathways. J. Clim. 2022, 35, 2969–2986. [Google Scholar] [CrossRef]
- Mcgregor, S.; Timmermann, A.; Stuecker, M.F.; England, M. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Clim. Chang. 2014, 4, 888–892. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Wu, L.; Lengaigne, M.; Li, T.; McGregor, S.; Kug, J.-S.; Yu, J.-Y.; Stuecker, M.F.; Santoso, A.; Li, X.; et al. Pantropical climate interactions. Science 2019, 363, eaav4236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ham, Y.; Kug, J.; Park, J.; Jin, F. Sea surface temperature in the north tropical Atlantic as a trigger for El Nino/Southern Oscillation events. Nat. Geosci. 2013, 6, 112–116. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, F.; Stuecker, M.F.; Jin, F.-F.; Timmermann, A. Spurious North Tropical Atlantic precursors to El Niño. Nat. Commun. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Sample, T.; Xie, S. Large-Scale Dynamics of the Meiyu-Baiu Rainband: Environmental Forcing by the Westerly Jet. J. Clim. 2010, 23, 113–134. [Google Scholar] [CrossRef] [Green Version]
- Kong, W.; Chiang, J.G.H. Interaction of the Westerlies with the Tibetan Plateau in Determining the Mei-Yu Termination. J. Clim. 2020, 33, 339–363. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Zhou, T.; Zhang, L.; Chen, X.; Zhang, W. Extremely hot East Asia and flooding western South Asia in the summer of 2022 tied to reversed flow over Tibetan Plateau. Clim. Dynam. 2023. [Google Scholar] [CrossRef]
- Huang, P.; Xie, S. Mechanisms of change in ENSO-induced tropical Pacific rainfall variability in a warming climate. Nat. Geosci. 2015, 8, 922–926. [Google Scholar] [CrossRef]
- Dai, P.; Nie, J. What Controls the Interannual Variability of Extreme Precipitation? Geophys. Res. Lett. 2021, 48, e2021GL095503. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, X.; Zhou, X.; Ikeda, M. The sea ice extent anomaly in the North Pacific and its impact on the East Asian summer monsoon rainfall. J. Clim. 2004, 17, 3434–3447. [Google Scholar] [CrossRef]
- Alexander, M.A.; Bhatt, U.S.; Walsh, J.E.; Timlin, M. The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J. Clim. 2004, 17, 890–905. [Google Scholar] [CrossRef]
- Vihma, T. Effects of Arctic sea ice decline on weather and climate: A review. Surv. Geophys. 2014, 35, 1175–1214. [Google Scholar] [CrossRef] [Green Version]
- Gong, D.-Y.; Yang, J.; Kim, S.-J.; Gao, Y.; Guo, D.; Zhou, T.; Hu, M. Spring Arctic Oscillation-East Asian summer monsoon connection through circulation changes over the western North Pacific. Clim. Dyn. 2011, 37, 2199–2216. [Google Scholar] [CrossRef]
- He, S.; Gao, Y.; Li, F.; Wang, H.; He, Y. Impact of Arctic Oscillation on the East Asian climate: A review. Earth-Sci. Rev. 2017, 164, 48–62. [Google Scholar] [CrossRef] [Green Version]
- Sheng, B.; Wang, H.; Li, H.; Li, Q. Thermodynamic and Dynamic Effects of Anomalous Dragon Boat Water over South China in 2022. 2022. Available online: https://ssrn.com/abstract=4264758 (accessed on 15 February 2023).
- Zhu, Y.; Wang, T.; Ma, J. Influence of internal decadal variability on the summer rainfall in eastern China as simulated by CCSM4. Adv. Atmos. Sci. 2016, 33, 706–714. [Google Scholar] [CrossRef]
Leading 3 Years | Leading 4 Years | Leading 5 Years | Leading 6 Years | Leading 7 Years | |
---|---|---|---|---|---|
PDO | 0.23 (0.39) | 0.21 (0.24) | 0.16 (−0.06) | 0.15 (−0.26) | 0.19 (−0.39) |
AMO | 0.30 (−0.33) | 0.30 (−0.29) | 0.31 (−0.22) | 0.33 (−0.09) | 0.36 (−0.05) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Huang, Y.; Zhang, D.; Wang, H. Decadal Prediction of the Summer Extreme Precipitation over Southern China. Atmosphere 2023, 14, 595. https://doi.org/10.3390/atmos14030595
Wang H, Huang Y, Zhang D, Wang H. Decadal Prediction of the Summer Extreme Precipitation over Southern China. Atmosphere. 2023; 14(3):595. https://doi.org/10.3390/atmos14030595
Chicago/Turabian StyleWang, Huijie, Yanyan Huang, Dapeng Zhang, and Huijun Wang. 2023. "Decadal Prediction of the Summer Extreme Precipitation over Southern China" Atmosphere 14, no. 3: 595. https://doi.org/10.3390/atmos14030595
APA StyleWang, H., Huang, Y., Zhang, D., & Wang, H. (2023). Decadal Prediction of the Summer Extreme Precipitation over Southern China. Atmosphere, 14(3), 595. https://doi.org/10.3390/atmos14030595