[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Spring Arctic Oscillation-East Asian summer monsoon connection through circulation changes over the western North Pacific

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In the present study the links between spring Arctic Oscillation (AO) and East Asian summer monsoon (EASM) was investigated with focus on the importance of the North Pacific atmospheric circulation and sea surface temperature (SST). To reduce the statistical uncertainty, we analyzed high-pass filtered data with the inter-annual time scales, and excluded the El Niño/Southern Oscillation signals in the climate fields using a linear fitting method. The significant relationship between spring AO and EASM are supported by the changes of multi-monsoon components, including monsoon indices, precipitation, and three-dimensional atmospheric circulations. Following a stronger positive spring AO, an anomalous cyclonic circulation at 850 hPa appears in southeastern Asia and the western North Pacific in summer, with the easterly anomalies spanning from the Pacific to Asian continent along 25°N–30°N and the westerly anomalies south of 15°N. At the same time, the summer western North Pacific subtropical high becomes weaker. Consistently, the positive precipitation anomalies are developed over a broad region south of 30°N stretching from southern China to the western Pacific and the negative precipitation anomalies appear in the lower valley of the Yangtze River and southern Japan. The anomalous cyclone in the western North Pacific persisting from spring to summer plays a key role in modulating EASM and monsoon precipitation by a positive air-sea feedback mechanism. During spring the AO-associated atmospheric circulation change produces warmer SSTs between 150°E–180° near the equator. The anomalous sensible and latent heating, in turn, intensifies the cyclone through a Gill-type response of the atmosphere. Through this positive feedback, the tropical atmosphere and SST patterns sustain their strength from spring to summer, that consequently modifies the monsoon trough and the western North Pacific subtropical high and eventually the EASM precipitation. Moreover, the SST response to AO-circulation is supported by the numerical simulations of an ocean model, and the anomalous atmospheric circulation over the western North Pacific is also reproduced by the dedicated numerical simulations using the coupled atmosphere–ocean model. The observation evidence and numerical simulations suggest the spring AO can impact the EASM via triggering tropical air-sea feedback over the western North Pacific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Ambaum MHP, Hoskins BJ, Stephenson DB (2001) Arctic Oscillation or north Atlantic Oscillation? J Clim 14:3495–3507

    Article  Google Scholar 

  • Ashok K, Yamagata T (2009) The El Niño with a difference. Nature 461:481–484

    Article  Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its teleconnection. J Geophys Res 112(C11007). doi:10.1029/2006JC003798

  • Bamzai AS (2003) Relationship between snow cover variability and Arctic Oscillation on a hierarchy of time scales. Int J Climatol 23:131–142. doi:10.1002/joc.854

    Article  Google Scholar 

  • Bleck R, Rooth C, Hu D, Smith LT (1992) Salinity-driven thermocline transients in a wind-and thermohaline-forced isopycnic coordinate model of the North Atlantic. J Phys Oceanogr 22:1486–1505

    Article  Google Scholar 

  • Branstator G (2002) Circumglobal teleconnections, the jetstream waveguide, and the North Atlantic Oscillation. J Clim 15:1893–1910

    Article  Google Scholar 

  • Buermann W, Lintner B, Bonfils C (2005) A wintertime Arctic Oscillation signature on early-season Indian Ocean monsoon intensity. J Clim 18:2247–2269

    Article  Google Scholar 

  • Chang KM, Fu YF (2002) Interdecadal variations in northern hemisphere winter storm track intensity. J Clim 15:642–658

    Article  Google Scholar 

  • Chang C-P, Zhang Y, Li T (2000a) Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part 1: role of the subtropical ridge. J Clim 13:4310–4325

    Article  Google Scholar 

  • Chang C-P, Zhang Y, Li T (2000b) Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part 2: Southeast China rainfall and meridional structure. J Clim 13:4326–4340

    Article  Google Scholar 

  • Chang C-P, Harr P, Hu JH (2001) Possible roles of Atlantic circulations on the weakening Indian monsoon rainfall-ENSO relationship. J Clim 14:2376–2380

    Article  Google Scholar 

  • Déqué M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE/IFS atmosphere model: a contribution to the French community climate modeling. Climate Dynamics 10:249–266

    Article  Google Scholar 

  • Ding YH (1989) Diagnosis methods in dynamic meteorology. Science Press, pp 293, (in Chinese)

  • Feng S, Hu Q (2008) How the North Atlantic multidecadal oscillation may have influenced the Indian summer monsoon during the past two millennia. Geophys Res Lett 35:L01707. doi:10.1029/2007GL032484

    Article  Google Scholar 

  • Folland CK, Knight J, Linderholm HW, Fereday D, Ineson S, Hurrell JW (2009) The summer North Atlantic Oscillation: past, present, and future. J Clim 22:1082–1103

    Article  Google Scholar 

  • Fu CB, Zeng ZM (2005) Correlations between North Atlantic Oscillation Index in winter and eastern China Flood/Drought Index in summer in the last 530 years. Chin Sci Bull 50(21):2505–2516

    Google Scholar 

  • Furevik T, Bentsen M, Drange H, Kindem I, Kvamstø NG, Sorteberg A (2003) Description and validation of the Bergen Climate Model: ARPEGE coupled with MICOM. Climate Dynamics 21:27–51

    Article  Google Scholar 

  • Gill AE (1980) Some simple solution for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462

    Article  Google Scholar 

  • Gong D-Y, Ho C-H (2002) Shift in the summer rainfall over Yangtze River valley in the late 1970s. Geophys Res Lett 29(10). doi:10.1029/2001GL014523

  • Gong D-Y, Ho C-H (2003) Arctic Oscillation signals in East Asian summer monsoon. J Geophys Res 108(D2):4066. doi:10.1029/2002JD002193

    Article  Google Scholar 

  • Gong D-Y, Kim S-J, Ho C-H (2009) Arctic and Antarctic Oscillation signatures in tropical coral proxies over the South China Sea. Ann Geophys 27:1979–1988

    Article  Google Scholar 

  • Goswami BN, Madhusoodanan MS, Neema CP, Sengupta D (2006) A physical mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophys Res Lett 33:L02706. doi:10.1029/2005GL024803

    Article  Google Scholar 

  • Gu W, Li C, Li W, Zhou W, Chan JCL (2009) Interdecadal unstationary relationship between NAO and east China’s summer precipitation patterns. Geophys Res Lett 36:L13702. doi:10.1029/2009GL038843

    Article  Google Scholar 

  • Hori ME, Yasunari T (2003) NAO impact towards the springtime snow disappearance in the western Eurasian continent. Geophys Res Lett 30(19):1977. doi:10.1029/2003GL018103

    Article  Google Scholar 

  • James IN (1994) Introduction to circulating atmospheres. Cambridge University Press, Cambridge, p 422

    Book  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:431–437

    Article  Google Scholar 

  • Kao HY, Yu JY (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22:615–632

    Article  Google Scholar 

  • Lau N-C (1988) Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J Atmosph Sci 45(19):2718–2743

    Article  Google Scholar 

  • Lau N-C, Holopainen EO (1984) Transient eddy forcing of the time-mean flow as identified by geopotential tendencies. J Atmosph Sci 41(3):313–328

    Article  Google Scholar 

  • Lau K-M, Kim K-M, Yang S (2000) Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon. J Clim 13(14):2461–2482

    Article  Google Scholar 

  • Li J, Yu RC, Zhou TJ, Wang B (2005) Why is there an early spring cooling shift downstream of the Tibetan Plateau. J Clim 18(22):4660–4668

    Article  Google Scholar 

  • Limpasuvan V, Hartmann DL (1999) Eddies and the annular modes of climate variability. Geophys Res Lett 26(20):3133–3136

    Article  Google Scholar 

  • Liu YM, Wu GX, Ren RC (2004) Relation between the subtropical anticyclone and diabatic heating. J Clim 17:682–698

    Article  Google Scholar 

  • Lu R (2001) Interannual variability of the summertime North Pacific subtropical high and its relation to atmospheric convection over warm pool. J Meteorol Soc Jpn 79:771–783

    Article  Google Scholar 

  • Lu R, Dong BW (2001) Westward extension of North Pacific subtropical high in summer. J Meteorol Soc Jpn 79:1229–1241

    Article  Google Scholar 

  • Lu R, Dong B, Ding H (2006) Impact of the Atlantic Multidecadal Oscillation on the Asian summer monsoon. Geophys Res Lett 33:L24701. doi:10.1029/2006GL027655

    Article  Google Scholar 

  • Matsuno T (1966) Quasi-geostropic motions in the equatorial area. J Meteorol Soc Jpn 44:25–42

    Google Scholar 

  • Miller AJ, Zhou S, Yang SK (2003) Relationship of the Arctic and Antarctic Oscillations to the outgoing longwave radiation. J Clim 16:1583–1592

    Article  Google Scholar 

  • Nakamura T, Tachibana Y, Honda M, Yamane S (2006) Influence of the northern hemisphere annular mode on ENSO by modulating westerly wind bursts. Geophys Res Lett 33:L07709. doi:10.1029/2005GL025432

    Article  Google Scholar 

  • Nakamura T, Tachibana Y, Shimoda H (2007) Importance of cold and dry surges in substantiating the NAM and ENSO relationship. Geophys Res Lett 34:L22703. doi:10.1029/2007GL031220

    Article  Google Scholar 

  • Ogi M, Tachibana Y, Yamazaki K (2004) The connectivity of the winter North Atlantic Oscillation (NAO) and the summer Okhotsk High. J Meteorol Soc Jpn 82(3):905–913

    Article  Google Scholar 

  • Otterå OH, Bentsen M, Bethke I, Kvamstø NG (2009) Simulated pre–industrial climate in Bergen Climate Model (version 2): model description and large–scale circulation features. Geosci Model Develop 2:197–212

    Article  Google Scholar 

  • Quadrelli R, Wallace JM (2002) Dependence of the structure of the Northern Hemisphere annular modes on the polarity of ENSO. Geophys Res Lett 29(23):2132. doi:10.1029/2002GL015807

    Article  Google Scholar 

  • Rodwell MJ, Hoskins BJ (2001) Subtropical anticyclones and summer monsoons. J Clim 14:3192–3211

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2293

    Article  Google Scholar 

  • Sui C-H, Chung P-H, Li T (2007) Interannual and interdecadal variability of the summertime western North Pacific subtropical high. Geophys Res Lett 34:L11701. doi:10.1029/2006GL029204

    Article  Google Scholar 

  • Sung MK, Kwon W-T, Baek H-J, Boo K-O, Lim G-H, Kug J-S (2006) A possible impact of the North Atlantic Oscillation on the east Asian summer monsoon precipitation. Geophys Res Lett 33:L21713

    Article  Google Scholar 

  • Sung M-K, Lim G-H, Kug J-S (2010) Phase asymmetric downstream development of the North Atlantic Oscillation and its impact on the East Asian winter monsoon. J Geophys Res 115:D09105. doi:10.1029/2009JD013153

    Article  Google Scholar 

  • Tao SY, Chen LX (1987) A review of recent research on the East Asian summer monsoon in China. In: Chang C-P, Krishnamurti TN (eds) Monsoon meteorology. Oxford University Press, Oxford, pp 60–92

    Google Scholar 

  • Thompson DWJ, Lorenz DJ (2004) The signature of the annular modes in the tropical troposphere. J Clim 17:4330–4342

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300

    Article  Google Scholar 

  • Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau NC, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections association with tropical sea surface temperatures. J Geophys Res 103:14291–14324

    Article  Google Scholar 

  • Wang B, Fan Z (1999) Choice of South Asian summer monsoon indices. Bull Am Meteorol Soc 80:629–638

    Article  Google Scholar 

  • Wang B, Zhang Q (2002) Pacific-East Asian teleconnection. Part II: how the Philippine Sea anomalous anticyclone is established during El Niño development. J Clim 15:3252–3264

    Article  Google Scholar 

  • Wang B, Wu R, Fu X (2000) Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536

    Article  Google Scholar 

  • Wang B, Wu Z, Li J, Liu J, Chang C-P, Ding Y, Wu G (2008a) How to measure the strength of the East Asian summer monsoon? J Clim 21:4449–4464

    Article  Google Scholar 

  • Wang B, Yang J, Zhou T, Wang B (2008b) Interdecadal changes in the major modes of Asian–Australian monsoon variability: strengthening relationship with ENSO since the late 1970s. J Clim 21:1771–1789

    Article  Google Scholar 

  • Wang Y, Li S, Luo D (2009) Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation. J Geophys Res 114:D02112. doi:10.1029/2008JD010929

    Article  Google Scholar 

  • Watanabe M (2004) Asian jet waveguide and a downstream extension of the North Atlantic Oscillation. J Clim 17:4674–4691

    Article  Google Scholar 

  • Wu Z, Wang B, Li J, Jin F-F (2009a) An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J Geophys Res 114:D18120. doi:10.1029/2009JD011733

    Article  Google Scholar 

  • Wu BY, Yang K, Zhang RH (2009b) Eurasian snow cover variability and its association with summer rainfall in China. Advances Atmosp Sci 26(1):31–44. doi:10.1007/s00376-009-0031-2

    Article  Google Scholar 

  • Yang S, Lau K-M, Kim K-M (2002) Variations of the east Asian jet stream and Asian-Pacific-American winter climate anomalies. J Clim 15:306–325

    Article  Google Scholar 

  • Yanai M, Esbensen S, Chu J-H (1973) Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J Atmos Sci 30:611–627

    Google Scholar 

  • Yu R, Zhou TJ (2004) Impacts of winter-NAO on March cooling trends over subtropical Eurasia continent in the recent half century. Geophys Res Lett 31(12):L12204. doi:10.1029/2004GL019814

    Article  Google Scholar 

  • Zhang QY, Tao SY, Chen LT (2003) The interannual variability of East Asian summer monsoon indices and its association with the pattern of generation circulation over East Asia. Acta Meteorologica Sinica 61:559–568 (in Chinese with English Abstract)

    Google Scholar 

  • Zhou TJ, Yu R, Zhang J, Drange H, Cassou C, Deser C, Hodson DLR, Sanchez-Gomez E, Li J, Keenlyside N, Xin X, Okumura Y (2009) Why the western Pacific subtropical high has extended westward since the late 1970s. J Clim 22:2199–2215

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the PE10030 and PE10130 and in part by PE11010s of Korea Polar Research Institute. DY Gong was supported by 2008AA121704, 2007BAC29B02, and GYHY200706010. The numerical experiments and part of analysis has been supported by the Norwegian Research Council through the East Asian DecCen (no 193690) project. Reanalysis data were obtained from ftp://www.ftp.cdc.noaa.gov. The comments and suggestions of two anonymous reviewers are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dao-Yi Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, DY., Yang, J., Kim, SJ. et al. Spring Arctic Oscillation-East Asian summer monsoon connection through circulation changes over the western North Pacific. Clim Dyn 37, 2199–2216 (2011). https://doi.org/10.1007/s00382-011-1041-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1041-1

Keywords

Navigation