Spatio-Temporal Variation of Precipitation and Evaporation on the Tibetan Plateau and Their Influence on Regional Drought
<p>Overview of the TP and the locations of meteorological stations.</p> "> Figure 2
<p>Variation of precipitation in the TP region on different timescales in 1966–2016. (<b>a</b>) Annual, (<b>b</b>) spring, (<b>c</b>) summer, (<b>d</b>) autumn, (<b>e</b>) winter.</p> "> Figure 3
<p>Spatial distribution of the multiyear average precipitation on the TP in 1966–2016. (<b>a</b>) Annual, (<b>b</b>) spring, (<b>c</b>) summer, (<b>d</b>) autumn, (<b>e</b>) winter.</p> "> Figure 4
<p>Spatial distribution of precipitation trends at different timescales on the TP in 1966–2016. (<b>a</b>) Annual, (<b>b</b>) spring, (<b>c</b>) summer, (<b>d</b>) autumn, (<b>e</b>) winter.</p> "> Figure 5
<p>Wavelet variance of the annual and seasonal precipitation series and a contour map of the real part of wavelet coefficients in the TP area in 1966–2016. (<b>a</b>) Annual, (<b>b</b>) spring, (<b>c</b>) summer, (<b>d</b>) autumn, (<b>e</b>) winter.</p> "> Figure 6
<p>Variation of Epan on the TP on different timescales in 1966–2016. (<b>a</b>) Annual, (<b>b</b>) spring, (<b>c</b>) summer, (<b>d</b>) autumn, (<b>e</b>) winter.</p> "> Figure 7
<p>Annual and seasonal spatial trends of Epan on the TP in 1966–2016. (<b>a</b>) Annual, (<b>b</b>) spring, (<b>c</b>) summer, (<b>d</b>) autumn, (<b>e</b>) winter.</p> "> Figure 8
<p>The relationship between the Epan mutation time and the longitude (<b>a</b>) and latitude (<b>b</b>) for each site on the TP.</p> "> Figure 9
<p>Correlation of the annual and seasonal mean Epan with longitude (<b>a</b>), latitude (<b>b</b>), and altitude (<b>c</b>) at each site on the TP.</p> "> Figure 10
<p>Comparison of Epan and precipitation at different timescales of the TP. (<b>a</b>) Correlation between the annual mean precipitation and Epan at each site, (<b>b</b>) interannual variation of normalized precipitation and Epan in August.</p> "> Figure 11
<p>Comparison of the trends of precipitation and Epan at different stations on the TP. (<b>a</b>) Trend’s z-value relationship, (<b>b</b>) relationship between precipitation and Epan’s Sen’s slope, (<b>c</b>) relationship between Epan and precipitation’s Sen’s slope.</p> "> Figure 12
<p>Temporal evolution of the SPEI at 1-, 3-, 6-, and 12-month timescales on the TP in 1966–2016.</p> "> Figure 13
<p>Spatial trend distribution of the SPEI at different timescales on the TP in 1966–2016. (<b>a</b>) SPEI-1, (<b>b</b>) SPEI-3, (<b>c</b>) SPEI-6, (<b>d</b>) SPEI-12.</p> "> Figure 14
<p>Interannual trends of the average temperature (<b>a</b>) and the drought index (<b>b</b>) on the TP.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Overview of the Study Area
2.2. Data Sources
3. Research Methods
3.1. Standardized Precipitation Evaporation Index
3.2. Trend Testing and Cycle Analysis
3.2.1. Mann–Kendall Test
3.2.2. Moving T-Test
3.2.3. Wavelet Analysis
3.3. Other Methods
4. Results and Analysis
4.1. Precipitation Characteristics and Trends at Multiple Scales
4.1.1. Spatial and Temporal Patterns of Precipitation
4.1.2. Precipitation Abrupt Changes and Cycles Analysis
4.2. The Spatiotemporal Variation Pattern of Epan
4.2.1. Temporal Trend Characteristics of Epan
4.2.2. Spatial Evaluation of Epan
4.3. Precipitation–Evaporation Relationship and Regional Drought
4.3.1. Relationship between Precipitation and Evaporation on the TP
4.3.2. Patterns of Regional Drought
5. Discussion
5.1. Incoherence in the Trends of Precipitation and Epan
5.2. Evolution of Regional Water Resources
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, C.; Zheng, Z.; Chen, W.; Wang, Y. Spatial and Temporal Variations of Potential Evapotranspiration in the Loess Plateau of China During 1960–2017. Sustainability 2020, 12, 354. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, C.; Chen, X. Reference evapotranspiration changes in China: Natural processes or human influences? Theor. Appl. Climatol. 2011, 103, 479–488. [Google Scholar] [CrossRef]
- Tang, L.; Duan, X.; Kong, F.; Zhang, F.; Zheng, Y.; Li, Z.; Mei, Y.; Zhao, Y.; Hu, S. Influences of climate change on area variation of Qinghai Lake on Qinghai-Tibetan Plateau since 1980s. Sci. Rep. 2018, 8, 7331. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Wu, H.; Qin, J.; Lin, C.; Tang, W.; Chen, Y. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Glob. Planet. Chang. 2014, 112, 79–91. [Google Scholar] [CrossRef]
- Liu, R.; Ma, T.; Qiu, W.; Peng, Z.; Shi, C. The Environmental Functions and Ecological Effects of Organic Carbon in Silt. J. Earth Sci.-China 2020, 31, 834–844. [Google Scholar] [CrossRef]
- Qiu, G.; Li, H.; Zhang, Q.; Chen, W.; Liang, X.; Li, X. Effects of Evapotranspiration on Mitigation of Urban Temperature by Vegetation and Urban Agriculture. J. Integr. Agric. 2013, 12, 1307–1315. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Chen, J.; Yan, F.; Lu, Q. Spatiotemporal Variation of Vegetation on the Qinghai–Tibet Plateau and the Influence of Climatic Factors and Human Activities on Vegetation Trend (2000–2019). Remote Sens. 2020, 12, 3150. [Google Scholar] [CrossRef]
- Van Dijk, A.I.J.M.; Beck, H.E.; Crosbie, R.S.; De Jeu, R.A.M.; Liu, Y.Y.; Podger, G.M.; Timbal, B.; Viney, N.R. Millennium Drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res. 2013, 49, 1040–1057. [Google Scholar] [CrossRef]
- Arnell, N.W.; Lowe, J.A.; Challinor, A.J.; Osborn, T.J. Global and regional impacts of climate change at different levels of global temperature increase. Clim. Chang. 2019, 155, 377–391. [Google Scholar] [CrossRef]
- Liu, X.; Kutzbach, J.E.; Liu, Z.; An, Z.; Li, L. The Tibetan Plateau as amplifier of orbital-scale variability of the East Asian monsoon. Geophys. Res. Lett. 2003, 30, 1–4. [Google Scholar] [CrossRef]
- Liu, X.; Chen, B. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. 2000, 20, 1729–1742. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, Q.; Xu, Y.; Yuan, R. Integrated Assessments of Meteorological Hazards across the Qinghai-Tibet Plateau of China. Sustainability 2021, 13, 10402. [Google Scholar] [CrossRef]
- Yang, C.; Tuo, Y.; Ma, J.; Zhang, D. Spatial and Temporal Evolution Characteristics of Drought in Yunnan Province from 1969 to 2018 Based on SPI/SPEI. Water Air Soil Pollut. 2019, 230, 1–13. [Google Scholar] [CrossRef]
- Liu, B. Observed trends of precipitation amount, frequency, and intensity in China, 1960–2000. J. Geophys. Res. 2005, 110, 1–10. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, S.; Wen, J.; Xu, M.; Tan, J. Changing characteristics of precipitation in China during 1960–2012. Int. J. Climatol. 2016, 36, 1387–1402. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Xie, H.; Yang, K.; Zhu, L.; Shum, C.K.; Bolch, T.; Yi, S.; Allen, S.; Jiang, L.; et al. Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth-Sci. Rev. 2020, 208, 103269. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, J.; Huang, Y.; Zhou, Y.; Pang, Y.; Shi, Z.; Chen, X. Spatial and Temporal Variations in the Rainy Season Onset over the Qinghai–Tibet Plateau. Water 2019, 11, 1960. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, A.; Huang, D.; Chen, F.; Yang, B.; Zhou, Y.; Fang, D.; Zhang, L.; Wen, L. Diurnal variations of summer precipitation over the regions east to Tibetan Plateau. Clim. Dyn. 2018, 51, 4287–4307. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, J.; Meng, X.; Xu, T.; Song, Y. Long-term spatio-temporal precipitation variations in China with precipitation surface interpolated by ANUSPLIN. Sci. Rep. 2020, 10, 81. [Google Scholar] [CrossRef]
- Oki, T.; Kanae, S. Global Hydrological Cycles and World Water Resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhang, J.; Sun, F.; Liu, W. Pan evaporation paradox and evaporative demand from the past to the future over China: A review. WIREs Water 2017, 4, e1207. [Google Scholar] [CrossRef]
- Niu, Z.; Wang, L.; Chen, X.; Yang, L.; Feng, L. Spatiotemporal distributions of pan evaporation and the influencing factors in China from 1961 to 2017. Environ. Sci. Pollut. Res. 2021, 28, 68379–68397. [Google Scholar] [CrossRef] [PubMed]
- Borin, M.; Milani, M.; Salvato, M.; Toscano, A. Evaluation of Phragmites australis (Cav.) Trin. evapotranspiration in Northern and Southern Italy. Ecol. Eng. 2011, 37, 721–728. [Google Scholar] [CrossRef]
- Hoffman, M.T.; Cramer, M.D.; Gillson, L.; Wallace, M. Pan evaporation and wind run decline in the Cape Floristic Region of South Africa (1974–2005): Implications for vegetation responses to climate change. Clim. Chang. 2011, 109, 437–452. [Google Scholar] [CrossRef]
- Shan, N.; Shi, Z.; Yang, X.; Zhang, X.; Guo, H.; Zhang, B.; Zhang, Z. Trends in potential evapotranspiration from 1960 to 2013 for a desertification-prone region of China. Int. J. Climatol. 2016, 36, 3434–3445. [Google Scholar] [CrossRef]
- Hobbins, M.; Wood, A.; Streubel, D.; Werner, K. What Drives the Variability of Evaporative Demand across the Conterminous United States? J. Hydrometeorol. 2012, 13, 1195–1214. [Google Scholar] [CrossRef]
- Roderick, M.L.; Hobbins, M.T.; Farquhar, G.D. Pan Evaporation Trends and the Terrestrial Water Balance. II. Energy Balance and Interpretation. Geogr. Compass 2009, 3, 761–780. [Google Scholar] [CrossRef]
- Zongxing, L.; Qi, F.; Wei, L.; Tingting, W.; Yan, G.; Yamin, W.; Aifang, C.; Jianguo, L.; Li, L. Spatial and temporal trend of potential evapotranspiration and related driving forces in Southwestern China, during 1961–2009. Quat. Int. 2014, 336, 127–144. [Google Scholar] [CrossRef]
- Zhu, G.; He, Y.; Pu, T.; Wang, X.; Jia, W.; Li, Z.; Xin, H. Spatial distribution and temporal trends in potential evapotranspiration over Hengduan Mountains region from 1960 to 2009. J. Geogr. Sci. 2012, 22, 71–85. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, H.; Zhang, M.; Liu, C. Identification of dominant climate factor for pan evaporation trend in the Tibetan Plateau. J. Geogr. Sci. 2011, 21, 594–608. [Google Scholar] [CrossRef]
- Yao, T.; Lu, H.; Yu, Q.; Feng, W.; Xue, Y. Change and attribution of pan evaporation throughout the Qinghai-Tibet Plateau during 1979–2017 using China meteorological forcing dataset. Int. J. Climatol. 2022, 42, 1445–1459. [Google Scholar] [CrossRef]
- Yao, T.; Lu, H.; Feng, W.; Yu, Q. Evaporation abrupt changes in the Qinghai-Tibet Plateau during the last half-century. Sci. Rep. 2019, 9, 10181. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, F.; Shen, Y. Attribution analysis of changing pan evaporation in the Qinghai-Tibetan Plateau, China. Int. J. Climatol. 2018, 38, e1032–e1043. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Tang, Y.; Yang, Y. Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, Z.; Singh, V.P.; Zuo, D.; Li, M. Sensitivity of Potential Evapotranspiration to Climate and Vegetation in a Water-Limited Basin at the Northern Edge of Tibetan Plateau. Water Resour. Manag. 2016, 30, 4667–4680. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, M.; Yao, X.; Zhang, L.; Zhang, H. Spatiotemporal Variations of Water Vapor Content and Its Relationship with Meteorological Elements in the Third Pole. Water 2021, 13, 1856. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, S. Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5. Adv. Clim. Chang. Res. 2020, 11, 239–251. [Google Scholar] [CrossRef]
- Bai, L.; Wen, Y.; Shi, C.; Yang, Y.; Zhang, F.; Wu, J.; Gu, J.; Pan, Y.; Sun, S.; Meng, J. Which Precipitation Product Works Best in the Qinghai-Tibet Plateau, Multi-Source Blended Data, Global/Regional Reanalysis Data, or Satellite Retrieved Precipitation Data? Remote Sens. 2020, 12, 683. [Google Scholar] [CrossRef]
- Su, T.; Feng, T.; Feng, G. Evaporation variability under climate warming in five reanalyses and its association with pan evaporation over China. J. Geophys. Res. Atmos. 2015, 120, 8080–8098. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Zhang, Q.; Qi, T.; Singh, V.P.; Chen, Y.D.; Xiao, M. Regional Frequency Analysis of Droughts in China: A Multivariate Perspective. Water Resour Manag. 2015, 29, 1767–1787. [Google Scholar] [CrossRef]
- Feng, W.; Lu, H.; Yao, T.; Yu, Q. Drought characteristics and its elevation dependence in the Qinghai–Tibet plateau during the last half-century. Sci. Rep. 2020, 10, 14323. [Google Scholar] [CrossRef]
- Guojiang, D.; Guangsheng, L.; Lianrong, C. Application of SPEI Index in Drought Evolution in Fujian Province. IOP Conf. Ser. Earth Environ. Sci. 2020, 435, 12016. [Google Scholar]
- Mokhtar, A.; Jalali, M.; He, H.; Al-Ansari, N.; Elbeltagi, A.; Alsafadi, K.; Abdo, H.G.; Sammen, S.S.; Gyasi-Agyei, Y.; Rodrigo-Comino, J. Estimation of SPEI Meteorological Drought Using Machine Learning Algorithms. IEEE Access 2021, 9, 65503–65523. [Google Scholar] [CrossRef]
- Sein, Z.M.M.; Zhi, X.; Ogou, F.K.; Nooni, I.K.; Lim Kam Sian, K.T.C.; Gnitou, G.T. Spatio-Temporal Analysis of Drought Variability in Myanmar Based on the Standardized Precipitation Evapotranspiration Index (SPEI) and Its Impact on Crop Production. Agronomy 2021, 11, 1691. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Zhang, H.; Song, J.; Wang, G.; Wu, X.; Li, J. Spatiotemporal characteristic and forecast of drought in northern Xinjiang, China. Ecol. Indic. 2021, 127, 107712. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, X.; Meng, Q.; Zhao, H.; Lu, X.; Gao, J.; Chang, X. Annual Precipitation Fluctuation and Spatial Differentiation Characteristics of the Horqin Region. Sustainability 2017, 9, 111. [Google Scholar] [CrossRef]
- Zhang, X.; Lohmann, G.; Knorr, G.; Purcell, C. Abrupt glacial climate shifts controlled by ice sheet changes. Nature 2014, 512, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhou, W. Spatial–Temporal Characteristics of Precipitation and Its Relationship with Land Use/Cover Change on the Qinghai-Tibet Plateau, China. Land 2021, 10, 269. [Google Scholar] [CrossRef]
- Wu, S.; Yin, Y.; Zheng, D.; Yang, Q. Climatic trends over the Tibetan Plateau during 1971–2000. J. Geogr. Sci. 2007, 17, 141–151. [Google Scholar] [CrossRef]
- Wentz, F.J.; Ricciardulli, L.; Hilburn, K.; Mears, C. How Much More Rain Will Global Warming Bring? Science 2007, 317, 233–235. [Google Scholar] [CrossRef]
- Berg, P.; Moseley, C.; Haerter, J.O. Strong increase in convective precipitation in response to higher temperatures. Nat. Geosci. 2013, 6, 181–185. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, H.; Wang, C.; Li, W.; Chen, H.; Deng, C. Changes in reference evapotranspiration over Northwest China from 1957 to 2018: Variation characteristics, cause analysis and relationships with atmospheric circulation. Agric. Water Manag. 2020, 231, 105958. [Google Scholar] [CrossRef]
- Brutsaert, W. Use of pan evaporation to estimate terrestrial evaporation trends: The case of the Tibetan Plateau. Water Resour. Res. 2013, 49, 3054–3058. [Google Scholar] [CrossRef]
- Zhao, N.; Gou, S.; Zhang, B.; Yu, Y.; Han, S. Changes in Pan Evaporation and Their Attribution to Climate Factors in the Zoige Alpine Wetland, the Eastern Edge of the Tibetan Plateau (1969–2014). Water 2017, 9, 971. [Google Scholar] [CrossRef]
- Yang, K.; Wang, J.; Lei, Y.; Chen, Y.; Zhu, L.; Ding, B.; Qin, J. Quantifying evaporation and its decadal change for Lake Nam Co, central Tibetan Plateau. J. Geophys. Res. Atmos. 2016, 121, 7578–7591. [Google Scholar]
- Farooq, U.; Liu, H.; Zhang, Q.; Ma, Y.; Wang, J.; Shen, L. Spatial variability of global lake evaporation regulated by vertical vapor pressure difference. Environ. Res. Lett. 2022, 17, 54006. [Google Scholar] [CrossRef]
- You, Q.; Kang, S.; Flügel, W.A.; Pepin, N.; Yan, Y.; Huang, J. Decreasing wind speed and weakening latitudinal surface pressure gradients in the Tibetan Plateau. Clim. Res. 2010, 42, 57–64. [Google Scholar] [CrossRef]
- Zhou, S.; Wu, P.; Wang, C.; Han, J. Spatial distribution of atmospheric water vapor and its relationship with precipitation in summer over the Tibetan Plateau. J. Geogr. Sci. 2012, 22, 795–809. [Google Scholar] [CrossRef]
- Shi, Y.; Song, L. Spatial Downscaling of Monthly TRMM Precipitation Based on EVI and Other Geospatial Variables over the Tibetan Plateau From 2001 to 2012. Mt. Res. Dev. 2015, 35, 180–194. [Google Scholar] [CrossRef]
- Moazzam, M.F.U.; Rahman, G.; Munawar, S.; Farid, N.; Lee, B.G. Spatiotemporal Rainfall Variability and Drought Assessment during Past Five Decades in South Korea Using SPI and SPEI. Atmosphere 2022, 13, 292. [Google Scholar] [CrossRef]
- Gao, Y.; Li, X.; Ruby Leung, L.; Chen, D.; Xu, J. Aridity changes in the Tibetan Plateau in a warming climate. Environ. Res. Lett. 2015, 10, 34013. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Pan, Y.; Chen, Z.; Ren, Z. Assessment of candidate distributions for SPI/SPEI and sensitivity of drought to climatic variables in China. Int. J. Climatol. 2019, 39, 4392–4412. [Google Scholar] [CrossRef]
- He, B.; Lü, A.; Wu, J.; Zhao, L.; Liu, M. Drought hazard assessment and spatial characteristics analysis in China. J. Geogr. Sci. 2011, 21, 235–249. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Yang, J.; Wang, Y. Potential evapotranspiration and its attribution over the past 50 years in the arid region of Northwest China. Hydrol. Process. 2014, 28, 1025–1031. [Google Scholar] [CrossRef]
- Li, S.; Yao, Z.; Liu, Z.; Wang, R.; Liu, M.; Adam, J.C. The spatio-temporal characteristics of drought across Tibet, China: Derived from meteorological and agricultural drought indexes. Theor. Appl. Climatol. 2019, 137, 2409–2424. [Google Scholar] [CrossRef]
- Zhang, Y.; You, Q.; Chen, C.; Li, X. Flash droughts in a typical humid and subtropical basin: A case study in the Gan River Basin, China. J. Hydrol. 2017, 551, 162–176. [Google Scholar] [CrossRef]
- Mo, K.C.; Lettenmaier, D.P. Heat wave flash droughts in decline. Geophys. Res. Lett. 2015, 42, 2823–2829. [Google Scholar] [CrossRef]
- Huo, J.; Qu, X.; Zhu, D.; Yuan, Z.; Tang, Y. Impacts of Climate Change on Blue and Green Water Resources in the Middle and Upper Yarlung Zangbo River, China. Atmosphere 2021, 12, 1280. [Google Scholar] [CrossRef]
- Pritchard, H.D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 2019, 569, 649–654. [Google Scholar] [CrossRef] [PubMed]
Methods | Annual Precipitation | Spring Precipitation | Summer Precipitation | Autumn Precipitation | Winter Precipitation |
---|---|---|---|---|---|
M–K | 1980/1988/1994 | 1996 | 1998 | No mutation | 1970 |
T | 1980/1988/1998 | 1996 | 1998 | No mutation | 1971 |
Date Range | First Primary Cycle | Number of Oscillations | Second Primary Cycle | Number of Oscillations | Third Primary Cycle | Number of Oscillations | Forecast for Future Precipitation |
---|---|---|---|---|---|---|---|
Annual | 32 | 3 | 16 | 5 | 7 | 11 | Increase |
Spring | 32 | 3 | 21 | 4 | 8 | 9 | Increase |
Summer | 32 | 3 | 16 | 4 | 7 | 11 | Increase |
Autumn | 32 | 3 | 17 | 4 | 5 | 15 | Increase |
Winter | 27 | 3 | 12 | 6 | Increase |
Month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
R | −0.36 ** | −0.29 * | −0.41 ** | −0.57 ** | −0.42 ** | −0.67 ** | −0.74 ** | −0.83 ** | −0.71 ** | −0.46 ** | −0.53 ** | −0.46 ** |
Re | −0.09 | −0.10 | −0.38 ** | −0.37 ** | −0.30 ** | −0.54 ** | −0.25 | −0.60 ** | −0.35 * | −0.36 * | −0.33 * | −0.39 ** |
Rp | −0.40 ** | −0.27 | −0.45 ** | −0.68 ** | −0.44 ** | −0.67 ** | −0.68 ** | −0.63 ** | −0.44 ** | −0.24 | −0.32 * | −0.57 ** |
Category | Classes | SPEI-1 (%) | SPEI-3 (%) | SPEI-6 (%) | SPEI-12 (%) |
---|---|---|---|---|---|
Extreme drought | <−2 | 0.16 | 0.00 | 0.00 | 0.00 |
Severe drought | −2–−1.5 | 1.31 | 2.45 | 0.98 | 0.00 |
Moderate drought | −1.5–−1.0 | 7.68 | 8.33 | 3.92 | 0.00 |
Mild drought | −1.0–0 | 34.80 | 24.02 | 43.14 | 54.90 |
Mildly wet | 0–1.0 | 56.05 | 65.20 | 51.96 | 45.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Huo, J.; Zhu, D.; Gao, T.; Jiang, X. Spatio-Temporal Variation of Precipitation and Evaporation on the Tibetan Plateau and Their Influence on Regional Drought. Atmosphere 2022, 13, 1323. https://doi.org/10.3390/atmos13081323
Tang Y, Huo J, Zhu D, Gao T, Jiang X. Spatio-Temporal Variation of Precipitation and Evaporation on the Tibetan Plateau and Their Influence on Regional Drought. Atmosphere. 2022; 13(8):1323. https://doi.org/10.3390/atmos13081323
Chicago/Turabian StyleTang, Yuanzhi, Junjun Huo, Dejun Zhu, Tailai Gao, and Xiaoxuan Jiang. 2022. "Spatio-Temporal Variation of Precipitation and Evaporation on the Tibetan Plateau and Their Influence on Regional Drought" Atmosphere 13, no. 8: 1323. https://doi.org/10.3390/atmos13081323
APA StyleTang, Y., Huo, J., Zhu, D., Gao, T., & Jiang, X. (2022). Spatio-Temporal Variation of Precipitation and Evaporation on the Tibetan Plateau and Their Influence on Regional Drought. Atmosphere, 13(8), 1323. https://doi.org/10.3390/atmos13081323