[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Identification of dominant climate factor for pan evaporation trend in the Tibetan Plateau

  • Published:
Journal of Geographical Sciences Aims and scope Submit manuscript

Abstract

Despite the observed increase in global temperature, observed pan evaporation in many regions has been decreasing over the past 50 years, which is known as the “pan evaporation paradox”. The “pan evaporation paradox” also exists in the Tibetan Plateau, where pan evaporation has decreased by 3.06 mm a−2 (millimeter per annum). It is necessary to explain the mechanisms behind the observed decline in pan evaporation because the Tibetan Plateau strongly influences climatic and environmental changes in China, Asia and even in the Northern Hemisphere. In this paper, a derivation based approach has been used to quantitatively assess the contribution rate of climate factors to the observed pan evaporation trend across the Tibetan Plateau. The results showed that, provided the other factors remain constant, the increasing temperature should have led to a 2.73 mm a−2 increase in pan evaporation annually, while change in wind speed, vapor pressure and solar radiation should have led to a decrease in pan evaporation by 2.81 mm a−2, 1.96 mm a−2 and 1.11 mm a−2 respectively from 1970 to 2005. The combined effects of the four climate variables have resulted in a 3.15 mm a−2 decrease in pan evaporation, which is close to the observed pan evaporation trend with a relative error of 2.94%. A decrease in wind speed was the dominant factor for the decreasing pan evaporation, followed by an increasing vapor pressure and decreasing solar radiation, all of which offset the effect of increasing temperature across the Tibetan Plateau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen M R, Ingram W J, 2002. Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224–228.

    Article  Google Scholar 

  • Allen R G., Pereira L S, Raes D et al., 1998. Crop evapotranspiration: Guidelines for computing crop requirements. Irrigation and Drainage Paper No.56, FAO, Rome, Italy.

    Google Scholar 

  • Bouchet R J, 1963. Evapotranspiration reelle et potentielle signification climatique. Int. Assoc. Sci. Hydrol. General Assembly of Berkeley, No.62: 134–142.

  • Brouwer C, Heibloem M, 1986. Irrigation water management: Irrigation water needs. Rome: FAO.

    Google Scholar 

  • Brutsaert W, Parlange M B, 1998. Hydrologic cycle explains the evaporation paradox. Nature, 396: 30.

    Article  Google Scholar 

  • Burn D H, Hesch, N M, 2007. Trends in evaporation for the Canadian prairies. Journal of Hydrology, 336: 61–73.

    Article  Google Scholar 

  • Chattopadhyay N, Hulme M, 1997. Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. Agric. For. Meteorol., 87: 55–73.

    Article  Google Scholar 

  • Chen S, Liu Y, Thomas A, 2006. Climatic change on the Tibetan Plateau: Potential evapotranspiration trends from 1961–2000. Clim. Change, 76: 291–319.

    Article  Google Scholar 

  • Fu G B, Charles S P, Yu J J, 2009 A critical overview of pan evaporation trends over the last 50 years. Clim. Change, 97: 193–214.

    Article  Google Scholar 

  • Fu G B, Liu C, Chen S et al., 2004. Investigating the conversion coefficients for free water surface evaporation of different evaporation pans. Hydrol. Process, 18: 2247–2262.

    Article  Google Scholar 

  • Golubev V S, Lawrimore J H, Groisman P Y et al., 2001. Evaporation changes over the contiguous United States and the former USSR: A reassessment. Geophys. Res. Lett., 28: 2665–2668.

    Article  Google Scholar 

  • Gulev S K, Hasse L, 1999. Changes of wind waves in the north Atlantic over the last 30 years. Int. J. Climatol., 9: 1091–1117.

    Article  Google Scholar 

  • Hobbins M, Ramirez J A, Brown T C, 2004. Trend in pan evaporation and actual evapotranspiration across the conterminous US: Paradoxical or complementary? Geophys. Res. Lett., 31: L13503, doi: 10.1029/2004GL019846.

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change, 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report. In: Solomon S, Qin D, Manning M et al. (eds.). Cambridge, UK: Cambridge University, 996.

    Google Scholar 

  • Jiang Y, Luo Y, Zhao Z et al., 2010. Changes in wind speed over China during 1956–2004. Theor. Appl. Climatol., 99, 421–430, doi: 10.1007/s00704-009-0152-7.

    Article  Google Scholar 

  • Kendall M G, 1975. Rank Correlation Measures. London: Charles Griffin.

    Google Scholar 

  • Lam C Y, 2006. On climate changes brought about by urban living. Hong Kong Meteorological Society Bulletin, 16(1/2): 15–27.

    Google Scholar 

  • Lawrimore J H, Peterson T C, 2000. Pan evaporation trends in dry and humid regions of the United States. J. Hydrometeor., 1: 543–546.

    Article  Google Scholar 

  • Lhomme J P, Guilioni L, 2006. Comments on some articles about the complementary relationship. J. Hydrol., 323: 1–3.

    Article  Google Scholar 

  • Liu B H, Xu M, Henderson M et al., 2004. A spatial analysis of pan evaporation trends in China, 1955–2000. J. Geophys. Res., 109, D15102, doi: 10.1029/2004JD004511.

    Article  Google Scholar 

  • Liu S, Sun R, Sun Z et al., 2006. Evaluation of three complementary relationship approaches for evapotranspiration over the Yellow River Basin. Hydrol. Process, 20: 2347–2361.

    Article  Google Scholar 

  • Ma Y, Wang Y, Wu R et al., 2009. Recent advances on the study of atmosphere-land interaction observations on the Tibetan Plateau. Hydrol. Earth Syst. Sci., 13: 1103–1111.

    Article  Google Scholar 

  • Mann H B, 1945. Non-parametric tests against trend. Econometrica, 13: 245–259.

    Article  Google Scholar 

  • McVicar T R, Van Niel T G, Li L T et al., 2008. Wind speed climatology and trends for Australia, 1975–2006: Capturing the stilling phenomenon and comparison with near-surface reanalysis output. Geophys. Res. Lett., 35, L20403, doi: 10.1029/2008GL035627.

    Article  Google Scholar 

  • McVicar T R, Van Niel T G, Roderick M L et al., 2010. Observational evidence from two mountainous regions that near-surface wind speeds are declining more rapidly at higher elevations than lower elevations: 1960–2006. Geophys. Res. Lett., 37: L06402, doi: 10.1029/2009GL042255.

    Article  Google Scholar 

  • Michael L Roderick, Leon D Rotstayn, Graham D Farquhar et al., 2007. On the attribution of changing pan evaporation. Geophysical Research Letters, 34, L17403, doi: 17410.11029/12007GL031166.

    Article  Google Scholar 

  • Ozdogan M, Salvucci G D, 2004. Irrigation-induced changes in potential evapotranspiration in southeastern Turkey: Test and application of Bouchet’s complementary hypothesis. Water Resour. Res., 40: W04301, doi: 10.1029/2003WR002822.

    Article  Google Scholar 

  • Penman H L, 1948. Natural evaporation from open water, bare and grass. Proc. R. Soc. Lond. Ser. A, 193: 120–145.

    Article  Google Scholar 

  • Peterson T C, Golubev V S, Groisman P Y, 1995. Evaporation losing its strength. Nature, 377: 687–688.

    Article  Google Scholar 

  • Piao S, Ciais P, Huang Y et al., 2010. The impacts of climate change on water resources and agriculture in China. Nature, 467(7311): 43–51.

    Article  Google Scholar 

  • Pryor S C, Barthelmie R J, 2010. Climate change impacts on wind energy: A review. Renewable and Sustainable Energy Reviews, 14: 430–437.

    Article  Google Scholar 

  • Pryor S C, Barthelmie R J, Young D T et al., 2009. Wind speed trends over the contiguous United States. J. Geophys. Res., 114, D14105, doi: 10.1029/2008JD011416.

    Article  Google Scholar 

  • Pu Z, Xu L, 2009. MODIS/Terra observed snow cover over the Tibet Plateau: Distribution, variation and possible connection with the East Asian Summer Monsoon (EASM). Theor. Appl. Climatol., 97: 265–278, doi: 10.1007/s00704-008-0074-9.

    Article  Google Scholar 

  • Rayner D P, 2007. Wind run changes: The dominant factor affecting pan evaporation trends in Australia. J. Climate, 20: 3379–3394.

    Article  Google Scholar 

  • Roderick M L, Farquhar G D, 2002. The cause of decreased pan evaporation over the past 50 years. Science, 298: 1410–1411.

    Google Scholar 

  • Roderick M L, Farquhar G D, 2004. Changes in Australian pan evaporation from 1970 to 2002. International Journal of Climatology, 24: 1077–1090.

    Article  Google Scholar 

  • Roderick M L, Farquhar G D, 2005. Changes in New Zealand pan evaporation since the 1970s. International Journal of Climatology, 25: 2031–2039.

    Article  Google Scholar 

  • Roderick M L, Hobbins M T, Farquhar G D, 2009. Pan evaporation trends and the terrestrial water balance: I. Principles and observations. Geography Compass, 3: 746–760.

    Article  Google Scholar 

  • Stanhill G, Möller M, 2008. Evaporative climate change in the British Isles. International Journal of Climatology, 28: 1127–1137.

    Article  Google Scholar 

  • Symons G J, 1867. Evaporators and evaporation. British Rainfall, 7: 9–10.

    Google Scholar 

  • Szilagyi J, Katul G G, Parlange M B, 2001. Evapotranspiration intensifies over the conterminous United States. J. Water Resour. Plan Manage., 127(6): 354–362.

    Article  Google Scholar 

  • Tebakari T, Yoshitani J, Suvanpimol C, 2005. Time-space trend analysis in pan evaporation over Kingdom of Thailand. Journal of Hydrologic Engineering, 10: 205–215

    Article  Google Scholar 

  • Walter M T, Wilks D S, Parlange J Y et al., 2004. Increasing evapotranspiration from the conterminous United States. J. Hydrometeorol., 5: 405–408.

    Article  Google Scholar 

  • Wang Y, Jiang T, Bothe O et al., 2007. Changes of pan evaporation and reference evapotranspiration in the Yangtze River Basin. Theoretical and Applied Climatology, 90: 13–23.

    Article  Google Scholar 

  • Xie H, Ye J, Liu X et al., 2010. Warming and drying trends on the Tibetan Plateau (1971–2005). Theor. Appl. Climatol., 101: 241–253, doi: 10.1007/s00704-009-0215-9.

    Article  Google Scholar 

  • Xu C Y, Gong L B, Jiang T et al., 2006. Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. J. Hydrol., 327: 81–93.

    Article  Google Scholar 

  • You Q, Kang S, Flügel W et al., 2010. From brightening to dimming in sunshine duration over the eastern and central Tibetan Plateau (1961–2005). Theoretical and Applied Climatology, 101(3/4): 445–457.

    Article  Google Scholar 

  • Yue S, Wang C Y, 2002. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resource Research, 38(6): 1–4.

    Article  Google Scholar 

  • Zhang L, Hickel K, Dawes W R et al., (2004) A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res., 40: W02502, doi: 10.1029/2003WR002710.

    Article  Google Scholar 

  • Zhang Y, Liu C, Tang Y et al., 2007. Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau. J. Geophys. Res., 112, D12110, doi: 10.1029/2006JD008161.

    Article  Google Scholar 

  • Zheng D, Li B, 1999. Progress in studies on geographical environments of the Tibetan Plateau. Scientia Geographica Sinica, 19(4): 295–302. (in Chinese)

    Google Scholar 

  • Zheng D, Zhang Q S, Wu S H, 2000. Mountain Geoecology and Sustainable Development of the Tibetan Plateau. New York: Springer.

    Google Scholar 

  • Zheng H X, Liu X M, Liu C M et al., 2009. Assessing the contribution to pan evaporation trends in Haihe River Basin, China. Journal of Geophysical Research (Atmospheres), 114, D24105, doi: 10.1029/2009JD012203.

    Article  Google Scholar 

  • Zheng H, Zhang L, Liu C et al., 2007. Changes in stream flow regime in headwater catchments of the Yellow River basin since the 1950s. Hydrol. Process., 21: 886–893, doi: 10.1002/hyp.6280.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomang Liu.

Additional information

Foundation: The European Commission (Call FP7-ENV-2007-1), No.212921; National Basic Research Program of China, No.2010CB428406

Author: Liu Xiaomang (1983–), Ph.D, specialized in global change and hydrological process.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Zheng, H., Zhang, M. et al. Identification of dominant climate factor for pan evaporation trend in the Tibetan Plateau. J. Geogr. Sci. 21, 594–608 (2011). https://doi.org/10.1007/s11442-011-0866-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11442-011-0866-1

Keywords

Navigation