Spatiotemporal Variations of Water Vapor Content and Its Relationship with Meteorological Elements in the Third Pole
<p>The topography on the Tibetan Plateau and its surroundings.</p> "> Figure 2
<p>AIRS-only, ERA-5, MERRA2, and weighted ensemble data on annual mean water vapor of the TP and surrounding areas from 2003 to 2017 (unit: kg m<sup>−2</sup>). AIRS-only (<b>a</b>), ERA-5 (<b>b</b>), MERRA2 (<b>c</b>), weighted ensemble data (<b>d</b>). (Dots and related numbers represent biases compared to radiosonde stations data, red dots denote positive biases, and yellow dots denote negative biases, their RMSE are printed on the top-right of each panel).</p> "> Figure 3
<p>AIRS-only, ERA-5, MERRA2, and weighted ensemble data on seasonal mean water vapor content of the TP and surrounding areas from 2003 to 2017 (unit: kg m<sup>−2</sup>). spring (<b>a1</b>–<b>d1</b>), summer (<b>a2</b>–<b>d2</b>), autumn (<b>a3</b>–<b>d3</b>) and winter (<b>a4</b>–<b>d4</b>).</p> "> Figure 4
<p>Annual and seasonal changes of water vapor content between AIRS-only, ERA-5, MERRA2, weighted ensemble, and radiosonde data in the TP and surrounding areas for the period of 1980–2019 (unit: kg m<sup>−2</sup>). (<span class="html-italic">p</span> < 0.01 indicates trends passing the 99% significance test). spring (<b>a</b>), summer (<b>b</b>), autumn (<b>c</b>), winter (<b>d</b>), and annual (<b>e</b>).</p> "> Figure 5
<p>Annual mean precipitation (<b>a</b>) and temperature (<b>b</b>) spatial distribution in the TP and surrounding areas from 2003 to 2017 (unit: precipitation mm, temperature °C).</p> "> Figure 6
<p>EOF analysis (the first two modes of EOF): water vapor content (<b>a</b>,<b>d</b>,<b>g</b>,<b>j</b>), temperature (<b>b</b>,<b>e</b>,<b>h</b>,<b>k</b>), precipitation (<b>c</b>,<b>f</b>,<b>i</b>,<b>l</b>) from 2003 to 2017.</p> "> Figure 7
<p>The distribution of water vapor content, temperature, and precipitation in 15 main mountain ranges on the TP and surrounding areas from 2003 to 2017, analyzing the correlation between water vapor and temperature and precipitation (unit: water vapor content kg m<sup>−2</sup>, temperature °C, and precipitation mm).</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data
2.2.1. Measured Data from Radiosonde Stations
2.2.2. Satellite Data: AIRS-Only and TRMM
2.2.3. Reanalysis Data: ERA-5 and MERRA2
2.2.4. Datasets of Daily Values of Terrestrial Climate Information for China (V3.0)
2.3. Methodology
2.3.1. Calculation of Water Vapor Content
2.3.2. Evaluation of Water Vapor Content
2.3.3. Weight Assignment Method
2.3.4. Method of Trend Analysis
2.3.5. Empirical Orthogonal Function (EOF)
3. Results
3.1. Product Accuracy Evaluation
3.2. Spatiotemporal Distribution of Water Vapor Content
3.2.1. Spatial Variability of Water Vapor Content
3.2.2. Temporal Trends of Water Vapor Content
3.3. The Relationship between Water Vapor Content and Climatic Elements
3.3.1. Spatial Distribution of Temperature and Precipitation
3.3.2. The Relationships between Water Vapor Content and Temperature and Precipitation
4. Conclusions and Discussion
Period | Datasets | Measured Data | R | Bias (kg m−2) | RMSE (kg m−2) | Spatiotemporal Variation of Water Vapor Content (kg m−2) | References |
---|---|---|---|---|---|---|---|
2003–2012 | Satellite | radiosonde stations data | 0.85–0.87 | −1.55–−1.58 | 2.05–2.07 | interannual: JRA55, ERA-I, MERRA2, CFSR; annual cycle: ERA-I; 2–12; | Zhao et al. (2020) |
reanalysis | 0.72–0.91 | −1.78–−1.15 | 1.34–2.12 | ||||
ensemble | 0.87 | −1.53 | 1.86 | ||||
2007–2013 | Satellite | GPS stations data | 0.74–0.93 | −1.84–3.52 | 1.83–4.06 | AIRS Level-2; | Wang et al. (2017) |
reanalysis | 0.87–0.9 | 0.72–1.49 | 2.19–2.35 | ||||
1979–2014 | ERA-Interim | radiosonde stations data | −0.03 | 0.50 | ERA-I; 5–10; Annual (16%/10a) ↑; spring, summer, autumn ↑; winter (no changes) | Yao et al (2016) | |
2001 | MOD05_L2 | GPS stations | 0.9 | 0.18 | Annual: southeast:3–30; other regions:2–20February: 2–6; April: 3–8; July: 8–20 | Liang et al. (2006) [52] | |
2004 | AIRS | radiosonde stations data | 500 hpa: 0.9 250 hpa: 0.8 | 500 hpa: 0.5–1205 hpa: 0–2 | AIRS: recommended in the annual and summerNovember to March: 7; June to September: 8–50 | Zhan et al (2008) | |
1979–2012 | 9 reanalysis | radiosonde stations data | 0.96–0.98 | −60%–20% | 2–6 | Underestimate about 60% 1–20; Annual: (0.1/10a–0.6/10a) ↑ | Zhao et al. (2015) [53] |
1979–2008 (summer) | 14 radiosonde stations | 5–19; EOF interpretation variances: First mode: 63.03%; second mode:16.13% | Zhou et al. (2011) | ||||
1979–2008 (summer) | 14 radiosonde stations | 7–18; Annual: ↑ Mann-Kendall: 1994(mutate) | Han et al (2012) [54] | ||||
NCEP/NCAR | |||||||
2000–2010 | ERA-Interim | Monsoon season:10.9 ± 5.9; non-monsoon: 3.5 ± 2.9; | Lu et al (2015) | ||||
MODIS | |||||||
1984–2009 | AIRS | AIRS/AMSU; January to December: 2–12, largest on July(12) warm: 7–12; cold: 2–5.5 | Zhang et al. (2013) | ||||
NVAP |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Varamesh, S.; Hosseini, S.M.; Rahimzadegan, M. Estimation of atmospheric water vapor using MODIS data 1 (Case study: Golestan province of Iran). J. Mater. Environ. Sin. 2017, 8, 1690–1695. [Google Scholar]
- Liu, G.W. The Atmospheric Process of the Hydrologic Cycle; China Science Press: Beijing, China, 1997. [Google Scholar]
- Zhang, Q.; Zhang, J.; Sun, G.W.; Di, X.H. Research on atmospheric water vapor distribution over Qilianshan mountains. Acta Meteor. Sinica. 2007, 65, 633–643. [Google Scholar]
- Cess, R.D. Water vapor feedback in climate models. Science 2005, 310, 795–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Q.; Liu, X.Y.; Cui, C.X.; Li, J.; Liu, R. The computation and characteristics analysis of water vapor contents in the Tarim Basin. Acta Geogr. Sin. 2010, 65, 853–862. [Google Scholar]
- Wang, A.H.; Zeng, X.B. Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J. Geophys. Res. Atmos. 2012, 117, 214–221. [Google Scholar] [CrossRef]
- Liu, J.J.; You, Q.L.; Wang, N. Interannual anomaly of cloud water content and its connection with water vapor transport over the Tibetan Plateau in summer. Plateau Meteor. 2019, 38, 449–459. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, Q.; Lu, G.Y.; Li, D.H.; Li, C.H. Analysis of the distribution characteristics and trend of air vapor in Qilian Mountains. Plateau Meteor. 2019, 38, 935–943. [Google Scholar] [CrossRef]
- Chen, D.; Zhou, C.Y.; Deng, M.Y. A comparison analysis of three reanalysis datasets in the change of atmospheric water vapor content in the summer of the Tibetan Plateau. Plateau Mt. Meteor. Res. 2018, 38, 1–6. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, T.J. Asian water tower evinced in total column water vapor: A comparison among multiple satellite and reanalysis data sets. Clim. Dyn. 2020, 54, 231–245. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yang, K.; Pan, Z.; Qin, J.; Chen, D.; Lin, C.; Chen, Y.Y.; Zhu, L.; Tang, W.J.; Han, M.L.; et al. Evaluation of precipitable water vapor from four satellite products and four reanalysis datasets against GPS measurements on the southern Tibetan Plateau. J. Clim. 2017, 5699–5713. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Wang, D.H.; Zhai, P.M.; Gu, G.J.; He, J.H. Spatial distributions and seasonal variations of tropospheric water vapor content over the Tibetan Plateau. J. Clim. 2013, 26, 5637–5654. [Google Scholar] [CrossRef]
- Zhuo, G.; Bian, B.C.R.; Yang, X.H.; Luo, B. Spatial and temporal changes of atmospheric precipitable water in Tibet Region in recent 30 years. Plateau Meteor. 2013, 32, 23–30. [Google Scholar]
- Zhan, R.F.; Li, J.P. Validation and Characteristics of Upper Tropospheric Water Vapor over the Tibetan Plateau from AIRS Satellite Retrieval. J. Atmos. Sci. 2008, 32, 242–260. [Google Scholar]
- Skliris, N.; Zika, J.D.; Nurser, G.; Josey, S.A.; Marsh, R. Global water cycle amplifying at less than the Clausius-Clapeyron rate. Sci. Rep. 2016, 6, 38752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, F.T.; Fu, C.B. Change of precipitation intensity spectra at different spatial scales under warming conditions. Chin. Sci. Bull. 2013, 58, 1385–1394. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Xiao, H.B.; Xu, W.X.; Qi, D.L.; Wei, X.D. Precipitable water variation and its impact factors in recent 40 years in Qaidam Basin. Resour. Sci. 2013, 11, 2289–2297. [Google Scholar]
- Yao, J.Q.; Yang, Q.; Hu, W.F.; Zhao, L.; Liu, Z.H.; Han, X.Y.; Zhao, L.; Meng, X.Y. Characteristics analysis of water vapor contents around Tianshan Mountains and the relationships with climate factors. Sci. Geogr. Sin. 2013, 33, 859–864. [Google Scholar] [CrossRef]
- Zhou, S.W.; Wu, P.; Wang, C.H.; Han, J.C. Spatial distribution of atmospheric water vapor and its relationship with precipitation in summer over the Tibetan Plateau. J. Geogr. Sci. 2012, 22, 795–809. [Google Scholar] [CrossRef]
- Xie, H.; Ye, J.S.; Liu, X.M.; Chongyi, E. Warming and drying trends on the Tibetan Plateau (1971–2005). Appl. Climatol. 2010, 101, 241–253. [Google Scholar] [CrossRef]
- Yao, Y.B.; Lei, X.X.; Zhang, L.; Zhang, B.; Peng, H.; Zhang, J.H. Analysis of precipitable water vapor and surface temperature variation over Qinghai-Tibetan Plateau from 1979 to 2014. Chin. Sci. Bull. 2016, 61, 1462–1477. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Liu, J.C.; Shang, B.; Xu, C. Analysis on the relationship between atmospheric water vapor content and temperature and precipitation in Changchun. Meteorol. Disaster Prev. 2019, 26, 6–9. [Google Scholar]
- Yang, Q.; Wei, W.S.; Li, J. Spatial and temporal distribution of atmospheric water vapor in Taklamakan desert with its surrounding regions. Chin. Sci. Bull. 2008, 53, 62–68. [Google Scholar]
- IPCC (Intergovernmental Panel on Climate Change). Climate change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Xiong, C.; Yao, R.Z.; Shi, J.C.; Lei, Y.H. Change of snow and ice melting time in High Mountain Asia. Chin. Sci. Bull. 2019, 64, 2885–2893. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.J.; Gao, J.; Zhao, Y.; Zhang, L.X.; Zhang, W.X. Water vapor transport processes on Asian Water Tower. Bull. Chin. Acad. Sci. 2019, 34, 1210–1219. [Google Scholar] [CrossRef]
- Yao, T.D.; Thompson, L.; Yang, W. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Xie, Z.C.; Zhou, Z.G.; Li, Q.Y.; Wang, S.H. Progress and prospects of mass balance characteristic and responding to global change of glacier system in High Asia. Adv. Earth Sci. 2009, 24, 1065–1072. [Google Scholar]
- Wang, S.J.; Zhang, M.J.; Pepin, N.C.; Li, Z.Q.; Sun, M.P.; Huang, X.Y.; Wang, Q. Recent changes in freezing level heights in High Asia and their impact on glacier changes. J. Geophys. Res. Atmos. 2014, 119, 1753–1765. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.R.; Zou, S.B.; Du, D.Y.; Xiong, J.J.; Lu, Z.X.; Ruan, H.W.; Xiao, H.L. Variation of tropospheric specific humidity upon the middle-lower reaches of the Heihe River during 1981–2010. J. Glaciol. Geocryol. 2016, 38, 57–68. [Google Scholar] [CrossRef]
- Chahine, M.T.; Pagano, T.S.; Aumann, H.H.; Atlas, R.; Granger, S. AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bull. Am. Meteor. Soc. 2006, 87, 911–926. [Google Scholar] [CrossRef] [Green Version]
- Kummerow, C.; Barnes, W.; Kozu, T. The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Ocean Technol. 1998, 15, 809–817. [Google Scholar] [CrossRef]
- Lu, N.; Qin, J.; Gao, Y.; Yang, K.; Trenberth, K.E.; Gehne, M.; Zhu, Y. Trends and variability in atmospheric precipitable water over the Tibetan Plateau for 2000–2010. Int. J. Climatol. 2015, 35, 1394–1404. [Google Scholar] [CrossRef]
- Molod, A.; Takacs, L.; Suarez, M.; Bacmeister, J. Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model. Dev. 2015, 7, 339–1356. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.Z.; Liu, G.S. An estimation of total atmospheric water vapor in the mainland of China. Acta Geogr. Sin. 1993, 48, 244–253. [Google Scholar]
- Lorenz, E.N. Statistical forecasting program: Empirical orthogonal functions and statistical weather prediction. Sci. Rep. 1956, 409, 997–999. [Google Scholar] [CrossRef]
- North, G.R.; Bell, T.L.; Cahalan, R.F.; Moeng, F.J. Sampling errors in the estimation of empirical orthogonal functions. Mon. Weather Rev. 1982, 110, 699–706. [Google Scholar] [CrossRef]
- Feng, L.; Zhou, T.J. Water vapor transport for summer precipitation over the Tibetan Plateau: Multi-source datasets analysis. J. Geophys. Res. 2012, 117, D20114. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.Y.; Zhao, P.T.; Zhang, Y.C.; Liu, F.Q. Technical improvement and experimental analysis of GTS1 radiosonde. Meteor. Sci. Technol. 2013, 41, 254–258. [Google Scholar] [CrossRef]
- Hao, M.; Gong, J.D.; Wang, R.W.; Wan, X.M.; Liu, Y. The quality assessment and correction of the radiosonde humidity data biases of L-band in China. Acta Meteor. Sin. 2015, 73, 187–199. [Google Scholar] [CrossRef]
- Qin, J.; Yang, K.; Liang, S.L.; Guo, X.F. The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Clim. Chang. 2009, 97, 321–327. [Google Scholar] [CrossRef]
- Guo, Y.P. The Changing Characteristics of Water Cycle over the Qinghai-Xizang Plateau in Last 40 Years. Master’s Thesis, Lanzhou University, Lanzhou, China, 2013. [Google Scholar]
- Qiu, J. China: The third pole. Nature 2008, 454, 393–396. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.L.; Tang, G.L.; Cao, L.J.; Liu, Q.F.; Ren, Y.Y. Surface air temperature variability and its relationship with altitude & latitude over the Tibetan Plateau in 1981–2010. Adv. Clim. Chang. Res. 2012, 5, 4–10. [Google Scholar] [CrossRef]
- Li, S.C.; Li, D.L.; Zhao, P.; Zhang, G.Q. Water vapor transport characteristics of the rainy season in the “Three River Source Area” on the Qinghai-Tibet Platea. Acta Meteor. Sin. 2009, 67, 591–598. [Google Scholar]
- Lin, H.B.; You, Q.L.; Jiao, Y.; Min, J.Z. Water vapor transportation and its influences on precipitation in summer over Tibetan Plateau. Plateau Meteor. 2016, 35, 309–317. [Google Scholar] [CrossRef]
- Han, Y.Z.; Ma, W.Q.; Wang, B.Y.; Ma, Y.M. Climatic characteristics of rainfall change over the Tibetan Plateau from 1980 to 2013. Plateau Meteor. 2017, 36, 1477–1486. [Google Scholar] [CrossRef]
- Held, I.M.; Soden, B.J. Water vapor feedback and global warming. Annu. Rev. Energy Environ. 2000, 25, 445–475. [Google Scholar] [CrossRef] [Green Version]
- Philipona, R.B.; Diirr, C. Marty A Ohmura Radiative forcing-measured at Earth’s surface—Corroborate the increasing greenhouse effect. Geogr. Res. Lett. 2004, 31, L03202. [Google Scholar] [CrossRef]
- Philipona, R.B.; Diirr, B.; Ohmura, A.; Ruckstuhl, C. Anthropogenic greenhouse forcing and strong water vapor feedback increase temperature in Europe. Geogr. Res. Lett. 2005, 32, L19809. [Google Scholar] [CrossRef]
- Li, X.F.; Fowler, H.J.; Forsythe, N.; Blenkinsop, S.; Pritchard, D. The karakoram/western tibetan vortex: Seasonal and year-to-year variability. Clim. Dyn. 2018, 51. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Liu, J.J.; Li, S.K. Analysis of water vapor content distribution and its seasonal variation characteristics over Tibetan Plateau and its surroundings. J. Nat. Res. 2006, 21, 526–534. [Google Scholar]
- Zhao, T.B.; Wang, J.H.; Dai, A.G. Evaluation of atmospheric precipitable water from reanalysis products using homogenized radiosonde observations over China. J. Geophys. Res. Atmos. 2015, 120, 10703–10727. [Google Scholar] [CrossRef]
- Han, C.J.; Zhou, S.W.; Wu, P.; Wang, C.H.; Yang, S.Y.; Yang, M. Spatial Distribution of water vapor content over the Tibetan Plateau in Summer. Arid Zone Res. 2012, 29, 457–463. [Google Scholar]
Source | Time Range | Horizontal Resolution | |
---|---|---|---|
AIRS-only | NASA | 2003–2017 | 1° × 1° |
MERRA2 | NASA | 1980–2019 | 0.5° × 0.625° |
ERA-5 | ECMWF | 1980–2019 | 0.75° × 0.75° |
Radiosonde | China Meteorological Science Data Center | 1980–2013 | 27 stations data |
Gauge V3.0 | China Meteorological Science Data Center | 1980–2019 | 157 stations data |
TRMM | NASA | 1998–2019 | 0.25° × 0.25° |
Annual | Spring | Summer | Autumn | Winter | ||
---|---|---|---|---|---|---|
AIRS-only | R | 0.94 | 0.96 | 0.88 | 0.94 | 0.97 |
bias | −0.05 | 0.02 | −0.07 | −0.07 | −0.02 | |
RMSE | 2.38 | 1.74 | 4.58 | 2.79 | 1.13 | |
ERA-5 | R | 0.97 | 0.97 | 0.95 | 0.97 | 0.98 |
bias | −0.04 | 0.09 | −0.06 | −0.04 | −0.05 | |
RMSE | 1.74 | 5.27 | 3.06 | 2.04 | 0.97 | |
MERRA2 | R | 0.96 | 0.97 | 0.93 | 0.96 | 0.98 |
bias | 0.04 | 0.05 | 0.05 | 0.02 | −0.01 | |
RMSE | 1.92 | 1.60 | 3.34 | 2.12 | 1.04 | |
weighted ensemble data | R | 0.96 | 0.97 | 0.94 | 0.96 | 0.97 |
bias | −0.01 | 0.02 | −0.03 | −0.03 | −0.03 | |
RMSE | 1.88 | 1.61 | 3.20 | 2.17 | 1.09 |
Annual | Spring | Summer | Autumn | Winter | |
---|---|---|---|---|---|
AIRS-only | 0.30 | 0.61 | 0.27 | 0.18 | 0.30 |
ERA-5 | 0.36 | 0.14 | 0.34 | 0.27 | 0.12 |
MERRA2 | 0.34 | 0.25 | 0.39 | 0.55 | 0.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Sun, M.; Yao, X.; Zhang, L.; Zhang, H. Spatiotemporal Variations of Water Vapor Content and Its Relationship with Meteorological Elements in the Third Pole. Water 2021, 13, 1856. https://doi.org/10.3390/w13131856
Wang Z, Sun M, Yao X, Zhang L, Zhang H. Spatiotemporal Variations of Water Vapor Content and Its Relationship with Meteorological Elements in the Third Pole. Water. 2021; 13(13):1856. https://doi.org/10.3390/w13131856
Chicago/Turabian StyleWang, Zhilan, Meiping Sun, Xiaojun Yao, Lei Zhang, and Hao Zhang. 2021. "Spatiotemporal Variations of Water Vapor Content and Its Relationship with Meteorological Elements in the Third Pole" Water 13, no. 13: 1856. https://doi.org/10.3390/w13131856
APA StyleWang, Z., Sun, M., Yao, X., Zhang, L., & Zhang, H. (2021). Spatiotemporal Variations of Water Vapor Content and Its Relationship with Meteorological Elements in the Third Pole. Water, 13(13), 1856. https://doi.org/10.3390/w13131856